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SUMMARY

Phosphorylation is a common mechanism for acti-
vating proteins within signaling pathways. Yet, the
molecular transitions between the inactive and active
conformational states are poorly understood. Here
we quantitatively characterize the free-energy land-
scape of activation of a signaling protein, nitrogen
regulatory protein C (NtrC), by connecting functional
protein dynamics of phosphorylation-dependent
activation to protein folding and show that only
a rarely populated, pre-existing active conformation
is energetically stabilized by phosphorylation. Using
nuclear magnetic resonance (NMR) dynamics, we
test an atomic scale pathway for the complex con-
formational transition, inferred from molecular
dynamics simulations (Lei et al., 2009). The data
show that the loss of native stabilizing contacts
during activation is compensated by non-native tran-
sient atomic interactions during the transition. The
results unravel atomistic details of native-state
protein energy landscapes by expanding the knowl-
edge about ground states to transition landscapes.

INTRODUCTION

Proceeding from the original description of an energy landscape

for a folded protein, based on classical experiments on

myoglobin by Frauenfelder and coworkers (Austin et al., 1975;

Frauenfelder et al., 1991), this concept has been applied to

protein folding, expanding the conformational space from the

native to the unfolded states (Dill and Chan, 1997; Dobson

et al., 1998; Vendruscolo and Dobson, 2005; Wolynes, 2005).

While the energy landscape idea is widely accepted for folding,

it has only recently been embraced for protein function within

the native state. Specifically, the existence of discrete conforma-

tional substates and resulting shifts of populations by binding of
ligands, originally proposed for multisubunit proteins (Monod

et al., 1965), are likely to be a general paradigm for protein func-

tion (Boehr et al., 2006a, 2006b; Henzler-Wildman and Kern,

2007; Kumar et al., 2000; Li et al., 2008; Mulder et al., 2001;

Tsai et al., 2009; Lau and Roux, 2007; Ravindranathan et al.,

2005; Yang et al., 2009).

This concept was proposed for the single-domain signaling

domain of nitrogen regulatory protein C (NtrCr) where nuclear

magnetic resonance (NMR) analysis described a population shift

between an inactive and active substate by phosphorylation or

activating mutations (Volkman et al., 2001). NtrC, a transcrip-

tional activator, belongs to the family of ‘‘two-component

systems,’’ the prototypical switch proteins in bacterial signaling

(Stock and Guhaniyogi, 2006; Stock et al., 2000). The inactive to

active conformational switch of the N-terminal domain (NtrCr)

resulting from phosphorylation of D54 involves an extensive

change in structure (Figure 1A) (Kern et al., 1999). Activation

through a shift in a pre-existing equilibrium between the inactive

and active conformation rather than an induced fit mechanism

has been proposed to be a more general mechanism for two-

component signaling (Silversmith and Bourret, 1999; Stock and

Guhaniyogi, 2006; Volkman et al., 2001) and even kinases in

general (Buck and Rosen, 2001; Huse and Kuriyan, 2002).

The key subsequent questions are: How is the population shift

achieved? How can a protein interconvert among folded

substates but avoid unfolding at the same time? What are the

molecular pathways for conformational transitions? Here we

address these questions by connecting the energetics of func-

tional protein dynamics within the native state to protein folding

(Figure 1). Through experimental corroboration of computational

prediction (Lei et al., 2009), we infer a molecular pathway for the

conformational transition in NtrCr involving transient hydrogen

bonds that stabilize the transition state.

RESULTS AND DISCUSSION

Phosphorylation Acts via Active State Stabilization
Activation of this signaling protein could in principle be achieved

by either destabilizing of the inactive state or stabilizing the
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Figure 1. Energetic Relationship between the Energy Landscapes of

Activation and Protein Folding of the Signaling Protein NtrCr

The conformational equilibrium between inactive (I, blue, 1DC7) and active

substates (A, orange, 1DC8) in NtrCr is shown structurally highlighting the

switch region in lighter color (A) (modified from Volkman et al., 2001) and sche-

matically (B) with the corresponding rate constants (kIA and kAI).

(C) Theoretical models of a population shift are depicted using a one-dimen-

sional cross-section through the high-dimensional energy landscape for

a two-state system in thermal equilibrium. Mutation (MUT) and phosphoryla-

tion (P) could shift the equilibrium by an inactive state destabilization (red)

and/or active state stabilization (green) relative to wild-type (blue). Discrimina-

tion between these mechanisms can be determined through connecting the

free-energy changes (horizontal lines) of the native-state ensemble (N = I+A)

to the unfolding kinetics, depicted by DGz and the gray arrow. The free-energy

of N is the population-weighted average of the inactive and active states

shown as thick horizontal lines.
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active one or a combination of both (Figure 1C). These different

activation mechanisms can be distinguished by the differences

in the microscopic rate constants of the forward and reverse

reactions (kIA, kAI, Figure 1B) of the structural transition between

the nonphosphorylated inactive wild-type, partially active

mutants D86N and D86N/A89T, and phosphomimicking

BeF3
�-bound (Hastings et al., 2003), fully active NtrCr. If muta-

tion or phosphorylation yields a stabilization of the active state,

the rate of active to inactive transition would decrease; con-

versely, a destabilization of the inactive state would result in an

increase in the rate of inactive to active transition.

The rate constants were determined using NMR 15N backbone

amide CPMG (Carr-Purcell-Meiboom-Gill) relaxation dispersion

experiments (Palmer et al., 2001), providing dynamic information

for each residue. For residues undergoing micro- to millisecond

dynamics, the effective transverse relaxation rate, R2
eff, is

increased by an amount Rex in addition to the intrinsic relaxation

rate (R0
2):

Reff
2 ðnCPMGÞ= R0

2ðnCPMG/NÞ+
�
pIpADu2=kex

�

�
1� ð4nCPMG=kexÞtanhðkex=4nCPMGÞ

� (1)

(in the limit of fast exchange, kex > > Du).

The variation of Rex with an applied radio-frequency field

(nCPMG) permits the CPMG dispersion experiment to quantita-

tively determine kinetics (exchange rate constant, kex = kIA+kAI),

thermodynamics (populations pI and pA), and structure (chemi-

cal shift of exchanging species, Du = uA� uI) for a two-state

exchange process (Loria et al., 1999; Palmer et al., 2001), even

for highly skewed populations (Mulder et al., 2001).

Whereas nonphosphorylated and partially activating mutant

forms of NtrCr revealed kex values faster than 10,000 s�1 (Figures

2A–2C), the phosphomimicking species reduced the rate

constant of interconversion by an order of magnitude (Fig-

ure 2D). From these experiments two qualitative inferences can

be drawn. First, for all NtrCr forms, conformational changes are

localized in the previously identified conformational switch

region (Kern et al., 1999; Volkman et al., 2001). All such residues

can be fit with a single exchange rate constant suggesting that

the measured motions correspond to a collective structural tran-

sition between the inactive and active substates. Second, an

increased exchange rate constant in the mutant forms relative

to nonphosphorylated wild-type suggests a population shift by

destabilization of the inactive substate. In contrast, the decrease

in exchange rate constant for phosphorylated NtrCr implies

a strong stabilization of the active substate upon phosphoryla-

tion.

For a quantitative analysis of the energy landscape, the micro-

scopic forward (kIA) and reverse (kAI) rate constants of the struc-

tural transition were determined. These rate constants are linked

to the equilibrium constant (Keq = pA/pI = kIA/kAI), which is directly

embedded in the population-weighted average resonance posi-

tion (uobs = pI$uI + pA$uA) for residues undergoing exchange.

Consequently, if uI and uA are known, the equilibrium constant

for each form can be directly extracted from its resonance

position (Figure 2E). However, the NMR resonance positions

of wild-type and BeF3
�-activated NtrCr are not equivalent to

the fully inactive and active substates as both forms exhibit
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conformational exchange (Figures 2A and 2D). A combined

fitting of relaxation dispersion and chemical shift data provided

a molecular ruler of the equilibrium for all functional NtrCr forms

and allowed extraction of kIA and kAI (Figure 2E). The results

strongly suggest that mutation mainly acts through destabilizing

the inactive substate whereas BeF3
� activation was found to

drive the equilibrium almost fully toward the active substate

solely by stabilizing the active form as evidenced by an identical

kIA rate constant between inactive and active NtrCr.

Quantitative Validation of the Activation Energy
Landscape through the Energetic Correlation
to the Folding Energy Landscape
Although these kinetic results indicate an energy landscape in

which nonphosphorylated, BeF3
�-activated and the constitutive

active mutants of NtrCr share the same transition state

(Figure 5A), a scenario in which the entire energy landscape is

shifted along the energy axis for the mutant and/or BeF3
�-acti-

vated form relative to wild-type is theoretically possible. This

would mean that the mutations and/or BeF3
� activation would

affect both the ground states and the transition state. To address

this issue, we depict the reaction coordinate describing the

conformational transition within the folded state as energetically

connected to a second reaction coordinate describing the

folding/unfolding transition (Figures 1C, 5A, and 5B).

Unfolding kinetics for all NtrCr forms were measured by

stopped-flow fluorescence at different guanidinium hydrochlo-

ride (GdmHCl) concentrations, and the rate constant of unfolding

under native conditions was determined by linear extrapolation

to 0 M GdmHCl (Figure 3A) (Fersht, 1999). The unfolding rate

constants were found to be about nine orders of magnitude

slower than those of the transition within the native state (Figures

2 and 3A). Consequently, for connecting these two energy land-

scapes through the measured energies, the free energy of the

folded form can be treated as a population-weighted average

of the inactive and active substates (Figures 1C and 5A). The

differences of the activation free energy of unfolding measured

Figure 2. Quantitative Analysis of the Kinetics of the Inactive/Active

Conformational Transition
15N CPMG NMR relaxation dispersion data (Palmer, et al., 2001) for wild-type

(A), D86N (B), D86N/A89T (C), and BeF3
�-activated NtrCr at 600 MHz (D) are

shown together with the exchange-free transverse relaxation rate (nCPMG/N)

and the corresponding fitted global exchange rate constants (kex) as described

in Gardino and Kern (2007) and plotted onto the structures of the inactive (A, B,

and C) and active (D) structures in red (quantified chemical exchange used for

global fitting), yellow (severely exchange broadened), dark blue (no chemical

exchange detected), and gray (overlapped/unassigned/proline). The relaxa-

tion data for each residue are colored consistently across all four data sets

for each functional form of NtrCr as follows: residue 11 (black), 68 (light

pink), 69 (red), 70 (green), 71 (light gray), 72 (blue), 78 (cyan), 82 (magenta),

84 (dark gray), 87 (yellow), 88 (orange), 89 (dark green), 91 (navy blue), 94

(burgundy), 99 (hot pink), 100 (purple), 101 (violet), 102 (royal blue).

(E) The microscopic rate constants (kIA and kAI) were extracted from kex and the

relative populations of the inactive and active states in all NtrCr forms. The

backbone amide resonances of D88 were used as a spectroscopic ruler to

determine these populations in conjunction with the dispersion experiments

yielding the calculated chemical shifts of fully inactive (I) and active substate

(A) (black ovals) (for details see Experimental Procedures). Uncertainties in

relaxation rates are the larger of the difference in duplicate points or 2% of

the signal to noise ratio. All rates are mean ± standard deviation (SD).
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Figure 3. Quantitative Analysis of the Kinetics of the Unfolding/Folding Transition and Its Energetic Correlation to the Activation Kinetics

(A) Kinetics of unfolding (ku) (mean ± SD) under native conditions were determined for wild-type (red), D86N (orange), D86N/A89T (yellow), and P-NtrCr (black) by

measuring ku by stopped-flow fluorescence at various guanidinium hydrochloride concentrations and linear extrapolation to 0 M denaturant (Fersht, 1999).

(B) From these unfolding rate constants, differences of the activation free energy of unfolding relative to wild-type (DDGunfolding) were calculated (mean ± SD) (see

Figure 5) and compared to the corresponding changes in free energy determined from the relaxation dispersion experiments (Figure 2) monitoring the inactive/

active substate kinetics (DDG CPMG) (mean ± SD), yielding a correlation coefficient of 0.99.

(C) The unfolding/folding transition monitored on a per residue basis by NMR. 1H 15N HSQC spectra of the folded state (blue with assignments, 1.8 M GdmHCl),

the unfolded state (black, 3.2 M GdmHCl), and at denaturant concentrations corresponding to the unfolding transition (red, 2.4 M GdmHCl) are superimposed for

the glycine and serine regions of the spectrum. Both the folded and the unfolded peaks are observed at 2.4 M GdmHCl 25�C, the midpoint of unfolding, demon-

strating that the unfolding/folding transition is slow on the NMR timescale (less than 10�1 s�1) for all residues including helix 4 (Ser85 shown as marker for helix 4).

(D and E) The decreases in intensities of the folded peaks with increasing denaturant concentrations were best fit to a two-state transition. The thermodynamic

unfolding curves for all monitored residues including W7 (black diamonds), W17 (black squares), and residues in the alpha 4 helix, T82 (red circles), and D88 (red

triangles) are fit to midpoints of transition (M1/2) that are within experimental error throughout the protein showing that the entire protein including helix 4 unfolds

cooperatively (E). Errors were derived from the rms noise of the individual NMR spectra.
for wild-type, partially active mutants, and phosphorylated NtrCr

quantitatively agree with the corresponding changes in free

energy extracted from the inactive/active substate kinetics

(Figure 3B). Through a quantitative analysis of two distinct reac-

tion coordinates within the energy landscapes, we were able to

validate the energetics underlying the population-shift mecha-

nism (Figures 5A and 5B). We want to highlight the quantitative

agreement of the free energy difference for BeF3
�-activated

NtrCr relative to inactive wild-type extracted from the inactive/

active transition (Figure 5A) with the one determined from the un-
1112 Cell 139, 1109–1118, December 11, 2009 ª2009 Elsevier Inc.
folding kinetics of P-NtrCr (Figure 5B). This result validates BeF3
�

as a faithful phosphomimic not only in structural terms (Hastings

et al., 2003; Kern et al., 1999) but also in respect to the energy

landscape of inactive/active interconversion.

The question of the effect of mutations on the ground or tran-

sition states has been extensively studied for protein folding,

also known as F-value analysis (Fersht, 1999; Weikl and Dill,

2007), including the application of NMR relaxation dispersion

experiments (Neudecker et al., 2007). In this analysis, changes

in the energy landscape through mutations are depicted using



the unfolded state as an energetic reference point. For NtrCr, the

refolding rate constants of all forms are the same; however, the

unfolded state as reference point is no longer an assumption but

rather a result derived from the connection of the folding land-

scape to the inactive/active conformational landscape through

the measured energies (Figures 5A and 5B).

Pathways of Conformational Transitions Calculated
by Molecular Dynamics Simulations
The experiments described above reveal that the functional tran-

sitions in NtrCr occur rapidly whereas the energy barrier for

unfolding is much larger. This situation is of course a general

requirement for signaling and many other cellular protein func-

tions. The immediate question that emerges is how a protein

can rapidly interconvert among folded substates but avoid

unfolding at the same time even though many native stabilizing

contacts need to be broken during the transition? The answer

is embedded in the actual molecular pathways of the conforma-

tional transitions. While the structures of the inactive and active

substates could be experimentally determined since they repre-

sent minima in the energy landscape, structures along the tran-

sition pathway cannot be directly monitored in an experiment

since they are not significantly populated. However, computa-

tional methods can in principle provide high-resolution informa-

tion of these transition pathways. The challenge lies in current

computational sampling times, which are too short relative to

the typical microsecond to second conformational transitions

in proteins. A variety of pathway methods have been developed

to ameliorate this problem for which we cite only a few represen-

tative examples (Anthony et al., 2007; Bolhuis, 2008; Christen

and van Gunsteren, 2008; Dellago and Bolhuis, 2007; Elber,

2005; Henzler-Wildman and Kern, 2007; Lei et al., 2009; Mara-

gliano et al., 2006; Pan et al., 2008; Rogal and Bolhuis, 2008;

Schlitter et al., 1994; Schutkowski et al., 1994; van der Vaart,

2006; Vendruscolo and Dobson, 2005; Yang et al., 2009; for

more examples see references therein).

For NtrCr, transition pathways have been proposed using

either coarse-grained models (Latzer et al., 2008; Pan et al.,

2008; Vanden-Eijnden and Venturoli, 2009) or all atom simula-

tions suggesting motions in the b3-a3 loop to be crucial for the

transition (Hu and Wang, 2006; Khalili and Wales, 2008). Using

all atom targeted molecular dynamics simulations (TMD) in

explicit water, Lei et al. (2009) predicted a different transition

pathway between the active and inactive substates. TMD is

a widely used biased molecular simulation method that gener-

ates conformational transition pathways through pulling the

protein from a starting structure to an end structure via an

RMSD (root-mean-square deviation) constraint to the end state

(Banavali and Roux, 2005; Isralewitz et al., 2001; Karplus et al.,

2005; Ma and Karplus, 1997; Schlitter et al., 1994; van der Vaart,

2006). Briefly, the conformational switch in NtrCr can be

described by a few major stages including a tilt, rotation, and

register shift accompanied by a loss and gain of one half helical

turn on opposite ends of helix 4 (Figure 1A). Helix 4 is stable during

the whole transition. The details of the computational analysis

and the predicted pathway have been described (Lei et al., 2009).

The complex nature of this structural rearrangement (Fig-

ure 1A) calls for either a pathway with partial unfolding (Latzer
et al., 2008) or concerted conformational changes over a large

area of the protein (Lei et al., 2009). Using simple native struc-

ture-based quadratic potentials, Latzer et al. estimated a barrier

height for the activation transition of 54 kcal/mol (Latzer et al.,

2008). From this result, they concluded that ‘‘protein cracking

motions are involved’’; i.e., that local unfolding in helix 4 is an

essential part of the transition. This high barrier is in contrast to

our experimentally determined barrier of only 6 kcal/mol for the

activation (Gardino and Kern, 2007) (Figures 2 and 5).

Helix 4 Unfolds Cooperatively with the Remainder
of the Protein
Biases and simplifications made in all computational algo-

rithms, including our own simulations using biasing potentials

(Lei et al., 2009), require stringent experimental testing. We

therefore first measured the stability and rate of unfolding on

a per residue basis using NMR (Figure 3). Our fluorescence

unfolding experiments determined a 109-fold difference in rate

constants between the conformational switch and global

unfolding (Figures 3 and 5) suggesting that unfolding is not

part of the transition pathway. However, the fluorescence

experiments do not rule out a transition pathway between the

inactive and active conformation through partial unfolding of

helix 4 particularly because the fluorescence markers Trp7

and Trp17 are not located in the conformational switch region.

Using NMR, helix 4 was found to have the same stability as the

remainder of the protein (Figures 3C–3E) and the NMR stability

data agree with the fluorescence data (Figure 3E and Figure S5

available online). Moreover, the rate constant of unfolding of

residues in helix 4 is at least five orders of magnitude slower

(Figure 3C) than the conformational switch within the native

state. We note that the performed stopped-flow fluorescence

and NMR unfolding experiments were not intended to unravel

the detailed pathway of unfolding, a question extensively

studied for many proteins in the last decades, but rather aimed

to energetically evaluate the native-state energy landscape

including the predicted activation pathway. The NMR unfolding

results rule out a pathway with partial unfolding (Latzer et al.,

2008) and are qualitatively consistent with the computed

pathway comprised of multistep concerted rearrangements

(Lei et al., 2009).

‘‘Non-native’’ Hydrogen Bonds Lower the Activation
Barrier
We then thought to test the computationally predicted transition

pathway (Lei et al., 2009) experimentally by identifying atomic

interactions that might stabilize this pathway. We particularly

sought energetically correlated events in the TMD trajectories.

The TMD simulations forward the idea that breakage of two

backbone hydrogen bonds at the C-terminal end of helix 4,

resulting in a loss of half of a helical turn, seem to be energetically

compensated for by formation of a few transient hydrogen

bonds. Those include hydrogen bonds between the side chains

of S85 and D86 at the top of helix 4 and between the side chains

of Q96 and Y101 connecting the bottom of helix 4 and strand 5

(Figure 4A; Lei et al., 2009). These non-native hydrogen bonds

are present only during the transition but not in the active or inac-

tive states. Two new main chain hydrogen bonds are then
Cell 139, 1109–1118, December 11, 2009 ª2009 Elsevier Inc. 1113
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Figure 4. Experimental Identification of the Transition Landscape for Activation

(A) Prediction of two transient non-native hydrogen bonds that lower the energy of the transition landscape using TMD (Lei et al., 2009). Snapshots of the active

(starting point of TMD), inactive state (end point of TMD), and during the transition (1695 ps) are shown. In the active state, the C-terminal residues of helix 4, Q96

and Q95, are shown with their corresponding helical backbone hydrogen bonds (black arrow). In the inactive state, these hydrogen bonds are replaced by two

new helical hydrogen bonds for S85 and H84 (black arrow) resulting in the register shift of helix 4. During the transition (middle panel), side-chain hydrogen bonds

are formed between S85 and D86 (red arrow) and between Y101 and Q96 (blue arrow).

(B) Corresponding time trace of the distance between the hydroxyl hydrogen of S85 and the carboxylate oxygens of D86 (red) and Y101 and Q96 (blue) in the

simulation (Lei et al., 2009). Experimental testing of this transition landscape through removal (C and E) and restoration (D) of the S85-D86 transient hydrogen

bond and removal (F and G) of the Y101-Q96 hydrogen bond or the combination of both (H). For all mutant forms, the transition rate constants (kex) were measured

using 15N NMR relaxation dispersion experiments. The dispersion curves are color coded as follows: residues 5 (peach), 6 (ivory), 9 (raspberry), 10 (burnt sienna),

11 (black), 12 (slate), 16 (rose), 18 (maroon), 29 (salmon), 30 (plum), 35 (lavender), 36 (orange-yellow), 47 (teal), 49 (sage), 50 (mustard), 64 (brown), 68 (light pink),

69 (red), 71 (light gray), 78 (cyan), 79 (light blue), 81 (lime), 82 (magenta), 83 (periwinkle), 87 (yellow), 88 (orange), 90 (light brown), 91 (navy blue), 102 (royal blue),

106 (sea green), 119 (jade), 122 (dark brown). Uncertainties in relaxation rates are the larger of the difference in duplicate points or 2% of the signal to noise ratio.

All rates are mean ± SD.
formed between H84 and D88 and between S85 and A89 adding

a half helical turn to complete the helical register shift and

thereby the transition to the inactive state (Figure 4A).
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To test the validity of this network of correlated motions during

the transition, we disrupted these putative transient hydrogen

bonds by mutagenesis (Figure 4). Strikingly, replacing S85 with
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Figure 5. Mechanism of Activation and Molecular Transition Pathway Rationalizing Fast Signaling without Unfolding
Quantitative description of the energy landscape of activation of NtrCr (A) and its energetic relation to unfolding (B). Mechanism of the equilibrium shift between

the inactive and active states through mutation (D86N orange, D86N/A89T yellow) or BeF3
� activation (black) relative to wild-type (red, G of inactive wild-type was

arbitrarily set to 0) was characterized using NMR CPMG relaxation dispersion (Figures 2A–2D) (A) and validated through the corresponding unfolding rate

constants, ku (B), that quantitatively match the free-energy changes calculated from the NMR relaxation experiments (indicated by dotted horizontal lines con-

necting the population average free energy of the inactive and active states, I + A, to the unfolding energy landscape). The activation free energies, calculated from

the corresponding measured rate constants, kIA, kAI, and ku, are shown for all NtrCr forms as dashed vertical arrows using the matching colors. The free energy of

the transition landscape (z) was increased through the removal of the transient side chain S85-D86 hydrogen bond on the top of helix 4 or Y101-Q96 hydrogen

bond at the bottom of helix 4 (blue) supporting the calculated transition pathway from TMD (Lei et al., 2009). The structures of the inactive (1DC7) and active

(1DC8) states and a snapshot from the TMD trajectory representing the transition region are shown highlighting the switch region by a color scale from blue

to red to yellow with increasing root-mean-square deviation relative to the starting active conformation.
an aspartate resulted in a decrease in the rate constant of inac-

tive/active interconversion from about 14,000 s�1 for wild-type to

about 3,000 s�1 for this S85D mutant (Figure 4C). Moreover,

a mutation that restores the hydrogen bond donor capacity at

position 85 (S85N) restores the fast interconversion rate of

wild-type (Figure 4D). The decrease in rate in S85D is not due

to the introduction of a charge since S85G produces the same

slow rate as S85D (Figure 4E). Importantly, the spectra of

S85D, S85G, and S85N are almost identical to the wild-type

spectrum (Figure S6). These data indicate that neither the struc-

tures nor the relative populations of the inactive and active states

are altered. This result is further buttressed by 20 ns MD simula-

tions of both mutant forms in the inactive and active states

(Figure S7). Furthermore, we set out to follow up the experi-

mental data on the NtrC mutant forms with disrupted transient

hydrogen bonds by new TMD simulations on these mutants.

We find that both mutant forms reveal the same transition stages

as the TMD simulation on the wild-type protein, but without the

transient non-native hydrogen bonds between S85 and D86.

We infer that the transient hydrogen bond between S85 and

D86 lowers the activation barrier of the slowest step in the overall

conformational transition by about 1 kcal/mol. Finally, the iden-

tical unfolding rates for wild-type and S85D complete the quan-

titative description of the energy landscapes by identifying this
C

hydrogen bond as affecting only the free energy of the transition

state (Figures 5 and S6).

The concept that non-native hydrogen bonds reduce the

barrier for this complex conformational transition is buttressed

by additional experiments that disrupt the hydrogen bond

between Q96 and Y101. Both Y101F and Q96N mutations signif-

icantly decrease the interconversion rate constant (Figures 4F

and 4G). The reduction of the interconversion rate constant by

shortening the side chain of the hydrogen bond acceptor

(Q96N mutation) reveals that in addition to the presence of the

hydrogen bond acceptor/donor pair, a quite specific distance

between them is required.

Removal of both transient hydrogen bonds does not further

decrease the interconversion rate constant (Figure 4H), suggest-

ing that they influence the free energy of the system at slightly

different parts of the transition pathway. These experimental

results further demonstrate the complex multidimensional nature

of the transition energy landscape. We note that the described

experiments do not allow characterization of the entire complex

pathway; however, they provide critical information about struc-

tural configurations that are not only along the pathway but also

influence the energy of the transition states. Thus these con-

figurations serve as key starting points for further extensive unbi-

ased computational exploration of the multidimensional energy
ell 139, 1109–1118, December 11, 2009 ª2009 Elsevier Inc. 1115



landscape, which is beyond our current scope and in fact

beyond current methodology. We feel that direct experimental

testing of computational predictions, which is done in this

work, is the strongest validation of simulations.

Conclusions
The concept of preexisting equilibria within the folded state and

their roles in biological function such as enzyme catalysis,

signaling, and ligand binding has become widely accepted

(Monod et al., 1965; Boehr et al., 2006a, 2006b; Frauenfelder

et al., 1991; Henzler-Wildman and Kern, 2007; Henzler-Wildman

et al., 2007; Kumar et al., 2000; Li et al., 2008; Silversmith and

Bourret, 1999; Stock and Guhaniyogi, 2006; Volkman et al.,

2001; Lau and Roux, 2007; Ravindranathan et al., 2005; Yang

et al., 2009). We now show that rare excursions to the active

conformation are essential for activating the NtrC protein since

the data suggest that only the higher-energy active conformation

can be phosphorylated. This conclusion is supported structurally

by the solvent inaccessibility of D54, the site of phosphorylation,

in the inactive conformation. Although our earlier work indicated

that activation is mediated via a shift in preexisting populations,

we have now characterized the underlying molecular mecha-

nism. Selective binding to a minimally populated conformation

that is usually ‘‘hidden’’ to traditional structural methods may

be a general mechanism for other kinases (Buck and Rosen,

2001; Huse and Kuriyan, 2002) or may be more general for ligand

binding (Henzler-Wildman and Kern, 2007; Li et al., 2008).

Overall our findings shed light into possible mechanisms of how

proteins can efficiently change conformations that require

complicated realignment of multiple atomic contacts while avoid-

ing unfolding. The marriage between experiment and computa-

tion has provided a glimpse into molecular pathways of intercon-

version, thereby expanding the energy landscape from the

ground states to ‘‘transition landscapes.’’ The signaling domain

NtrCr has apparently solved the problem of stability in the face

of loss of native stabilizing contacts during activation through

fine-tuned concerted motions. These motions result in a roughly

‘‘isoenergetic’’ transition involving non-native transient atomic

interactions that are used to ‘‘hold on’’ to the free energy until

the final new native contacts of the active state are built, thereby

circumventing the risk of unwanted unfolding during the transi-

tion. Our results on NtrCr illustrate sophisticated ‘‘designer’’ prin-

ciples in proteins through the multifaceted use of specific atoms

that guarantee not only one stable folded structure but also effi-

cient interconversion among functionally essential ensembles of

structures. The list of transient atomic interactions for NtrCr is

currently incomplete; however, the concept of non-native interac-

tions lowering the energy barrier may help to improve the current

limited success in the design of protein function, such as enzyme

catalysis, drug binding, and protein-protein interactions.

EXPERIMENTAL PROCEDURES

Sample Preparation

Unlabeled and uniformly 15N-labeled NtrCr wild-type, mutant forms, phos-

phorylated, and BeF3
�-activated NtrCr were prepared as previously described

(Hastings et al., 2003; Volkman et al., 2001). All NMR samples were 0.75 mM

NtrCr in 50 mM NaP buffer, pH 6.75, with 10% D20.
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NMR Experiments

TROSY 15N CPMG relaxation dispersion experiments (Loria et al., 1999;

Mulder et al., 2001; Palmer et al., 2001; Tollinger et al., 2001) were acquired

on a Varian Inova 600 and a Bruker Avance 800 spectrometer equipped with

a cryoprobe at 298K with constant time T2 delays between 60 and 70 ms,

which roughly yielded 55% of residual signal intensity, and CPMG field

strengths between 28 and 1000 Hz. The data were fit as described (Henzler-

Wildman et al., 2007). The method to determine the exchange-free transverse

relaxation time (R0
2, nCPMG/N) and its usage in the global fits of the relaxation

dispersion data are described (Gardino and Kern, 2007). 15N R1 values were

measured using standard experiments (Farrow et al., 1994). R1
H values were

measured using a TROSY-based R1
HzNz pulse sequence employing a REBURP

pulse to selectively invert the amide region (Gardino and Kern, 2007). Data

were processed using NMRPipe (Delaglio et al., 1995). Intensities were fit to

a mono-exponential decay curve, and uncertainties were measured from

duplicate points and an estimate of signal-to-noise (2% of R2
eff).

Determination of Populations

Final active state populations (pA) for each functional form of NtrCr were deter-

mined through the following equation:

pA =
�
dexp � dI;calc

��
dDu;calc

where dexp is the experimental chemical shift value in the indirect dimension

(15N) taken from a 2D 1H-15N correlated HSQC NMR spectrum, dI,calc is the

calculated endpoint representing the fully inactive chemical shift value,

and dDu,calc is the calculated difference in chemical shift between the inactive

(dI,calc) and active (dA,calc) state endpoints. Whereas dexp can be directly read

out from the HSQC spectra (Figure 2E), dI,calc and dA,calc are not known since

the chemical shifts of both wild-type and BeF3
�-activated forms do not repre-

sent the true endpoints. The difference in chemical shift between wild-type and

BeF3
�-activated NtrCr, however, provided a lower limit of Du. Only extremely

skewed populations of BeF3
� NtrCr (pA R 0.994) yielded chemical shift differ-

ences (Du) on a per residue basis that were large enough to fit the experimen-

tally observed displacements. Incorporation of CPMG dispersion of wild-type,

BeF3
�-activated, D86N, and D86NA89T NtrCr together with the corresponding

chemical shift changes (Figure 2E), which also emulated their respective activ-

ities (Volkman et al., 2001), then allowed us to estimate the relative populations

of active and inactive states for each NtrCr form (see Table S1). A good corre-

lation was found between the experimentally observed amide backbone

chemical shift position for D88 and other residues with the calculated popula-

tions computed for the wild-type and mutant forms of NtrCr. In addition, Du

values fitted from the CPMG dispersion showed good agreement among

different NtrCr forms for residues that are not locally perturbed in chemical

shift due to the proximity of either BeF3
� or mutation (see Table S1). For the

BeF3
�-activated form and the transition-state mutant forms (S85D and

Y101F), global fitting of the CPMG data collected at 600 MHz and 800 MHz

was possible because the exchange in these proteins is in the time regime

in which Rex can be sufficiently suppressed with the imparted nCPMG field

strength. Global fitting data from two external magnetic field strengths further

confirmed the exchange rate constants and populations (Figure S1).

Folding and Unfolding Kinetics

Unfolding kinetics were measured at 298K by stopped-flow fluorescence or

discontinuously for P-NtrCr by mixing protein stock solution with GdmCl in

a 1:1 ratio to a final concentration of R3.2M denaturant and 5 mM protein.

The sample was excited at 281 nm and emission measured using a 320 nm

long-pass filter. Sequential stopped-flow was used to measure the rate

constants of folding in order to overcome the slow phase due to cis/trans prolyl

isomerization (Figure S2). 250 mM NtrCr was mixed 1:1 with denaturant to a final

concentration R3.2M for 10 s followed by a 1:1 mixing with buffer yielding

a final denaturant concentration between 1.6–2.0 M and a 62.5 mM final protein

concentration. An average of 10 (unfolding) and 30 (folding) scans were best fit

to single exponentials.

Unfolding of wild-type NtrCr by NMR at 298K was measured by 15N-HSQC’s

at various GdmCl concentrations and the decrease in the peak intensities of

the folded form, corrected for the effect of ionic strength on the peak intensity,



were fit to a sigmoidal curve to determine the stability of each residue (Figures

S3–S5).

Conversion of Rate Constants to Energy

For visualization of the experimentally determined kinetic and thermodynamic

values in form of an energy landscape, changes in free energies were calcu-

lated from the ratio of the rate constants. The differences in free energies

between the inactive and active substates for wild-type were calculated

according to DG = �RTln(kIA/ kAI). Changes of the free energies of mutant

forms and BeF3
�-activated NtrCr relative to wild-type were then determined

from the changes in the microscopic rate constants of the interconversion

process (kIA, kAI) using the following equation according to standard transition

state theory assuming an identical pre-exponential factor for the wild-type and

mutant forms:

DDGz,IACPMG = �RTln(kIA,wild-type/kIA,mutant,BeF
3
�) and DDGz,AI

CPMG =

�RTln(kAI,wild-type/ kAI,mutant,BeF
3
�) where R is the universal gas constant.

We then set the population-weighted average of the free energy of wild-type

to zero. Changes in the free energies of the native state of the mutant forms

relative to wild-type could then be determined by comparing the population-

averaged free energies (DDGCPMG).

The energy landscape derived from these calculations was quantitatively

verified by determining the changes in unfolding rate constants that conse-

quently reflect the changes in the free energies of the folded states. The

same equations were used to determine the differences in the free energies

of unfolding: DDGzunfolding = �RTln(ku
wild-type/ ku

mutant,BeF3�). We note that

the absolute values of DGz IA and DGzunfolding depend on the pre-exponential

factor for which we used a value described in the literature for protein folding

(106 s�1) (Kubelka et al., 2004). However, for the important comparison of

energy changes between different forms of NtrCr (DDG), it is reasonable to

assume very similar pre-exponential factors among the NtrCr forms for each

separate process, in which case they are canceling out as assumed in the

equation above. The strong agreement of the DDG values determined from

the inactive/active transition within the folded state and the DDG values deter-

mined from unfolding validates this assumption.

Computation

MD and TMD simulations were performed in explicit solvent, with TIP3P water

molecules (Price and Brooks, 2004), using the simulation program CHARMM

(Brooks et al., 1983) version c31b1 with the all atom force field C22 (MacKerell

et al., 1998) and the CMAP correction for the protein backbone dynamics

(MacKerrell et al., 2004) as described in Lei et al. (2009).

SUPPLEMENTAL DATA

SupplementalData includeeightfiguresand twotables andcanbe foundwith this

article online at http://www.cell.com/supplemental/S0092-8674(09)01434-2.
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