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a b s t r a c t

We classify rank two Fano bundles over the Grassmannian of lines G(1, 4). In particular
we show that the only non-split rank two Fano bundle over G(1, 4) is, up to a twist, the
universal quotient bundle Q. This completes the classification of rank two Fano bundles
over Grassmannians of lines.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The problemof classifying low rank vector bundles on grassmannians appears naturally in the framework of Hartshorne’s
Conjecture.

On one hand one may consider finite morphisms from the grassmannian to the projective space and take pull-backs
of vector bundles via these morphisms. Simple computations on Chern classes discriminate whether a vector bundle on
the grassmannian may appear as a pull-back of one on a projective space, relating both classifications: that of low rank
vector bundles on the grassmannian and that of low rank vector bundles on the corresponding projective space. Let us focus
on the codimension two case where Hartshorne’s conjecture can be stated as follows: any rank two vector bundle on P6

decomposes as the direct sum of two line bundles. By the previous ideas this conjecture would follow from the fact that
any rank two vector bundle on the grassmannian of lines in P4, G(1, 4), either decomposes as a sum of line bundles or is,
up to a twist, isomorphic to the universal quotient bundle Q. This path has been followed in a number of papers, see for
instance [2,3,10,12,14], where the authors study extensions to G(1, 4) of Horrocks decomposability criterion, that had been
previously shown to work on projective spaces [7] and quadrics [11]. In the case of G(1, 4) these results show essentially
how the vanishing of certain cohomology groups characterizes decomposable bundles and twists of the universal quotient
bundle Q. Note that a straightforward computation of Chern classes shows that no bundle on P6 may be pulled-back to Q
or its twists.

On the other hand one may consider the problem of classifying low rank vector bundles on other Fano manifolds of
Picard number one and, in particular, on grassmannians, as a natural extension of the decomposability question on vector
bundles on the projective space. In this setting, it is known that some partial results may be achieved under certain
positivity conditions: for instance, rank two Fano bundles over projective spaces and quadrics are completely classified
(see [16,17,15,1]). Furthermore, it has beennoted byMalaspina in [11] that this classification provides precisely the complete
list of rank two bundles on projective spaces and quadrics satisfying the decomposability criteria that we have referred to
above.
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In our recent paper [13] we classified rank two Fano bundles over G(1, n) with n ≥ 5, proving that they are twists of the
universal quotient bundle Q or sums of line bundles ([13, Corollary 5.17]). Our proof relied on showing that the restriction
of a Fano bundle E on G(1, n) to a Pn−1

⊂ G(1, n), representing lines through a fixed point, is a sum of line bundles; this
allows us to conclude by using a classification of uniform (i.e, whose restriction to every line is the same) vector bundles on
grassmannians (see [5, Théorème 1] or [13, Theorem 4.1]). Note that the restriction of E to a Pn−1 is not necessarily Fano;
however it yet satisfies a weaker positivity condition, that we call 1-Fano (see [13, Definition 5.1]), from which we infer the
splitting ([13, Theorem 5.15]) for n ≥ 5. Unfortunately there are well known examples of indecomposable 1-Fano bundles
on P3, including the null-correlation bundle (c1 = 0, c2 = 1) and the stable bundles with c1 = 0, c2 = 2 ([6, Remark. 9.4.1]).
This prevents our arguments for G(1, n) from working in the case n = 4. Note also that the cases n = 2, 3 follow from the
classification of Fano bundles on projective spaces and quadrics, so that, at this point, the only grassmannian of lines that
could eventually support a different Fano bundle was G(1, 4). In this note we prove the following:

Theorem 1.1. Let E be a rank two Fano bundle on G(1, 4); then E is either a twist of the universal quotient bundle or a direct
sum of two line bundles.

Note that a vector bundle O(a) ⊕ O(b) on G(1, n) is Fano if and only if |a − b| < n + 1, hence, up to a twist with a line
bundle, the list of Fano bundles on G(1, n) is finite for all n. In the case n = 4, split Fano bundles are twists of one of the
following:

O⊕2, O(−1) ⊕ O(1), O(−2) ⊕ O(2), O(−1) ⊕ O, O(−2) ⊕ O(1).

Our proof of Theorem 1.1 does not involve a classification of 1-Fano bundles on P3, which to our best knowledge is still
unknown. We rather consider the restriction of E to additional subvarieties in different cohomology classes and use the
techniques of [13] (positivity of Schur polynomials, Schwarzenberger conditions, Riemann–Roch combined with vanishing
theorems) to compute a manageable list of possible Chern classes of E|P3 (with the help of the Maple package Schubert [8]).
At this point a case by case analysis of E|P3 finishes the proof.

1.1. Notation

Along this paper G(1, 4) will denote the Grassmann variety parameterizing lines in the complex projective space of
dimension 4, and we will consider vector bundles E of rank two on G(1, 4). Given an integer j, we will denote by E(j) the
twist of E with the j-th tensor power of the ample generator of Pic(G(1, 4)).

Given integers i, j such that 0 ≤ i < j ≤ 4, we will denote by Ω(i, j) the cohomology class of the subscheme of G(1, 4)
parameterizing lines contained in a linear subspace Pj ⊂ P4 of dimension j and meeting a linear subspace Pi ⊂ Pj of
dimension i. Since H2(G(1, 4), Z) ≃ Z⟨Ω(2, 4)⟩ and H4(G(1, 4), Z) = Z⟨Ω(1, 4)⟩ ⊕ Z⟨Ω(2, 3)⟩ we will denote by e and
by (a, b) the first and second Chern class of E, respectively. That is to say

c1(E) = eΩ(2, 4) and c2(E) = aΩ(1, 4) + bΩ(2, 3). (1)

Let us recall that the only way of embedding P3 in G(1, 4) linearly is as an element in Ω(0, 4) that from now on will be
called a linear P3

⊂ G(1, 4).
We will always assume, up to twist with a line bundle, that E is normalized, i.e. that e = 0, −1.

Let X := P(E) be the projectivization of E, that is

P(E) = Proj


k≥0

SkE


,

with projection π : X → G(1, 4). Denote by H the pullback of the ample generator of Pic(G(1, 4)) and by L the class of the
tautological line bundle O(1) of X . The anticanonical bundle of X is given by

O(−KX ) = O(2L + (5 − e)H).

We will assume that E is Fano, i.e. that −KX is ample. Equivalently, the Q-twisted bundle E((5 − e)/2) is ample.

2. Existence of sections and splitting

Let ℓ be a line in G(1, 4). By the ampleness of −KX we have that the possible splitting types of E on ℓ are

(−2, 2), (−1, 1), (0, 0) if e = 0, and (−2, 1), (−1, 0) if e = −1. (2)

In particular we obtain lower bounds for the set

k ∈ Z|H0(G(1, 4), E(k)) ≠ 0


. Later on we will make use of the following

statement:

Lemma 2.1. If H0(G(1, 4), E(−2)) ≠ 0 then E splits as O(−2) ⊕ O(2). The same is true if the condition is fulfilled by the
restriction of E to a general linear P3

⊂ G(1, 4).
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Proof. Since H0(ℓ, E(−2)|ℓ) = 0 for every line ℓ on which E has splitting type different from (−2, 2), the existence of
a non-zero global section of E(−2) implies that (−2, 2) is the splitting type of E on the general line of G(1, 4). But then
semicontinuity, together with (2) above, tells us that this is in fact the splitting type of E on every line of the Grassmannian.
Then E is uniform and its splitting follows from [5, Théorème 1] or [13, Theorem 4.1].

Note that, by (2) the uniformity follows if we had that the splitting type of E at a general line is (−2, 2). Then the same
proof works if we assume that H0(P3, E|P3(−2)) ≠ 0 for a general P3. �

Now we will translate the effectiveness of c2(E(j)) into some numerical conditions which the integers e, a, b, defined in
(1), must satisfy:

Lemma 2.2. Assume that for some integer j

H0(G(1, 4), E(j − 1)) = 0 and H0(G(1, 4), E(j)) ≠ 0. (3)

Then a + j(e + j) ≥ 0 and b + j(e + j) ≥ 0, and E ∼= O(−j) ⊕ O(e + j) if and only if a + j(e + j) = b + j(e + j) = 0.
Moreover if condition (3) is fulfilled by the restriction of E to a linear P3

⊂ G(1, 4) then a + j(e + j) ≥ 0, and equality holds if
and only if the restriction of E to such P3 splits as OP3(−j) ⊕ OP3(e + j).

Proof. Let σ be a section of E(j) and let Z := {σ = 0} be its zero set. Since H0(G(1, 4), E(j − 1)) = 0, then Z is either
empty or a codimension two subvariety of G(1, 4) in the cohomology class (a+ j(e+ j))Ω(1, 4) + (b+ j(e+ j))Ω(2, 3). In
particular a + j(e + j), b + j(e + j) ≥ 0 and equalities hold if and only if Z is empty. If Z is empty, then the cokernel Lσ of
σ : OG(1,4) → E(j) is a line bundle and, since extensions of line bundles on G(1, 4) are trivial, we have an isomorphism

E(j) ∼= OG(1,4) ⊕ Lσ .

Conversely, if E(j) has a direct summand OG(1,4), then the inclusion of this subbundle into E provides a section of E(j) with
empty zero set.
The statement on the restriction is proved in the same way taking into account that the cohomology class of P3 is Ω(0, 4)
and the vanishing of the intersection product Ω(2, 3)Ω(0, 4) = 0. �

The next trivial lemma will be useful later:

Lemma 2.3. Consider a linear P3
⊂ G(1, 4) such that E|P3 splits as OP3(k) ⊕ OP3(r). The pair (k, r) is completely determined

by e and a. In particular, if for every linear P3
⊂ G(1, 4) the restriction E|P3 is a direct sum of line bundles, then E is uniform.

Proof. If E|P3 ∼= OP3(k) ⊕ OP3(r), then

k + r = c1(E|P3) = c1(E)Ω(0, 4) = e, kr = c2(E|P3) = c2(E)Ω(0, 4) = a.

Then k and r are the only solutions of the equation x2 − ex + a = 0, hence they are determined by e and a. �

Corollary 2.4. If H0(P3, E|P3(−1)) ≠ 0 and H0(P3, E|P3(−2)) = 0 for the general P3
⊂ G(1, 4), then a ≥ e − 1 and equality

holds if and only if E splits as a sum of line bundles O(1) ⊕ O(e − 1).

Proof. The first assertion follows directly from Lemma 2.2. Assume that a = e − 1. By Lemma 2.2 again, it follows that the
restriction of E to a general P3 splits as OP3(1) ⊕ OP3(e − 1). If this were the case for every P3, then E would be uniform
and we could conclude the splitting of E ([5, Théorème 1], [13, Theorem 4.1]). Thus we may assume that there exists a
P3 for which H0(P3, E|P3(−2)) ≠ 0. Arguing as in Lemma 2.1, we get that E|P3 splits as OP3(2) ⊕ OP3(−2), contradicting
Lemma 2.3. �

In order to actually get the existence of sections of a suitable twist of E we will apply Le Potier vanishing Theorem as in
the following

Lemma 2.5. If j ≥ −2 then h0(G(1, 4), E(j)) ≥ χ(G(1, 4), E(j)). The same is true if j ≥ −1 for the restriction of E to a linear
P3

⊂ G(1, 4).

Proof. Notice that E is Fano, hence E(3) is ample and applying Le Potier vanishing Theorem [9, II, Theorem. 7.3.5] we get
that

χ(E(j)) = h0(G(1, 4), E(j)) − h1(G(1, 4), E(j)), for j ≥ −2.

The second part of the statement is analogous. �
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3. Proof of Theorem 1.1

Step 1: Reduction of the set of possible Chern classes of E
Let us denotem = (5− e)/2. By hypothesis the Q-twist E(m) is ample and, in particular the restrictions of the Q-bundle

E(m) to a P3 in the class Ω(0, 4) and to a P2 in the class Ω(1, 2) have positive Chern classes (see [4]), i.e. a + me + m2 > 0
and b + me + m2 > 0. Therefore we get a, b ≥ −6 if e = 0 and a, b > −6 if e = −1.
By the positivity of the third Schur polynomial (c21 − 2c2, see [9, 8.3]) of E(m) against the cycles Ω(0, 4) and Ω(1, 3) we get
a ≤ 6, b ≤ 12 − a if e = 0 and a ≤ 6, b ≤ 13 − a if e = −1.
Now (with the help of the Maple Schubert package) we use the Riemann–Roch formula to compute χ(E(k)), k ∈ Z, for all
possible values left of a and b, and we exclude those for which the result is not an integer for some k. This is the analogue of
the Schwarzenberger’s conditions on the projective space. We are left with the following cases:

e = 0 e = −1
(a, b) (−4, −4) (6, 6)
(a, b) (−4, 12) (−2, −2)
(a, b) (−1, −1) (−2, 7)
(a, b) (−1, 3) (0, 1)
(a, b) (0, 0) (0, 0)

Furthermore, for a = b = 6 the Riemann–Roch formula gives usχ(E(5)) = −935. On the other hand, Griffiths Vanishing
Theorem [9, II, Theorem. 7.3.1] provides H i(G(1, 4), E(5)) = 0 for i > 0, a contradiction.

Step 2: Characterizing the case E ∼= O(−2) ⊕ O(2)
By Lemma 2.1, if H0(P3, E|P3(−2)) ≠ 0 for the general P3 in the class Ω(0, 4) then E ≃ O(−2) ⊕ O(2), and in particular

a = b = −4. Conversely, if (a, b) = (−4, −4) then, by Riemann–Roch and Lemma 2.5, we get H0(G(1, 4), E(−2)) ≠ 0 and
E ≃ O(−2) ⊕ O(2) by Lemma 2.1.

As a consequence, we may assume, in the remaining cases, that

H0(P3, E|P3(−2)) = 0, for the general P3 in Ω(0, 4). (4)

Step 3: The case a ≠ 0
In this case Riemann–Roch formula for E|P3 provides:

(e, a, b) χ(E|P3(−1))
(0, −4, 12) 4
(0, −1, −1) 1
(0, −1, 3) 1

(−1, −2, −2) 1
(−1, −2, 7) 1

and, in particular, by Lemma 2.5, H0(P3, E|P3(−1)) ≠ 0 for the general linear P3
⊂ G(1, 4). Then, using the assumption (4)

together with Corollary 2.4, we obtain that the case (0, −4, 12) is not possible and that E splits in the rest of the cases. It
follows that the only possibilities are, either:

• (e, a, b) = (0, −1, −1) and E ∼= O(−1) ⊕ O(1), or
• (e, a, b) = (−1, −2, −2) and E ∼= O(−2) ⊕ O(1).

Step 4: The case a = 0
Note first that in this case H0(P3, E|P3(−2)) = 0 for every P3 inΩ(0, 4). In fact, if the restriction of E(−2) to some P3 had

sections, then, arguing as in Lemma 2.1, E|P3 would split as O(−2) ⊕ O(2) and Lemma 2.3 would imply that a = −4 (recall
that a = c2(E|P3)).

We claim that, moreover, H0(P3, E|P3(−1)) = 0 for every P3. Assume that this is not the case for some P3 and let Z be
the set of zeros of a non-zero global section σ of E|P3(−1), which is, by the vanishing of H0(P3, E|P3(−2)), a curve of degree
c2(E|P3(−1)). If e = 0, then Z is a line, contradicting the adjunction formula KZ = (KP3 + c1(E(−1)))|Z = (OP3(−6))|Z . If
else e = −1, let ℓ be a line meeting Z . The possible splittings of E(−1) on ℓ are (−3, 0) or (−2, −1) (see (2)), so σ cannot
vanish on any point of ℓ, a contradiction.

Finally the Riemann–Roch formula, together with Lemma 2.5, tells us that H0(P3, E|P3) ≠ 0 for every P3 in Ω(0, 4),
hence E|P3 splits and E is uniform, necessarily of type (0, 0) or (0, −1), by Lemma 2.3 . This allows us to conclude (using
[5, Théorème 1], [13, Theorem 4.1]) that E is isomorphic either to O⊕2, or to O ⊕ O(−1), or to the universal bundle Q. This
finishes the proof. �
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