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Stochastic Sensitivity Analysis and Kernel Inference via Distributional Data
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ABSTRACT Cellular processes are noisy due to the stochastic nature of biochemical reactions. As such, it is impossible to
predict the exact quantity of a molecule or other attributes at the single-cell level. However, the distribution of a molecule
over a population is often deterministic and is governed by the underlying regulatory networks relevant to the cellular functionality
of interest. Recent studies have started to exploit this property to infer network states. To facilitate the analysis of distributional
data in a general experimental setting, we introduce a computational framework to efficiently characterize the sensitivity of
distributional output to changes in external stimuli. Further, we establish a probability-divergence-based kernel regression
model to accurately infer signal level based on distribution measurements. Our methodology is applicable to any biological sys-
tem subject to stochastic dynamics and can be used to elucidate how population-based information processing may contribute
to organism-level functionality. It also lays the foundation for engineering synthetic biological systems that exploit population
decoding to more robustly perform various biocomputation tasks, such as disease diagnostics and environmental-pollutant
sensing.
INTRODUCTION
As information-processing units, cellular networks transform
diverse stimuli, such as DNA damage and pathogenic infec-
tion, to appropriate responses (2). In each cell, this process
can be highly noisy due to the discrete nature of biochemical
reactions (3–10). As a result, single-cell responses are
often highly heterogeneous even in an isogenic population
(11–14). Phenotypic heterogeneity often manifests as differ-
ential fate determination, including cell growth, senescence,
anddeath,which canbe triggered byboth natural (e.g., growth
factors) and artificial (e.g., therapeutics) stimuli (1,15). Func-
tional implications of cell-to-cell variability have been estab-
lished in various biological contexts (4,5,7,9,16–22).
Historically, biological models (e.g., network structure)
have been conceived based on cell-population average mea-
surements (e.g., Western blot) (23). Given the large degree
of phenotypic heterogeneity, however, biologically relevant
information may be lost in the process of averaging
(11,12,24). For example, it was thought formerly that p53
underwent damped oscillation in response to DNA damage.
However, single-cell experiments showed that individual
cells give rise to varying numbers of p53 pulses of fixed
amplitude and duration (25). In another case, single-cell
analysis revealed a biphasic dependence of E2F on Myc
expression, shedding new light on cell-cycle regulation (13).

The presence of noise may fundamentally limit the infor-
mation-processing capacity at the single-cell level (26).
However, some tissue- and organism-level responses rely
on the constructive use of noise (27–31). One example is
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the generation of robust acute and recall immunity in
response to infection via the diversification of individual
naı̈ve antigen-specific T cells (30). Another example is the
decoding of motion components via the firing-rate distri-
bution over the population of noisy neurons in the middle
temporal visual area (30,33). The key rationale behind
noise-aided information processing is statistical regularity.
The shape of the distribution is governed by network prop-
erties, including structure and parameterization, and can be
captured by observing a sufficiently large sample population
(28,34–37). This population-level determinism justifies the
use of distribution data as a quantitative phenotype of a
signaling network and its corresponding cellular output
(e.g., cell proliferation). The implications of this perspective
are twofold. First, distribution data can be used to gain
insight into and constrain the regulatory property of the
underlying network model. Second, it provides the basis
for deciphering information-processing mechanisms in
naturally occurring cell populations and for engineering
synthetic gene circuits that exploit stochastic dynamics
and population codes. These applications will advance our
understanding in basic biological principles and clinical
practices such as disease diagnostics (36,38,39).

Here, we present a streamlined computational framework
to quantify stochastic network sensitivity to parameter
perturbations, using distribution as the readout. We further
implement a kernel regression model with a probability-
distance measure that enables accurate inference of external
stimuli. Although our framework is established using a
mechanistic model of a well-defined biological network,
it is entirely data-driven and does not require a priori mech-
anistic knowledge. In addition, we use perturbations on
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network parameters as an emulation of realistic external
stimuli, such as growth factors and environmental pollut-
ants. This mechanism-free nature renders our method partic-
ularly suitable for complex biological phenomena like
cancer, where a simple mechanistic model would not do
the whole system justice and population heterogeneity is
physiologically or pathologically relevant.

Various methods have been proposed to exploit stochastic
dynamics in estimating model parameters and selecting
optimal model structures (40–56). Our method expands
the tool kit. It allows intuitive exploration of biological sys-
tems via characterization of their distributional responses to
environmental stimuli. Of more importance, our method ex-
ploits the totality of the distribution, whereas past methods
have primarily relied on low-order statistics and are limited
by the analytical tractability of the mechanistic model.
METHODS

Stochastic simulation of the MYC/Rb/E2F model

We adopt a previously developed stochastic model for this network (57,58).

It consists of a set of stochastic differential equations, which has the general

form

dXiðtÞ
dt

¼
XM

j¼ 1
vjiaj½XðtÞ� þ

XM

j¼ 1
vjia

1
2½XðtÞ�GjðtÞ þ uiðtÞ;

(1)

where XiðtÞ represents the number of molecules of a molecular species i

(i ¼ 1,., N) at time t, and X(t) ¼ (X1(t),., XN(t)) is the state of the entire

system at time t. X(t) evolves over time at the rate of aj ½XðtÞ� (j ¼ 1,.,M),

and the corresponding changes in the number of individual molecules are

described in vji. GjðtÞ and uiðtÞ are temporally uncorrelated, statistically in-

dependent Gaussian noises. GjðtÞ is the standard normal distribution with

mean 0 and variance 1. uiðtÞ tunes the level of empirical additive extrinsic

noise (1). The stochastic differential equations are simulated using Matlab.

The distributional output corresponding to a network state (parameteriza-

tion) is generated by performing temporal simulations of the network

5000 times and taking the level of the nodal activity of interest (E2F) at

a fixed time point (24 h). Therefore, the immediate raw distributional output

is a histogram with 5000 samples.
Calculating modified Kullback-Leibler divergence
and stochastic sensitivity

We fit each histogram, as depicted in the paragraph above, by a Gaussian

mixture model (GMM) with 20 components to capture its totality and ease

downstream computational analysis. A GMM is a parametric probability

density function represented as a weighted sum of Gaussian component

densities. Suppose there are two such GMM density functions, f and g. We

define a modified Kullback-Leibler (KL) divergence (D), a statistical dis-

tance, to quantify the difference between two distributions (i.e., f and g)

(59). By its original definition, KL divergence is asymmetric: the KL diver-

gence of g from f, DKLðf jjgÞ; is in general different from that of f from g,

DKLðgjjf Þ. Our metric symmetrizes the divergence by taking the average

of the two (Fig. S1). There is no analytical equation to calculate the KL

divergence between two GMM density functions. To approximate the KL

divergence, we draw n samples fxigni¼1 from f , from which we calculate

DKLðf jjgÞ ¼ ð1=nÞPn
i¼1logðf ðxiÞ=gðxiÞÞ. In a similar way, we can calculate
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DKLðgjjf Þ. Note that the samples here are from the fitted GMM density, not

from the original stochastic simulations. For large n, which we set to be

10,000, this Monte Carlo sampling approximation converges to the true

divergence between f and g (59)We define the symmetrical divergencemea-

sure, Dðf jjgÞ ¼ DKLðf jjgÞ þ DKLðgjjf Þ=2. This is also known as the Jensen-
Shannon divergence and is routinely used in bioinformatics analysis (60,61).

We bootstrap the raw distribution to emulate the variability in the distri-

butional response over multiple observations. The original distribution is

sampled with replacement N times, with N equal to the number of samples

in the original distribution. Fig. S1,A andB, shows the KL divergence calcu-

lated in reverse directions (green and red lines), with the black line being

the average of the two, or the symmetric divergence, D. The statistics on

intracondition variability generated by bootstrapped distributions are con-

sistent with those generated by independent SDE simulations. We also

reason that the sufficient sampling of the distribution generated by a single

run of the simulation makes bootstrapping an appropriate procedure to

represent the variability of the distribution under the same condition. Exem-

plary codes can be found at http://www.genome.duke.edu/labs/YouLab/

software/index.php.

KL divergence can be calculated directly from the observed sample dis-

tribution using the empirical cumulative distribution function (cdf) without

an intermediate density estimation step (62). However, the exploitation of

an intermediate parametric GMM does convey convenience and computa-

tional efficiency in evaluating the probability of samples, which will be per-

formed repeatedly during prediction.
RESULTS

The basic computational framework

To generate simulated data, we employ a well-established
stochastic model of the Myc/Rb/E2f network (Fig. 1; see
also Methods), which plays critical roles in regulating
cell-cycle progression and cell-fate decisions (22). The
model consists of stochastic differential equations account-
ing for both intrinsic and extrinsic variability associated
with the network dynamics (63). Conventional computa-
tional tools for analyzing distributions are often developed
using data generated by relatively simple stochastic models,
which are more amenable to analytically tractable ap-
proaches (46,52,64). Natural biological systems, however,
are more complex and may generate less regular distribu-
tions, which demand a different computational treatment.

We carry out 5000 rounds of independent simulations to
generate a distribution of network output (E2F protein) at
a fixed time point. Experimentally, such a distribution can
be obtained via flow cytometry. We perform bootstrapping
to characterize intrastate variability due to finite sample
size and experimental noise. Parameter perturbation is car-
ried out over three orders of magnitude on a log scale
centered around the base value (63), with the other para-
meters held constant. This perturbation range is divided
into 1000 equal units on the log scale with unit width Ds,
the smallest perturbation step in our study.
Sensitivity analysis using distributional data

Fig. 2 A shows representative distribution responses to
parameter perturbations. The stochastic sensitivity at a

http://www.genome.duke.edu/labs/YouLab/software/index.php
http://www.genome.duke.edu/labs/YouLab/software/index.php


FIGURE 1 Summary of our computational

framework. We use a stochastic model of the

Myc/Rb/E2F network dynamics to generate distri-

butional data. For each parameter set, we generate

a distribution of E2F protein levels at 24 h from

5000 simulations. The distribution is bootstrapped

with replacements to generate 30 replicates to

represent potential variability in the distributional

output for the same condition. Each distribution

is fitted with a GMM with 20 components, from

which pairwise KL divergence between distribu-

tions within the same condition and between

different conditions is calculated. To see this figure

in color, go online.
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parameter value is defined as the divergence between distri-
butions corresponding to that parameter value and one
perturbation step apart (in either direction defined by the
user). The goal is to quantify the change in distribution
shape with respect to a unit perturbation. Using sets of distri-
butional data similar to those shown in Fig. 2 A, but with a
much smaller perturbation step ðDsÞ, we obtain stochastic
sensitivity curves over the entire perturbation range for
various parameters (Fig. 2, B and C). It is critical that the
interstate divergence is greater than intrastate variability.
The sensitivity level (black curves) varies with parameter
value.

To fairly compare the stochastic sensitivity in perturbing
different parameters, we choose two ends of the perturbation
spectrum for both kRb and kE2Fm independently, such that
the distributional responses (i.e., distribution shapes) of
the networks at the endpoints match up as closely as possible
(Fig. S2). One endpoint for both perturbation spectra is by
default the basal state of the network. The other endpoint
of the two spectra is determined by finding the minimum
pairwise divergence between all network distributional out-
puts resulting from the perturbation of the two parameters.
The perturbation range of kRb required for the network dis-
tribution to morph from Plow to Phigh is much smaller than
that of kE2Fm (Fig. S2 C). For Rb synthesis rate, the sensitive
region is restricted to a narrower domain compared to the
E2F mRNA synthesis rate. There are also differences in
the gross sensitivity of the network distributional output
to the perturbation of different parameters (Fig. S3). For
example, it is lower for kCD perturbation (Fig. S3 K) than
for kEFm or kEFp perturbation (Fig. S3, C and O).

The sensitivity of either the mean or the variance to para-
meter perturbation is lower than that of the whole distribu-
tion (Fig. 2, D and E). This suggests that relying solely on
lower-order statistics fails to capture all the changes in dis-
tribution, incurring a loss of information. This is expected
given the large deviation of the distributions from simple
statistical models such as Gaussian or Poisson (Fig. 2 A).
Note that the degree of discrepancy varies between param-
eters, being larger for kE2Fm than for kRb. This suggests
that for certain stimuli, it is critical to examine the totality
of distributions.

Although our computational framework is defined using
simulated data, it is applicable to any distributional data.
Biophysical Journal 107(5) 1247–1255



FIGURE 2 E2F distribution changes with differ-

ential sensitivity for perturbations to different

parameters. (A) E2F distributions corresponding

to 10 different perturbation levels for either E2F

mRNA synthesis rate (kE2Fm) or Rb synthesis rate

(kRb). At each perturbation level, GMMs are fitted

over bootstrapped distributions and 10 are plotted.

The variation in the distributions within each con-

dition (same network state) exists. However, the

variation between perturbation levels is much larger

for certain perturbation increments. The higher the

divergence, the more drastic the network distribu-

tional output changes in response to an incremental

change in the perturbation level. (B) The black dots

are average divergence between all pairs of boot-

strapped distributions generated by adjacent param-

eter values (interstate divergence); the green line

represents the average divergence between all pairs

of distributions generated by the same network state

(i.e., intrastate variability). The error bar shows the

standard error. The solid lines are smoothing curves

fitted over the corresponding dots. (C) The inter-

and intrastate divergence for E2F distributions resulting from different kRb values. (D) Comparison of divergence-based stochastic sensitivity and lower-order

statistic sensitivities (red, mean; green, variance) to kE2Fm perturbation. There are significant discrepancies in the functional form of the sensitivity curves.

(E) Comparison of divergence-based stochastic sensitivity and lower-order statistic sensitivities (red, mean; green, variance) to kRb perturbation. To see this

figure in color, go online.
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To illustrate the versatility of our method, we analyze a
previously collected data set on the distribution of E2F
activation by serum stimulation (65). At different serum con-
centrations, the evolution of the E2F activity distribution as
a function of time (here, time is the stimulus) is qualitatively
different. Specifically, bimodal distribution emerges at low
serum concentration (0.3%), whereas monomodal distri-
bution persists at high serum concentration (5%), with the
mean increasing in a graded manner (Fig. 3 A). Applying
our sensitivity analysis allows the identification of sensi-
tive time intervals during which more drastic distribution
changes occur (Fig. 3, B and C). This information will facil-
itate the design of further experiments that would reveal
more information regarding the functionality of the network
or constrain mathematical models by zooming into the more
sensitive regions. The increased sensitivity of KL divergence
to parametric perturbations (compared to the mean and vari-
ance) allows more quantitative constraints when comparing
results from modeling to single-cell experiments.
Inference of network state using distributional
data

Here, we demonstrate how distributions can be used as land-
marks to fingerprint populations with unique network states
or those subjected to different external stimuli. Similar to
the development of stochastic sensitivity analysis frame-
work, we use parameter perturbation to represent both
scenarios.

The foundation of our distributional fingerprinting
method is an empirically established knowledge base in
Biophysical Journal 107(5) 1247–1255
which each distribution, denoted as a fingerprint, corre-
sponds to a known parameter value (Fig. 4 A). We ask
whether the parameter corresponding to a query distribution
can be inferred based on this knowledge base and using
probability divergence as a distance measure. To this end,
we combine divergence with a kernel method in a statistical
framework and apply kernel regression. The kernel method
allows interpolation between learnt network states (66).
This becomes useful in real biological settings, given the
large network-state space and the often limited ability to
acquire a large enough data set for other algorithms, such
as nearest-neighbor matching.

We define the kernel function to be kðf ; gÞ ¼ e�aDðf ;gÞ.
This kernel function is symmetric with respect to the two
input probability functions. It converts the similarity
(measured by D) between two distributions to a real number
between zero and one. Specifically, it is equal to 1 if f ¼ g
and diminishes to 0 as the dissimilarity between the two
probability densities increases. Furthermore, the conversion
is nonlinear so as to better represent the correlation between
similarity in distributional output and proximity in network
state.

With this kernel function, we apply weighted kernel
regression to predict the parameter s corresponding to a
query distribution using the equation s ¼ ðPnsnkðq; fnÞ=P

nkðq; fnÞÞ þ b, where n˛U. Each reference fingerprint
ðfnÞ corresponds to a known parameter ðsnÞ. b is an offset
parameter. To demonstrate the ability of this kernel to inter-
polate between reference fingerprints, we endow the kernel
with 125 reference fingerprints that are 8Ds apart (Ds as
defined previously); the kernel is then trained and used to



FIGURE 3 Stochastic sensitivity analysis of

experimentally measured E2F activity distribution

over time. (A) E2F activity distributions after

serum stimulation at 0.2% (left) and 5% (right)

were measured at consecutive time points (1). (B)

The black dots represent the average divergence

between all pairs of bootstrapped distributions

measured at adjacent time points (interstate diver-

gence) for low serum concentration; the green line

represents the average divergence between all pairs

of distributions measured at the same time point

(i.e., intrastate variability). The error bar shows

the standard error. The solid lines are smoothing

curves fitted over the corresponding dots. (C)

Same as in B for high serum concentration. To

see this figure in color, go online.
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infer all 1000 network states (Ds apart). There are seven
network states that are not explicitly included in the kernel
between two reference fingerprints. Using the training set,
we optimize the values for a; b; and U associated with
each reference fingerprint. These parameters determine
the weighing of the fingerprints in the neighborhood of
the signal. Specifically, for a;b; and U associated with the
ith distributional fingerprint, we minimize an error func-
tion: Li ¼

P
j

��sj � skerj

��, cj>0; j ¼ ðDs0=DsÞ ðiþ ðm0=2ÞÞ;
m0 ˛f0;51;.;5mg, where Ds0 ¼ 8Ds is the perturbation
step size, and i is the index of the ordered perturbation input.
We choose m to be 4. In other words, this algorithm opti-
mizes the kernel parameters for the ith distributional finger-
print by minimizing the prediction error of the signal in the
vicinity of the ith fingerprint, specifically within 2Ds0 on
either side of si. The optimized number of fingerprints
ranges from ~5–15. There is an inverse correlation between
the stochastic sensitivity and the optimal number of kernel
fingerprints for a given network state.

To carry out the inference, an anchor reference fingerprint
is first determined by finding among all (125) reference
fingerprints the one with the smallest divergence from the
query. The optimal parameters associated with this anchor
fingerprint are then applied to the kernel function. The intu-
ition behind distributional fingerprinting is that the more
similar the query distribution is to a reference fingerprint,
the closer the query network state is to that underlying the
reference fingerprint (Fig. 4 A). Subsequently, including
multiple reference fingerprints in the vicinity of the query
distribution increases the resolution, analogous to triangula-
tion of the physical location of a signal. On the other hand,
including fingerprints corresponding to network states too
disparate from the query offers little information yet incurs
computational cost. As shown in Fig. 4, B and D, and
Fig. S3, A and E, the predicted parameter values (black
dots) lie closely on top of the red line, which indicates the
true network states. The average deviation from true param-
eter values is 1.3 Ds for kE2Fm and 12.8 Ds for kRb. Moreover,
the prediction accuracy in the midrange of the perturbation
spectrum (Fig. 4 D, inset) is much higher than at the two
ends (Fig. S3 E) for kRb. This poorer performance is due
to low stochastic sensitivity and a lack of balanced reference
fingerprints on both sides of the query at either end of the
spectrum.

To examine whether using distributions is superior to us-
ing lower-order moments in predicting network state, we
apply the same weighted kernel regression using the
Euclidean distance between the mean of distributions in
constructing the kernel function. The kernel regression pa-
rameters are similarly optimized. The accuracy of mean
fingerprinting is significantly lower than that of distribu-
tional fingerprinting, with an average deviation from true
parameter values of 4.3 Ds for kE2Fm and 18.1 Ds for kRb
(Fig. 4, C and E, and Fig. S3, B and F).

A key requirement for accurate fingerprinting of the
network state is for the interstate divergence (or Euclidean
distance) to be significantly higher than intrastate diver-
gence. This relative sensitivity is represented by the
Biophysical Journal 107(5) 1247–1255



FIGURE 4 Distributional fingerprinting via divergence-based kernel regression is advantageous over mean fingerprinting via lower-order statistic-based

regression using the same kernel. (A) Illustration of distributional fingerprinting. The more the query distribution resembles the fingerprint distribution, the

closer the network state corresponding to the query lies to the state of that particular fingerprint. The inclusion of multiple fingerprints increases the accuracy

of the kernel inference via training, which essentially instructs the optimal weighing of fingerprints. (B) Prediction of network state (kE2Fm) using distribu-

tional fingerprints and divergence-based kernel regression. The predicted network states (black dots) lie closely on top of the true network state (red line).

The distribution-based stochastic sensitivity (interstate divergence (black)) to kE2Fm perturbation is much higher than the intrastate variability (green). The

axes represent state indices, with corresponding adjacent states Ds apart. Only a fraction of all states are plotted here, to better show the difference between

distributional fingerprinting and mean fingerprinting. The inferences on all states are shown in the Supporting Material. (C) Inference of kE2Fm using only the

mean and Euclidean distance-based kernel regression. The predicted network states (black dots) are scattered further away from the true network state

(diagonal line), corresponding to lower inference accuracy. The mean sensitivity (interstate difference (black)) is much closer to the intrastate variability

(green). (D) Inference of kRb using distributional fingerprints and divergence-based kernel regression. The predicted network states (black dots) lie closely

on top of the true network state (diagonal line). (E) Inference of kRb using only the mean and Euclidean distance-based kernel regression. Larger separation

between the mean sensitivity and the intrastate variability results in more accurate inference compared to the kE2Fm perturbation in C. To see this figure in

color, go online.
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ratio between the sensitivity curve and the intrastate
variability curve. As shown in Fig. 4, B–E, inset, and
Fig. S3, C, D, G, and H, the relative sensitivity is much
higher for the distribution than for the mean, explaining
the better performance of the kernel via distributional
fingerprinting. Even within each mode of fingerprinting,
the accuracy correlates with the relative sensitivity, as in
the case of kRb. This pattern also manifests on a more
global level between different parameters. For example,
the relative sensitivity for kCD perturbation is low
throughout the range of perturbation; consequently, the
accuracy of inference is significantly lower than that of
other parameters, yet still outperforms mean fingerprinting
(Fig. S3, I–L).
Connection to Bayesian methodology

Given the popularity of conventional Bayesian methodolo-
gies, and to better facilitate the understanding of our
proposed methodology, we briefly establish a connection
between the two. To facilitate the argument, we’ll use
discrete distributions. Let Q be the type of histogram repre-
Biophysical Journal 107(5) 1247–1255
senting each observed distributional response. Q is ex-
pressed in terms of histograms fh1; h2;.; hkg, where hk
is the number of observations in the kth bin. Note that the
binning would be the same between all distributional finger-
prints. Let fn be the distribution at each stimulus level, sn,
where n is the index of the stimuli. Then the probability
of observing Q conditional on the stimulus level sn can be
expressed by a multinomial distribution:

pðQjsnÞ ¼
YL

k¼ 1
fnðkÞhk ;

where fn is the true distributional fingerprint corresponding
to the nth stimulus. Let a be the total count of the observed
histogram, Q, and qðkÞ ¼ hk=a the normalized observed
distribution. By definition of KL divergence and Shannon
entropy, we have

�1

a
log pðQjsnÞ � HðqÞ ¼ KLðqjjfnÞ;

where P HðqÞ ¼ �P
kqðkÞlogqðkÞ:



Distributional Fingerprinting and Sensitivity Analysis 1253
Then we can apply the Bayes rule, assuming uniform
prior distribution on pðsÞ, to obtain the probability of stim-
ulus sn conditional on the observation Q:

pðsnjQÞ ¼ pðQjsnÞpðsnÞ
pðQÞ f pðQjsnÞ:

With normalization by a partition function, and using the
equations above, we can derive the expected stimulus,

E½sn� ¼
P

nsne
�a½KLðqjjfnÞþHðqÞ�

P
ne

�a½KLðqjjfnÞþHðqÞ� :

Compared to our proposed kernel model, sn ¼
ðPnsnkðq; fnÞ=

P
nkðq; fnÞÞ þ b, the term derived using the

Bayesian methodology is asymmetric. Such asymmetry
incurs difficulty in applying various kernel methods such
as the support vector machine. However, we also want to
note the similarity between the two models and emphasize
the similarity in functional form between the two. Our
proposed kernel model does provide the flexibility to
accommodate a wide range of machine learning algorithms,
as well as efficiency in computation.
DISCUSSION

We present a streamlined framework to characterize distri-
butional responses of a cell population. The distributional
sensitivity analysis examines how the entire distribution
changes in response to perturbation. The divergence-based
kernel inference allows one to use a finite set of distri-
butional fingerprints to infer the system state or external
stimulus level, even when they have not been explicitly
learnt during the training phase. Here, the distribution can
be that of any quantifiable single-cell readout, such as sur-
face markers and intracellular concentrations of signaling
proteins.

Our method does not impose any simple statistical model
structure (such as Gaussian or Poisson) onto the observed
distribution. The rationale is that a significant amount of
information is actually embedded in the higher-order mo-
ments of the distribution (i.e., the fine features of its shape),
which cannot be adequately represented by conventional
distribution models. Thus, we chose the GMM to capture
as many features of the distribution as possible. However,
such statistical rendering and overfitting makes the applica-
tion of conventional Bayesian methods difficult and compu-
tationally expensive. For example, it is difficult to extract a
distribution of statistical model parameters (e.g., mean and
variance) to characterize the intracondition variability of
total distribution (i.e., a distribution of distributions), as
can be easily done for simple statistical models such as
Gaussian and Poisson. Our kernel method offers one prac-
tical solution that simultaneously preserves the totality of
the distribution and analyzes the data with a systematic
and coherent machine-learning framework. The various
practices used in establishing and characterizing our
method, such as bootstrapping and measuring prediction
error, are standard in the field of machine learning. To our
knowledge, kernel regression using distribution divergence
has not been demonstrated in studying nonneuronal biolog-
ical systems.

For some biological systems, the behavior of an entire
cell population is the sum of subpopulations with clearly
defined functions, such as the immune system consisting
of multiple cell types (e.g., different T cells and B cells),
each with its own responsibilities. A common practice
in analyzing population heterogeneity data, such as those
obtained via flow cytometry, is to decompose the entire pop-
ulation into subpopulations. However, such decomposition
may not always be possible, as in the case of motion percep-
tion. Neither is it always desirable, as doing so may hinder
the discovery of novel subpopulations or incur a loss of
information embedded in higher-order structures of the
distribution (67). Under such circumstances, one should
consider the possibility that the totality of the distribution
is of informational value and biological significance.

In fact, population distribution has been implicated in
multiple biological systems. One example is the distribution
of cardiac clonal populations in the development of the heart
and its correlation with the overall size and the shape of the
heart (68). Large variation in the size of each clone has been
observed, yet quantification of the exact distribution of the
sizes or how such distribution would change in response
to genetic or environmental perturbation has not been car-
ried out. Another example is the development of immune
repertoire. It is well appreciated that naı̈ve T cells can
give rise to diverse effector cell types with different pheno-
types and functionalities, implicating the functional role of
regulated population heterogeneity. Yet the focus so far
has been placed on assigning cells to one of several defined
categories based on a set of surface markers. Recent studies
have demonstrated that the constituent cells within such a
heterogeneous population differ from each other on a rather
continuous spectrum (27,47). These observations blur the
exact boundaries between discrete cell types. In the context
of cancer, it has been shown that one differentiating feature
between tumor samples is the distribution of cellular sub-
types. Furthermore, this distribution is robustly associated
with each sample (36,69). Our methodology equips experi-
mentalists with an intuitive platform to address questions on
how populations of somatic cells can potentially act as a unit
to process environmental cues and how the whole organism
can benefit from population-level information processing.

We demonstrated the inference of a continually varying
signal (a single network parameter) using divergence-based
kernel regression. However, the same framework can be
applied in categorical learning and inference. Different cat-
egories may represent experimental conditions that cannot
Biophysical Journal 107(5) 1247–1255
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be connected in any network-state parameter space. Yet
they can be ordered based on their pairwise divergence
and indexed. The index will be treated as the parameter to
be inferred, and the corresponding category can then be
retrieved.

Finally, our sensitivity analysis method can help better
integrate modeling and experimentation. The stochastic
sensitivity analysis can be applied as an initial constraint
on parameters of the mechanistic model to check its overall
validity. The rationale here is that a sound mechanistic
model should adequately capture how the distribution of a
network output responds to experimental perturbation. In
this context, it is possible to restrict the perturbation to a sin-
gle parameter and examine the distributional response, both
computationally and experimentally. The model prediction
on stochastic sensitivity can also direct experimental pertur-
bation to a targeted parameter domain to achieve either
improved resolution in parameter estimation or enhanced
system sensitivity to subsequent perturbations. Examining
the stochastic sensitivity curve corresponding to different
cellular states will also enable optimal sampling of finger-
prints and enhance the accuracy and efficiency of the kernel
predictor.
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noise discriminates functionally analogous differentiation circuits.
Cell. 139:512–522.

57. Gillespie, D. T. 2000. The chemical Langevin equation. J. Chem. Phys.
113:297–306.

58. Lee, T. J., C. M. Tan, ., L. C. You. 2007. Modeling cellular net-
works. In Bioinformatics: An Engineering Case-Based Approach.
G. Alterovitz and M. F. Ramoni, editors. Artech House, Boston,
pp. 151–172.

59. Hershey, J. R., and P. A. Olsen. 2007. Approximating the Kullback
Leibler divergence between Gaussian mixture models. IEEE Int.
Conf. Acoustics, Speech, and Signal Proc., Honolulu. 4:317–320.

60. Itzkovitz, S., E. Hodis, and E. Segal. 2010. Overlapping codes within
protein-coding sequences. Genome Res. 20:1582–1589.

61. Sims, G. E., S. R. Jun, ., S. H. Kim. 2009. Alignment-free genome
comparison with feature frequency profiles (FFP) and optimal resolu-
tions. Proc. Natl. Acad. Sci. USA. 106:2677–2682.

62. Perez-Cruz, F. 2008. Kullback-Leibler divergence estimation of contin-
uous distributions. Proc. IEEE Int. Symp. Inform. Theory, Toronto.
2008:1666–1670.

63. Hallen, M., B. Li,., L. You. 2011. Computation of steady-state prob-
ability distributions in stochastic models of cellular networks. PLOS
Comput. Biol. 7:e1002209.

64. Warmflash, A., and A. R. Dinner. 2008. Signatures of combinatorial
regulation in intrinsic biological noise. Proc. Natl. Acad. Sci. USA.
105:17262–17267.

65. Balázsi, G., A. van Oudenaarden, and J. J. Collins. 2011. Cellular
decision making and biological noise: from microbes to mammals.
Cell. 144:910–925.

66. Shawe-Taylor, J., and N. Cristianini. 2004. Kernel methods for pattern
analysis. Cambridge University Press, Cambridge, United Kingdom.

67. Canham, M. A., A. A. Sharov, ., J. M. Brickman. 2010. Functional
heterogeneity of embryonic stem cells revealed through translational
amplification of an early endodermal transcript. PLoS Biol. 8:
e1000379.

68. Gupta, V., and K. D. Poss. 2012. Clonally dominant cardiomyocytes
direct heart morphogenesis. Nature. 484:479–484.

69. Slack, M. D., E. D. Martinez,., S. J. Altschuler. 2008. Characterizing
heterogeneous cellular responses to perturbations. Proc. Natl. Acad.
Sci. USA. 105:19306–19311.
Biophysical Journal 107(5) 1247–1255


	Stochastic Sensitivity Analysis and Kernel Inference via Distributional Data
	Introduction
	Methods
	Stochastic simulation of the MYC/Rb/E2F model
	Calculating modified Kullback-Leibler divergence and stochastic sensitivity

	Results
	The basic computational framework
	Sensitivity analysis using distributional data
	Inference of network state using distributional data
	Connection to Bayesian methodology

	Discussion
	Supporting Material
	References


