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SUMMARY

The mechanisms through which the bone marrow
(BM) microenvironment regulates hematopoietic
stemcell (HSC) fate remain incompletely understood.
We examined the role of the heparin-binding growth
factor pleiotrophin (PTN) in regulating HSC function
in the niche. PTN�/� mice displayed significantly
decreased BM HSC content and impaired hemato-
poietic regeneration following myelosuppression.
Conversely, mice lacking protein tyrosine phospha-
tase receptor zeta, which is inactivated by PTN, dis-
played significantly increased BM HSC content.
Transplant studies revealed that PTN action was
not HSC autonomous, but rather was mediated by
the BM microenvironment. Interestingly, PTN was
differentially expressed and secreted by BM sinu-
soidal endothelial cells within the vascular niche.
Furthermore, systemic administration of anti-PTN
antibody in mice substantially impaired both the
homing of hematopoietic progenitor cells to the niche
and the retention of BM HSCs in the niche. PTN is
a secreted component of the BM vascular niche
that regulates HSC self-renewal and retention in vivo.

INTRODUCTION

Hematopoietic stem cells (HSCs) are capable of self-renewal

and reconstitution of the entire blood and immune system in vivo.

HSC fate determination in vivo is regulated by a combination of

intrinsic mechanisms and environmental cues mediated via cell-

cell interactions, cytokines, and secreted growth factors (Blank

et al., 2008; Kiel and Morrison, 2008; Zon, 2008) Although char-

acterization of the cells within the bone marrow (BM) microenvi-

ronment that regulate HSC fate continues to evolve (Butler et al.,
964 Cell Reports 2, 964–975, October 25, 2012 ª2012 The Authors
2010; Calvi et al., 2003; Ding et al., 2012; Hooper et al., 2009; Kiel

et al., 2005; Méndez-Ferrer et al., 2010; Salter et al., 2009; Zhang

et al., 2003), the mechanisms through which BM-microenviron-

ment cells regulate HSC functions are less well understood.

We previously showed that adult sources of endothelial cells

(ECs) were capable of supporting the expansion of murine and

human HSCs in vitro (Chute et al., 2002, 2004, 2005, 2006a).

Utilizing a genomic screen of primary adult human brain ECs

(HUBECs) that support HSC expansion in noncontact cultures

(Chute et al., 2002, 2005, 2006a), we identified pleiotrophin

(PTN,) a heparin-binding growth factor that is primarily ex-

pressed in the nervous system (Li et al., 1990), to be >100-fold

overexpressed in HUBECs compared with non-HSC-supportive

ECs (Himburg et al., 2010). We subsequently showed that in vitro

treatment of murine BM HSCs with PTN, in combination with

other cytokines, supported the expansion of HSCs with long-

term (LT) repopulating capacity (Himburg et al., 2010). However,

it remained unknownwhether PTNwas expressed by cells within

the HSC niche, which regulates HSC function in vivo, or whether

PTN had any physiologically relevant function in regulating HSC

fate in vivo.We therefore sought to determine whether PTN is ex-

pressed by BM-microenvironment cells within the HSC niche,

and whether modulation of PTN expression within the niche

can affect the maintenance, regeneration, or retention of HSCs

in vivo. Here, we show that PTN is uniquely expressed and

secreted by BM sinusoidal ECs within the HSC vascular niche

and has an important role in regulating HSC self-renewal and

retention in the BM.

RESULTS

PTN Regulates HSC Self-Renewal and Is Necessary
for Hematopoietic Regeneration In Vivo
We first examined the hematologic phenotype of mice bearing

a constitutive deletion of ptn (PTN�/�mice) compared with litter-

mate control PTN+/+ mice. Knockout of ptn in the mouse strain

was confirmed by RT-PCR analysis (Figure 1A). Eight-week-old
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PTN�/� mice displayed no significant differences in peripheral

blood (PB) complete blood counts or spleen size (Figure S1).

We also observed no differences in BM vascular density

between PTN�/� mice and PTN+/+ mice (data not shown).

However, adult PTN �/� mice contained significantly decreased

BM c-kit+sca-1+lineage� (KSL) stem/progenitor cells as well as

BM colony-forming unit (CFU) spleen day 12 cells (CFU-S12;

Figure 1B). Furthermore, the PTN�/�mice contained significantly

decreased numbers of BM SLAM-receptor (CD150+CD48�

CD41�)-positive KSL (SLAM+KSL) cells (Kiel et al., 2005)

compared with PTN+/+ mice, reflecting a deficit in phenotypic

HSCs (Figure 1B). Importantly, competitive transplantation

assays of BM 34�KSL cells, which are highly enriched for

HSCs (Himburg et al., 2010), into lethally irradiated congenic

mice confirmed amarked decrease in LT-HSC content in PTN�/�

mice compared with PTN +/+ mice. At 12 weeks after competitive

transplantation, donor CD45.2+ PB cell engraftment was 7-fold

lower in mice that were transplanted with BM 34�KSL cells

from PTN�/�mice compared with recipients of BM 34�KSL cells

from PTN+/+ mice (mean 5% versus 35%; Figure 1C). Multiline-

age engraftment of myeloid cells, erythroid cells, B cells, and

T cells was also significantly lower in mice transplanted with

BM HSCs from PTN�/� mice compared with recipients trans-

planted with BM HSCs from PTN+/+ mice (Figure 1D). Analysis

over time revealed that mice transplanted with BM HSCs from

PTN�/� mice had 5- to 20-fold decreased donor cell repopula-

tion between 4 weeks and 20 weeks posttransplant compared

with mice transplanted with HSCs from PTN+/+ mice, confirming

a loss of both short-term (ST) and LT HSCs in PTN�/� mice (Fig-

ure 1C). Poisson statistical analysis of a limiting dilution trans-

plant assay demonstrated that the competitive repopulating

unit (CRU) frequency within PTN �/�mice was 11-fold decreased

(1 in 66 cells; 95%confidence interval (CI): 1/37–1/119) compared

with the CRU frequency in PTN +/+ mice (1 in 6; CI: 1/2–1/14;

Figure 1E). Taken together, these results demonstrate that

PTN regulates the maintenance of the BM HSC pool.

Because deletion of PTN caused a substantial reduction in BM

HSC content in vivo, we next sought to determine whether PTN

deletion affected hematopoietic regeneration following myelo-

suppressive injury. We irradiated adult PTN�/� mice and

PTN+/+ mice with 700 cGy total body irradiation (TBI), a myelo-

suppressive radiation dose, and compared their survival through

day +30. Sixty-nine percent of the PTN+/+ mice (11 of 16)

remained alive and well through day +30 (Figure 1F). In contrast,

none of the PTN�/�mice (0 of 7) survived past day +18 post-TBI,

indicating markedly increased radiosensitivity in PTN�/� mice.

Commensurate with this, PTN�/� mice displayed severely

decreased BM progenitor cell content at day +20, whereas

PTN +/+ mice showed evidence of recovery of the BM progenitor

cell compartment (Figure 1G). Taken together, these results

demonstrate that PTN is essential for hematopoietic regenera-

tion and survival following radiation-induced myelosuppression.

PTN Regulates the HSC Pool in a Microenvironment-
Dependent Manner
To determine whether PTN signaling is HSC autonomous or

dependent on the BM microenvironment, we transplanted BM

cells from CD45.1+ Bl6.SJL mice into lethally irradiated PTN�/�
C

mice or PTN+/+ mice (CD45.2+) and compared the hematopoietic

phenotypes of these chimeric mice. At 8 weeks posttransplant,

recipient mice demonstrated >95% donor chimerism (mean

96.4% donor cells in wild-type [WT];PTN+/+ mice and 95.2% in

WT;PTN�/� mice, n = 8–9 mice/group). Adult PTN�/� mice that

were transplanted with BM cells from Bl6.SJL mice (WT;PTN�/�

mice) displayed significantly decreased numbers of BM KSL

cells, CFU-S12, and SLAM+KSL HSCs compared with age-

matched WT;PTN+/+ mice (Figure 1H). Importantly, mice that

were competitively transplanted with BM from WT;PTN�/�

mice also displayed significantly decreased multilineage donor

cell repopulation between 4 weeks and 30 weeks posttransplant

compared with mice transplanted with the identical dose of

BM cells fromWT;PTN+/+ mice (Figure 1I). Secondary transplan-

tation of BM cells from the primary transplant recipients demon-

strated that secondary mice in the WT;PTN�/� group had 4-fold

decreased donor cell engraftment at 8 weeks posttransplant

compared with secondary recipients in the WT;PTN+/+ group

(mean donor CD45.1+ cells: 0.5% ± 0.2 versus 2.0% ± 0.7,

p = 0.04, n = 8–9/group). These results demonstrate that PTN

production by the BM microenvironment is necessary for regen-

eration of the HSC pool following BM transplantation.

Because PTN was necessary for normal HSC reconstitution

in vivo following BM transplantation, we next tested whether

pharmacologic administration of PTN could accelerate HSC

reconstitution in a clinically relevant model of HSC transplanta-

tion. We transplanted limiting doses (0.5–13 106 cells) of human

cord blood (CB) mononuclear cells intravenously into NOD/SCID

IL2R-g�/� (NSG) mice, and compared human hematopoietic

reconstitution over time in mice that were treated intraperitone-

ally with 2–4 mg PTN or saline on days +7, +10, and +13 post-

transplant. PB was analyzed at 4 and 8 weeks posttransplant

for human CD45+ cell engraftment. The PTN-treated mice

demonstrated significantly increased human CD45+ cell repopu-

lation compared with saline-treated mice over time (4 weeks:

mean 10.9% huCD45+ versus 1.4%; 8 weeks: mean 9.9% ver-

sus 1.9%, n = 11–14 mice/group; Figure 1J). Importantly, NSG

mice that were treated with PTN also had a >10-fold increased

human hematopoietic progenitor cell (HPC) content in the

BM at 8 weeks posttransplant compared with saline-treated

controls (Figure 1J). These results show that PTN promotes

human hematopoietic stem/progenitor cell (HSPC) regeneration

in vivo following transplantation, and illustrate the translational

potential of PTN administration as a means to accelerate human

hematopoietic reconstitution, particularly in settings wherein

the HSC dose is limiting, such as human CB transplantation

(Laughlin et al., 2004; Rocha et al., 2004).

Deletion of Protein Tyrosine Phosphatase Receptor zeta
Expands the HSC Pool In Vivo
In the nervous system, PTN can mediate proliferative signals via

binding and inhibition of the transmembrane receptor PTPRZ

(Meng et al., 2000; Raulo et al., 1994; Stoica et al., 2001). We

sought to determine whether PTN mediates HSC self-renewal

via inactivation of PTPRZ signaling in HSCs. To that end, we

examined the hematopoietic phenotype of Ptprz1�/� mice

compared with Ptprz1+/+ mice. RT-PCR confirmed the deletion

of the full-length messenger RNA transcript for ptprz in the
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Figure 1. PTN Regulates HSC Self-Renewal and Is Necessary for Hematopoietic Regeneration In Vivo

(A) Quantitative RT-PCR (qRT-PCR) of ptn expression in the BM of PTN�/� mice and PTN+/+ mice.

(B) PTN�/� mice contained significantly decreased BM KSL cells/femur, SLAM+KSL (CD150+CD48�CD41�lin�c-kit+sca-1+) cells/femur, and BM CFU-S12

compared with PTN+/+ mice (n = 4 for KSL, n = 3 for SLAM+KSL, n = 5 for CFU-S12; *p = 0.01, *p = 0.0002, *p = 0.003 respectively).
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mutant mice (Figure 2A). Interestingly, 8-week-old Ptprz1�/�

mice demonstrated significantly increased white blood cell

(WBC), hemoglobin (Hgb), and platelet counts compared with

age-matched Ptprz1+/+ mice (Figure 2B). Ptprz1�/� mice also

displayed significantly increased total BM cells, KSL progenitor

cells, CFU-S12, and SLAM+KSL HSCs compared with Ptprz1+/+

mice (Figures 2C and 2D). CRU assays demonstrated that mice

transplanted with BM 34�KSL cells from Ptprz1�/� mice had

6-fold increased donor CD45.2+ cell engraftment at 12 weeks

posttransplant compared with mice transplanted with BM cells

from Ptprz1+/+ mice (Figure 2E). Mice transplanted with HSCs

from Ptprz1�/� mice also displayed normal and increased multi-

lineage donor myeloid cell, erythroid cell, T cell, and B cell repo-

pulation compared with recipients of BM from Ptprz1+/+ mice,

confirming that deletion of PTPRZ did not alter the normal differ-

entiation capacity of BM HSCs (Figure 2F). Mice transplanted

with BM cells from Ptprz1�/� mice also demonstrated 5-fold

and 10-fold increased donor CD45.2+ cell engraftment at

4 weeks and 16 weeks posttransplant, respectively, compared

with mice transplanted with BM cells from Ptprz1+/+ mice, con-

firming that deletion of PTPRZ increased both ST- and LT-HSC

content in vivo (Figure 2E). A Poisson statistical analysis of donor

cell engraftment at 12 weeks from a limiting dilution assay

demonstrated a CRU frequency of 1 in 23 in Ptprz1�/� mice

(CI: 1/13–1/42) compared with 1 in 72 in Ptprz1+/+ mice (CI:

1/27–1/189; Figure 2G). Therefore, deletion of PTPRZ was suffi-

cient to expand the BM HSC pool in vivo, and implicated PTPRZ

as the receptor that mediates PTN signaling in HSCs.

As evidence that PTPRZ is necessary for PTN-mediated

expansion of HSCs, we found that PTN treatment of BM KSL

cells from PTPRZ+/+ mice caused a significant expansion of

KSL cells in vitro, whereas PTN treatment of BM KSL cells

from PTPRZ�/� mice failed to expand KSL cells in culture (Fig-

ure S2). Of note, we followed Ptprz1�/� mice through 12 months
(C) CD45.1+ mice transplanted competitively with a limiting dose (30 cells) of

decreased donor CD45.2+ cell engraftment over time comparedwithmice transpla

mice/group; 4 weeks, *p = 0.007; 8 weeks, *p = 0.006; 12 weeks, *p = 0.0008; 2

(D) Twelve-week myeloid cell (Mac-1+), erythroid cell (Ter119+), T cell (Thy 1.2+), a

respectively, for differences between recipients of BM from PTN+/+ and PTN�/�

(E) Poisson statistical analysis after limiting dilution transplant assay. Plots were o

(n = 9–10 mice transplanted at each cell dose per condition). The plot shows the

engrafted) in the PB at 12 weeks posttransplantation (y axis) versus the number of

37% of the mice are nonengrafted, and the vertical lines highlight the CRU frequ

(F) PTN�/�mice displayed increased radiosensitivity compared with PTN +/+ mice

PTN+/+ mice (11 of 16) were alive at day +30 following 700 cGy TBI (at left). Conver

rank analysis).

(G) PTN�/� mice had >15-fold decreased BM CFCs at day +20 following TBI com

(H) WT;PTN�/� mice had decreased BM KSL cells, decreased SLAM+KSL HSC

n = 8–9 for KSL and CFU-S12; n = 3 for SLAM analysis; KSL, *p = 0.02; SLAM+K

(I) Mice competitively transplanted with a limiting dose (30 cells) of BM CD34�KS
cell engraftment over 4–30 weeks compared with mice transplanted with the ident

*p = 0.001; 30 weeks, *p = 0.04). Error bars represent SEM for all experiments; S

(J) NSGmicewere irradiated with 250 cGy and then transplantedwith humanCBm

circles, and experiment 2 is represented by open triangles) followed by intra

posttransplant. PTN-treated mice displayed significantly increased human hema

saline-treated controls (left: n = 11–14 per group, 4 weeks *p = 0.04; 8 weeks *p

engraftment. Transplanted NSGmice that were treated with PTN demonstrated s

treated NSG mice (right: n = 4 mice/group, *p = 0.02).

See also Figure S1.
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of age and these mice displayed no evidence of splenomegaly,

lymphadenopathy, leukemia, or decreased survival compared

with Ptprz1+/+ mice. These data suggest that deletion of PTPRZ

alone does not confer clonal myeloproliferative or lymphoproli-

ferative disease in mice (Figure S3).

PTPRZ Signaling Is HSC Autonomous
To determine whether PTN signaling through PTPRZ is

HSC autonomous or mediated via indirect effects on other BM

cell types, we transplanted lethally irradiated Bl6.SJL mice

(CD45.1+) with BM cells from Ptprz1�/� or Ptprz1+/+ mice

(CD45.2+) to create Ptprz1�/�;WT mice and Ptprz1+/+;WT mice.

At 8 weeks posttransplant, the recipient mice were R95%

CD45.2+, confirming full donor chimerism (Figure 2H). At this

time point, we examined the BM stem/progenitor cell content

in both groups of mice. Ptprz1�/�;WT mice demonstrated

significant increases in BM KSL cells, CFU-S12, and SLAM+KSL

HSCs compared with Ptprz1+/+;WT mice (Figure 2I). These

results demonstrate that PTPRZ-mediated regulation of the

HSC pool was HSC autonomous and independent of PTPRZ

signaling in the BM microenvironment.

BMECs andCXCL12+ Reticular Cells Express PTN in the
HSC Niche
Our transplant studies suggest that maintenance of the HSC

pool is dependent upon production of PTN by the BM microen-

vironment. We next sought to determine which cells within the

BM microenvironment produce PTN. Immunostaining of adult

mice femurs from PTN green fluorescent protein (PTN-GFP)

mice revealed that a subset of VE-cadherin+ BM ECs coex-

pressed PTN, as did vascular endothelial growth factor receptor

(VEGFR)3+ sinusoidal ECs (Figures 3A and 3B; Butler et al., 2010;

Hooper et al., 2009; Salter et al., 2009). Similarly, a subset of

CXCL12 (SDF-1)+ cells, which appeared to be perivascular,
BM CD34�KSL cells from CD45.2+ PTN�/� mice demonstrated significantly

ntedwith the identical dose of BMCD34�KSL cells fromPTN +/+mice (n = 6–10

0 weeks, *p = 0.02).

nd B cell (B220+) engraftment (*p = 0.004, *p = 0.01, *p = 0.002, and *p = 0.02,

mice).

btained to allow estimation of the CRU frequency in PTN+/+ and PTN�/� mice

percentage of recipient (CD45.1+) mice containing <1% CD45.2+ cells (non-

cells injected per mouse (x axis). The horizontal line indicates the point at which

encies in each mouse (PTN�/� mice [1/66] versus PTN+/+ mice [1/6]).

and failed to regenerate hematopoiesis following TBI. Sixty-nine percent of the

sely, none of the PTN�/�mice (0 of 7) survived beyond day +18 (p < 0.0001, log

pared with PTN+/+ mice (at right, n = 3/group, *p = 0.01).

s, and decreased CFU-S12 compared with WT;PTN+/+ mice (means ± SEM,

SL, *p = 0.02; CFU-S12, *p = 0.002).

L cells from WT;PTN�/� mice demonstrated significantly lower donor CD45.1+

ical dose of CD34�KSL cells fromWT;PTN+/+ mice (n = 8mice/group; 8 weeks,

tudent’s t test was performed for comparisons.

ononuclear cells (5–103 105 cells/mouse; experiment 1 is represented by blue

peritoneal injections of 2 or 4 mg PTN or saline on days +7, +10, and +13

topoietic cell engraftment in the PB over time posttransplant compared with

= 0.03). Horizontal bars represent the mean levels of donor human CD45+ cell

ignificantly increased human CFCs in the BM at 8 weeks compared with saline-
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Figure 2. Deletion of PTPRZ Is Sufficient to Expand the BM HSC Pool

(A) qRT-PCR analysis of ptprz expression in Ptprz1+/+ and Ptprz1�/� mice.

(B) Scatter plots show the complete blood counts in the PB of Ptprz1+/+ mice compared with Ptprz1�/� mice (WBCs,*p = 0.005; neutrophils, *p = 0.006;

lymphocytes, *p = 0.003; Hgb, *p = 0.04; platelets, *p = 0.01). Mean values are represented by horizontal lines; n = 8–13 mice per condition.
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also coexpressed PTN, whereas the majority of osterix+ cells did

not express PTN (Figures 3C–3E; Tang et al., 2011).

Taken together, these results demonstrate a differential expres-

sion of PTN by BMECs and perhaps by CXCL12-abundant retic-

ular cells (CARs; Sugiyama et al., 2006). We further determined

by ELISA that PTN was concentrated within the BM serum of

C57Bl6 mice but was not detectable in PB serum (Figure S4).

In addition, PTN was highly enriched in the conditioned media

from primary BM ECs from C57Bl6 mice, confirming that BM

ECs secrete PTN (Figure S4). These results show that PTN is

differentially expressed and secreted by principal components

of the BM vascular niche and is a paracrine factor for BM

stem/progenitor cells in vivo.

To further characterize the cells within the BM niche that

expressed PTN, we performed fluorescence-activated cell-

sorting (FACS) analysis on BM CD45�PTN+ cells and analyzed

for surface expression of the EC marker VE-cadherin. The FACS

analysis revealed a distinct population of VE-cadherin+PTN+

cells in the BM (Figure 3F). We then performed a gene expres-

sion analysis of FACS-sorted VE-cadherin+PTN+ cells, which re-

vealed enrichment for VEGFR2 and VEGFR3, which are markers

of BM sinusoidal endothelium (Hooper et al., 2009; Table 1).

Interestingly, VE-cadherin+PTN+ cells were also enriched for

expression of CXCL12 and the leptin receptor (lepR), proteins

that have been shown to be expressed by both perivascular

stromal cells and sinusoidal ECs (Dar et al., 2005; Ding et al.,

2012; Ikejima et al., 2004; Sugiyama et al., 2006). VE-cadherin+

PTN+ cells lacked expression of Nestin, a marker of BM mesen-

chymal stromal cells (MSCs) (Méndez-Ferrer et al., 2010).

Lastly, to determine the anatomic relationship between PTN+

cells and HSCs in the BM, we immunostained femurs from

PTN-GFP mice to detect CD150+CD48�CD41�lineage� cells.

As previously described, we found CD150+CD48�CD41�

lineage� cells to be rare in the BM (Kiel et al., 2005; Méndez-

Ferrer et al., 2010). However, the majority of the CD150+CD48�

CD41�lineage� cells (82.3%, 51 of 62) were found to be in

contact with or closely adjacent to PTN+ cells (30 images, 5

femur sections; Figure 3G). Taken together with our functional

studies of PTN�/� mice, these results suggest an anatomic

and functional relationship between BM HSCs and PTN+ cells

in the vascular niche.
(C) Ptprz1�/� mice have increased mean BM cell counts, KSL cells/femur, and

*p = 0.04, *p = 0.003, *p = 0.002, respectively). Error bars represent SEM.

(D) Ptprz1�/� mice contain increased BM CFU-S12 compared with Ptprz1+/+ mic

(E) Mice transplanted with a limiting dose (30 cells) of BM CD34�KSL cells from

engraftment over time compared with recipients of the identical dose of CD34�K
4 weeks, *p = 0.01; 8 weeks, *p = 0.03; 12 weeks, *p = 0.03; 16 weeks, *p = 0.04

(F) Multilineage engraftment of myeloid cells, erythroid cells, T cells, and B cells is s

T cell, *p = 0.02.

(G) Poisson statistical analysis after limiting dilution transplant assay; plots were

Ptprz1�/� mice (1 in 23); n = 7–8 mice transplanted at each cell dose per conditi

(H) The mean percent donor chimerism is shown at 8 weeks posttransplantation

Bl6.SJL recipient (CD45.1+) mice (WT) to generate chimeric Ptprz1�/�;WTmice an

mice and Ptprz1+/+;WT mice (n = 4–5 mice/group, means ± SEM).

(I) Ptprz1�/�;WT mice contained significantly increased BM KSL cells/femur, S

3–6/group, *p = 0.004, *p < 0.0001, and *p = 0.002, respectively; data represent

See also Figures S2 and S3.
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PTN Regulates HPC Homing to the BM Niche
Having shown that PTN is expressed by sinusoidal BM ECs

within the vascular niche, we sought to determine whether

PTN+ ECs regulate HSPC homing to the niche. Adult C57Bl6

mice were injected intravenously with either 50 mg of a specific,

neutralizing anti-PTN antibody (R&D Systems) or 50 mg immuno-

globulin G (IgG), and after 30 min were infused with 2 3 105 BM

Sca-1+lin� progenitor cells from ubiquitin C-GFP (UBC-GFP)

mice. At 18 hr posttransplant, the mice were sacrificed and

BM cells were analyzed by FACS to compare the homing of

GFP+ cells to the BM in each group. Mice that were pretreated

with anti-PTN antibody displayed a significant decrease in

donor HSPC homing to the BM compared with IgG-treated

recipient mice (Figures 4A and 4B). These results suggested

that PTN is required for the proper homing of HSPCs to the

BM following transplantation. To determine the specific effect

that anti-PTN administration had on the homing of transplanted

HPCs, we performed intravital imaging using confocal micros-

copy to observe intravenously transplanted BM lin�GFP+ cells

homing within the calvarial BM endothelium in dsRed mice, as

previously described (Lo Celso et al., 2011). Mice that were pre-

treated with IgG and then intravenously transplanted with 3 3

106 BM lin�GFP+ cells demonstrated dynamic transmigration

of GFP+ cells from the BM vascular space into the BM paren-

chymal space between 1 and 4 hr posttransplant (Figures 4C

and 4D). In contrast, mice that were pretreated with anti-PTN

and then transplanted with equal doses of BM lin�GFP+ cells

demonstrated a substantial defect in lodgment along the BM

endothelium and in transmigration across the BM vasculature

into the HSC niche (Figures 4C and 4D). Coupled with the

demonstration that anti-PTN quantitatively decreased HSPC

homing to the niche, these data suggested an important role

for PTN in regulating the lodgment and/or transmigration of

HSPCs from the BM vasculature into the HSC niche. Of note,

to confirm that systemically administered anti-PTN mediated

effects directly upon the BM vascular endothelium, we also

show that mice injected with 50 mg anti-PTN-DyLight650 anti-

body displayed specific binding of the antibody to the intimal

endothelial layer of the BM vasculature, whereas mice injected

with 50 mg IgG-DyLight650 showed no binding to BM ECs

(Figure 4E).
SLAM+KSL cells/femur compared with Ptprz1+/+ mice (n = 3–5 mice/group;

e (n = 7–9/group, p < 0.0001).

Ptprz1�/� mice demonstrated significantly higher donor CD45.2+ donor cell

SL cells from Ptprz1+/+ mice (means ± SEM are shown, n = 7–10 mice/group;

; Student’s t test for all comparisons).

hown at 12 weeks posttransplantation; n = 7–8mice/group; myeloid, *p = 0.03;

obtained to allow estimation of CRU frequency in Ptprz1+/+ mice (1 in 72) and

on.

of BM cells from Ptprz1+/+ or Ptprz1�/� (CD45.2+) mice into lethally irradiated

d Ptprz1+/+;WTmice. Mean donor cell chimerism wasR 95% in Ptprz1�/�;WT

LAM+KSL cells/femur and CFU-S12 compared with Ptprz1+/+;WT mice (n =

means ± SEM; Student’s t test for comparisons).
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Figure 3. PTN Is Expressed by BM ECs in the HSC Niche

(A) PTN-GFP reporter mice stained with VE-cadherin antibody (red) demonstrate that VE-cadherin+ ECs express PTN (green). White arrows indicate cells that

express both PTN and VE-cadherin. Inset box is shown magnified on the right; white scale bar represents 10 mm.

(B) VEGFR3+ sinusoidal vessels (red) that coexpress PTN (green). White arrows indicate cells expressing both VEGFR3 and PTN. Right: High-power image.

(C) Staining for osterix+ cells (red) indicates that very few osterix+ cells express PTN (green). Right: High-power image.

(D) CARs (red) that coexpress PTN (green) are identified. White arrows indicate cells expressing both PTN and CXCL12.

(E) Quantification of the percentage of VE-cadherin+, VEGFR3+, osterix (Osx)+, and CXCL12+ cells that coexpress PTN. Osterix+ cells had the lowest amount of

colocalization with PTN-GFP+ cells (3.3%), and 30%of VE-cadherin cells, 12.8%of VEGFR3+ cells, and 25.5%of CXCL12+ cells coexpressed PTN (n = 2–6 tissue

sections/stain; bars represent means ± SEM).

(F) Representative FACS analysis of BM cells from PTN-GFP reporter mice costained with CD45 and VE-cadherin antibodies, demonstrating that PTN is

expressed by VE-cadherin+ cells.

(G) Immunohistochemical staining for CD150+CD48�CD41�lineage� cells in the femurs of PTN-GFP mice was performed. A representative image is shown;

82.3% of the CD150+CD48�CD41�lineage� cells (51 of 62, magenta) were within a 5 mm distance of PTN+ cells (green) in the BM (30 images analyzed from

5 femur sections).

See also Figure S4.
HSPC homing to the BM niche is regulated by numerous

cooperative mechanisms, including HSPC rolling, lodgment,

and transmigration through BM sinusoidal vasculature, medi-

ated by VLA4–VCAM and CD44–hyaluronic-acid interactions

between HSPCs and BM ECs, and via the CXCR4-CXCL12
970 Cell Reports 2, 964–975, October 25, 2012 ª2012 The Authors
axis (Avigdor et al., 2004; Kahn et al., 2004; Papayannopoulou

et al., 1995). We performed in vitro migration assays in which

2 3 105 BM ckit+lin� cells were placed in the upper chamber

of transwell cultures, and 200 ng PTN, 200 ng SDF-1

(CXCL12), or media were placed in the lower chamber. At 4 hr



Table 1. Gene Expression of VE-cadherin+PTN+ Cells

Gene Description

Fold Difference

VE-cad+PTN+ p Value

VEGFR2 Vascular endothelial growth

factor receptor 2

84.7 0.006

VEGFR3 Vascular endothelial growth

factor receptor 3

68.1 0.02

CXCL12 Chemokine CXC ligand 12 48.0 0.003

LepR Leptin receptor 136.2 0.02

Nestin Nestin ND

BM cells were collected from PTN-GFP reporter mice and stained with

anti-VE-cadherin or isotype antibody. FACS was performed to collect

VE-cad+PTN+ cells, and RNA was isolated for qRT-PCR analysis for the

genes identified on the left. The fold differences in gene expression

between VE-cad+PTN+ cells versus CD45+PTN� BM cells are shown.

n = 3 replicates/group; t test; ND, not detected.
of culture, we observed no migration of HSPCs toward PTN,

whereas 35% of HSPCs migrated toward SDF1 (Figure 4F).

These data suggested that PTN alone did not provide a gradient

for HSPC migration. When HSPCs were preincubated for 1 hr

with PTN, we observed a significant increase in HSPC migration

toward SDF1, suggesting that PTN augments HSPC migration

toward an SDF1 gradient (Figure 4F). However, incubation with

PTN did not upregulate CXCR4 or VLA4 expression on BM

ckit+lin� cells, suggesting that PTN regulates HSPC homing

through an alternative mechanism (Figure 4F).

Administration of Anti-PTNPromotesHSPCMobilization
Our results suggest that PTN has an important role in regulating

HSPC homing to the BM niche. We further hypothesized that

PTN might also regulate HSC retention in the niche, and that

systemic administration of anti-PTNmight promote HSPCmobi-

lization. To test this hypothesis, we treated adult C57Bl6 mice

with either 50 mg IgG, 50 mg anti-PTN, or the CXCR4 antagonist

AMD3100 (50 mg) or AMD3100 + anti-PTN. At 1 hr posttreatment,

PB was collected and analyzed for mobilization of ckit+sca-

1+lin� cells (KSL cells), which are enriched for HSPCs. Interest-

ingly, treatment with anti-PTN alone significantly increased the

number of KSL cells in the PB at 1 hr posttreatment compared

with IgG-treated control mice (Figures 4G and 4H). As expected,

AMD3100, which is used clinically to mobilize HSPCs (Malard

et al., 2012), also promoted HSPC mobilization. Importantly,

the combination of AMD3100 and anti-PTN caused a 2-fold

increase the mobilization of BM KSL cells compared with the

effect of AMD3100 treatment alone (Figures 4G and 4H). Taken

together, these data suggest that PTN also regulates the reten-

tion of HSPCs in the BM niche and cooperates with the

CXCR4-SDF1 axis in this regard.

DISCUSSION

Recent studies have implicated several different cell types within

the BMmicroenvironment as having important roles in regulating

HSC self-renewal and retention in vivo (Butler et al., 2010; Calvi

et al., 2003; Ding et al., 2012; Hooper et al., 2009; Kiel et al., 2005;
C

Méndez-Ferrer et al., 2010; Salter et al., 2009; Zhang et al.,

2003). However, the mechanisms through which BM-microenvi-

ronment cells regulate HSC functions in vivo remain incom-

pletely understood. Here we show that PTN, a heparin-binding

growth factor, is expressed by sinusoidal ECs within the BM

vascular niche and regulates the maintenance of the HSC pool

in vivo. Furthermore, genetic deletion of PTPRZ, a receptor for

PTN that is expressed by HSCs, caused a significant expansion

of the HSC pool in vivo. This observed effect is consistent with

the established function of PTN as inactivating PTPZ phospha-

tase activity upon receptor binding. The observed deficit in

HSC numbers coupled with only slight reductions in PB

complete blood counts in PTN�/� mice suggests the possibility

of compensation by other factors (Herradon et al., 2005) in

PTN�/� mice. However, PTN appears to be indispensable for

hematopoietic regeneration to occur following myelosuppres-

sion, since PTN�/� mice had significantly increased mortality

following a myelosuppressive dose of TBI (700 cGy), coupled

with a severe deficit in the recovery of BM progenitor cells

compared with PTN +/+ mice. These results suggest an essential

role for PTN in regulating hematopoietic regeneration following

injury.

Previous studies identified cellular components of a BM

vascular niche for HSCs, including VEGFR2+VEGFR3+ sinu-

soidal ECs, CARs, and lepR+ perivascular cells, that are essential

for maintenance of the HSC pool during homeostasis (Ding et al.,

2012; Hooper et al., 2009; Sugiyama et al., 2006). Nestin+ MSCs

were also shown to contribute to both the vascular and endos-

teal niches for HSCs in vivo (Méndez-Ferrer et al., 2010).

However, the signaling mechanisms through which cells within

the BM vascular niche regulate HSC homeostasis or regenera-

tion are not well understood. Here we demonstrate via immuno-

histochemical and FACS analyses that PTN is expressed

uniquely by VE-cadherin+ ECs that coexpress VEGFR2 and

VEGFR3+, consistent with BM sinusoidal ECs (Hooper et al.,

2009). Interestingly, PTN+ ECs also express CXCL12 and lepR,

which can be expressed by both sinusoidal ECs and perivascular

reticular cells (Dar et al., 2005; Ding et al., 2012; Ikejima et al.,

2004; Sugiyama et al., 2006). Of note, a prior study (Tezuka

et al., 1990) suggested that calvarial bone osteoblasts express

PTN, but we found little evidence that osterix+ bone lineage cells

expressed PTN in the BM. Commensurate with our findings that

PTN was highly expressed by BM sinusoidal ECs, PTN was

highly concentrated in BM supernatants and in the conditioned

media of primary BM sinusoidal ECs in culture, but was unde-

tectable in the PB of WT mice. These results, coupled with the

observed deficit in HSC repopulating cell content in WT;PTN�/�

mice, suggest that PTN is an important paracrine factor for HSCs

within the vascular niche.

In addition to their role in regulating the maintenance of

the HSC pool in vivo, BM sinusoidal ECs regulate the rolling,

lodgment, and transmigration of transplanted HSPCs from the

vascular space into HSC niches (Avigdor et al., 2004; Papayan-

nopoulou et al., 1995). For example, VLA4–VCAM1 and CD44–

hyaluronic-acid interactions between HSPCs and BM ECs

control the initial steps in the homing of HSPCs across the

vascular endothelium (Avigdor et al., 2004; Papayannopoulou

et al., 1995). Because PTN is strongly expressed by BM
ell Reports 2, 964–975, October 25, 2012 ª2012 The Authors 971



Figure 4. PTN Regulates the Homing and Retention of BM HSPCs

(A) Systemic administration of anti-PTN significantly decreased HSPC homing to the BM niche. Shown is a representative FACS analysis of the percentage GFP+

donor hematopoietic cells in the BM of recipient C57Bl6 mice at 18 hr following intravenous infusion of BM Sca-1+lin�GFP+ cells after pretreatment of recipient

mice with either anti-PTN or IgG.
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sinusoidal ECs, we sought to determine whether PTN also regu-

lates HSPC migration and homing to the niche. Interestingly,

administration of a single dose of anti-PTN antibody sub-

stantially inhibited HSPC homing to the niche. Furthermore,

intravital imaging revealed that transplanted HSPCs displayed

impaired lodgment along the BM endothelium and deficient

transmigration from the vascular space into the HSC niche.

These data suggest that HSPC anchoring to PTN on sinusoidal

ECs may be a critical step in HSPC homing to the BM. In vitro

migration assays revealed that HSPCs did not migrate toward

a PTN gradient, but pretreatment with PTN did augment

HSPC migration toward SDF1. Since PTN treatment did not

upregulate CXCR4 or VLA4 expression on HSPCs, PTN may

facilitate HSPC homing toward SDF1 via an as yet unidentified

mechanism.

In addition to its evident role in regulating the homing of

HSPCs to the BM, PTN also regulates the retention of HSPCs

in the niche. Administration of a single dose of anti-PTN caused

a 2-fold increase in PB HSPCs at 1 hr post-exposure compared

with isotype-treated mice, and a similar increase in HSPC mobi-

lization was observed when anti-PTN was combined with

AMD3100, a CXCR4 antagonist that is used in clinical practice

to mobilize human HSPCs. The rapidity of the effect of anti-

PTN administration on HSPC mobilization suggests that PTN

plays an important role in the retention of HSPCs in the niche.

Moreover, the doubling of HSPC mobilization when anti-

PTN was combined with AMD3100 suggests an additive or

synergistic role for PTN in modulating HSPC retention via the

CXCR4-SDF1 axis. These results also suggest an important

potential clinical application for anti-PTN in mobilizing HSPCs

in patients undergoing stem cell transplantation.

Istvanffy et al. (2011) recently reported that deletion of PTN in

the BMmicroenvironment was associated with a gain of LT-HSC

function compared with mice that retained PTN in the marrow.

Important differences between the mouse models used in that
(B) Anti-PTN treated mice had >2-fold decreased donor GFP+ cells in the BM a

means ± SEM, *p = 0.0004).

(C and D) Administration of anti-PTN inhibits the lodgment and transmigration of H

images of the calvarial BM space in living dsRed mice during the first 4 hr posti

pretreated with IgG antibody (C) demonstrated abundant homing of transplanted

mice pretreated with anti-PTN displayed amarkedly decreased number of donor H

within the BM vasculature in the anti-PTN-treated mice.

(E) Systemically administered anti-PTN binds extensively to the BM sinusoidal vas

mice at 30 min after intravenous injection of either IgG-DyLight650 antibody (left:

Binding and illumination of the BM sinusoidal vasculature by anti-PTN antibody (g

box area in the previous image; scale bar 20 mm).

(F) Preincubation with PTN augments HPCmigration to an SDF1 gradient. BM cki

assay (left, n = 4/group). A percentage of BM ckit+lin� cells migrated to an SDF1

were preincubatedwith PTN3 1 hr demonstrated significantly increasedmigratio

means ± SEM, *p = 0.002). Incubation of BM ckit+lin� cells with PTN had no effe

means ± SEM.

(G) Administration of anti-PTN promoted the rapid mobilization of HSPCs in WT m

PB of adult C57Bl6 mice at 1 hr following intravenous administration of IgG, a

increased the mobilization of KSL cells to the PB compared with IgG-treated con

mobilization compared with AMD3100 treatment alone.

(H) The bar graphs show the means ± SEM of KSL cells in the PB of IgG-treated

AMD3100 + anti-PTN. Treatment with anti-PTN alone or in combination with AMD3

AMD3100-treated mice, respectively. *p = 0.02 for anti-PTN versus IgG (n = 8/gro

(n = 5/group, means ± SEM).

C

study and the one presented here may explain the apparently

divergent results: First, we used PTN�/� mice (C57Bl6 back-

ground; Jackson Laboratory) and syngeneic (B6.SJL) recipient

mice for CRU transplantation studies and for the generation of

WT;PTN�/� mice to assess effects of PTN on HSC content.

Because these donor and recipient mice were genetically iden-

tical, there were no immunological factors that could confound

estimates of HSC content. Conversely, in the study by Istvanffy

et al. (2011), the CRU assays did not involve syngeneic mice,

but rather allogeneic mice. Therefore, immunologic processes

such as graft rejection and graft-versus-host reaction, or the

effects of PTN on these immune processes, could have affected

estimates of HSC content in that model independently of any

direct effects of PTN on the HSC pool. Secondly, in this study

we used purified HSCs (CD34�KSL cells) for competitive trans-

plantation assays to allow precise determination of the effects

of PTN deletion on HSC content and function, whereas Istvanffy

et al. (2011) used whole BM cells, and thus it is possible that

effects on adventitious cells in the graft could have affected their

HSC estimates.

Much remains unknown regarding the mechanisms through

which BM-microenvironment cells regulate HSC functions

in vivo. Here, we provide evidence that BM sinusoidal ECs

uniquely express a secreted protein, PTN, that regulates

the maintenance, regeneration, and retention of HSCs in the

vascular niche. PTN represents a unique target for pharmaco-

logic approaches to modulate HSC function in vivo.

EXPERIMENTAL PROCEDURES

Mice

All animal procedures were performed in accordance with a Duke University

IACUC-approved animal use protocol. Embryos frommice bearing a constitu-

tive deletion of PTN (Ochiai et al., 2004) were obtained from the RIKEN Institute

(Tsukuba, Japan) by the Jackson Laboratory (Bar Harbor, ME) and rederived in

a C57BL6 background. Mice bearing a constitutive deletion of the PTN
t 18 hr postinfusion compared with IgG-treated control mice (n = 5–6/group,

PCs from the BM vasculature into the stem cell niche. Representative intravital

ntravenous infusion of 3 3 106 BM lin�GFP+ cells are shown. Mice that were

cells (green) from the BM sinusoidal vasculature (gray) into the niche, whereas

PCswithin the extravascular BM space (D). A single GFP+ cell (green) is shown

culature. Shown is a representative intravital image of the calvarial BM of dsRed

203, scale bar 50 mm) or anti-PTN-DyLight650 (middle: 203, scale bar 50 mm).

ray outline, white arrows) is shown in high power at right (43 zoom of the white

t+lin� cells demonstrated no migration to media alone or PTN in a 4 hr transwell

gradient in the lower chamber of transwell cultures. Left: BM ckit+lin� cells that

n to SDF1 compared with control cultures at 4 hr in transwell assay (n = 6/group,

ct on cell-surface expression of CXCR4 (middle) or VLA4 (right); n = 6/group,

ice. Shown are representative FACS plots of the percentage of KSL cells in the

nti-PTN, AMD3100, or AMD3100 + anti-PTN. Both anti-PTN and AMD3100

trol mice. Mice treated with AMD3100 + anti-PTN displayed increased KSL cell

mice, anti-PTN-treated mice, AMD3100-treated mice, and mice treated with

100 significantly increased KSL cell mobilization compared with IgG-treated or

up, means ± SEM); *p = 0.03 for AMD3100 + anti-PTN versus AMD3100 alone

ell Reports 2, 964–975, October 25, 2012 ª2012 The Authors 973



receptor PTPRZ were a generous gift from Dr. Sheila Harroch of L’Institut

Pasteur, Paris, France (Harroch et al., 2000, 2002). Sperm from PTN-GFP

mice developed as part of the GENSAT Project (Rockefeller University) was

obtained from the Mutant Mouse Regional Resource Center and the strain

was rederived in a C57BL6 background.

Isolation of Murine BM HSCs

BMHSCswere collected from all mice as previously described (Himburg et al.,

2010). Briefly, collected BM was first treated with red blood cell (RBC)-lysis

buffer (Sigma Aldrich), and lineage committed cells were removed using

a lineage depletion column (Miltenyi Biotec, Auburn CA). Lin� cells were

stained with fluorescein isothiocyanate-conjugated anti-CD34 (eBioscience,

San Diego, CA), PE-conjugated anti-sca-1, and APC-conjugated anti-ckit

(Becton Dickinson [BD], San Jose, CA), or isotype controls. Sterile cell sorting

was conducted on a BD FACS-Aria cytometer. Purified CD34�c-kit+sca-1+lin�

(34�KSL) subsets were collected into Iscove’s modified Dulbecco’s medium

(IMDM) + 10% fetal bovine serum (FBS) + 1% pcn/strp.

Colony-Forming-Cell and CFU-S12 Assays

Colony-forming-cell (CFC) assays (CFU-granulocyte monocyte [CFU-GM],

burst-forming unit-erythroid [BFU-E], and CFU-mix [CFU-GEMM]) were per-

formed in triplicate as previously described (Chute et al., 2002, 2005). Briefly,

5,000 cells from each condition were placed in MethoCult (StemCell

Technologies, Vancouver, Canada) for 14 days, and the total colonies were

calculated. The BM HSC content in the mutant mice was assayed by

CFU-S12 assay. RBC-depleted BM was transplanted at a dose of 1 3 105

cells/mouse into lethally irradiated (950 cGy) C57Bl6 mice. At day 12 post-

transplant, the mice were euthanized and the spleens were collected. The

numbers of hematopoietic colonies on each spleen were counted.

CRU Assay

BM 34�KSL cells from the PTN�/� and Ptprz1�/� mice, and PTN+/+ and

Ptprz1+/+ mice carrying the CD45.2 allele were isolated by FACS (Himburg

et al., 2010). Recipient B6.SJL animals expressing the CD45.1 allele received

950 cGy TBI via a Cs137 irradiator and were then transplanted via tail vein

injection with 5, 10, 30, or 100 BM 34�KSL cells. Nonirradiated host BMmono-

nuclear cells (MNCs; 1 3 105 cells/mouse) were injected as competitor cells.

Multilineage hematologic reconstitution was monitored in the PB by flow

cytometry, as previously described (Chute et al., 2007; Himburg et al., 2010),

at 4, 8, 12, 16, and 20 weeks posttransplant. PB was collected via submandib-

ular puncture and stained with antilineage marker antibodies as previously

described (Himburg et al., 2010). Animals were considered to be engrafted if

donor CD45.2 cells were present at R1%. CRU calculations were performed

with the use of L-Calc software (Stem Cell Technologies; Chute et al., 2005,

2006b).

PTN Reporter Mice

PTN-GFP reporter mice (Jackson Laboratory) were given an intravenous

injection of 200 mg of rat anti-mouse Alexa Fluor 647 VE-cadherin antibody

in PBS. The mice were sacrificed within 1 hr of injection and the BM was

flushed through a 30 mm filter in Hanks’ balanced salt solution with Ca2+ and

Mg2+. The portion of the BM retained in the 30 mm filter was collected and

mechanically disrupted by pipetting. The filter-retained cells were then stained

with PerCP-conjugated CD45 and FACs sorted to obtain CD45�VE-cadherin+

PTN+ and CD45�VE-cadherin�PTN+ cells. These populations were compared

with the CD45+PTN� cell population for RT-PCR analysis.

PTN Treatment of Ptprz1�/� Cells In Vitro

CD34�KSL cells were isolated from Ptprz1�/� and Ptprz+/+ mice and cultured

for 7 days in IMDM containing 10% FBS, 1% pen-strep, 125 ng/ml stem cell

factor, 50 ng/ml Flt-3 ligand, and 20 ng/ml thrombopoietin either with or

without 100 ng/ml PTN. Following culture, the progeny were analyzed for total

KSL cell expansion.

Human CB Transplant Model

Human CB units were obtained according to a protocol approved by the

Institutional Review Board of Duke University. The units were purified for
974 Cell Reports 2, 964–975, October 25, 2012 ª2012 The Authors
MNCs using a density gradient separation in Ficoll-HyPaque followed by RBC

lysis. Then 0.5–1 3 106 human CB MNCs were transplanted into 6-week-old

NSG mice conditioned with 250 cGy radiation on a Cesium source. Following

transplantation, the mice were treated intraperitoneally on days +7, +10,

and +13 posttransplant with 2–4 mg PTN or saline. PBwas drawn retro-orbitally

at 4 and 8 weeks posttransplant to assess human CD45+ cell engraftment.
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Douglas, K.W., Geraldes, C., Jaksic, O., Koristek, Z., et al. (2012). Plerixafor

for autologous peripheral blood stem cell mobilization in patients previously

treated with fludarabine or lenalidomide. Biol. Blood Marrow Transplant. 18,

314–317.

Méndez-Ferrer, S., Michurina, T.V., Ferraro, F., Mazloom, A.R., Macarthur,

B.D., Lira, S.A., Scadden, D.T., Ma’ayan, A., Enikolopov, G.N., and Frenette,

P.S. (2010). Mesenchymal and haematopoietic stem cells form a unique

bone marrow niche. Nature 466, 829–834.

Meng, K., Rodriguez-Peña, A., Dimitrov, T., Chen, W., Yamin, M., Noda, M.,

andDeuel, T.F. (2000). Pleiotrophin signals increased tyrosine phosphorylation

of beta beta-catenin through inactivation of the intrinsic catalytic activity of the

receptor-type protein tyrosine phosphatase beta/zeta. Proc. Natl. Acad. Sci.

USA 97, 2603–2608.

Ochiai, K., Muramatsu, H., Yamamoto, S., Ando, H., andMuramatsu, T. (2004).

The role of midkine and pleiotrophin in liver regeneration. Liver Int. 24,

484–491.

Papayannopoulou, T., Craddock, C., Nakamoto, B., Priestley, G.V., and Wolf,

N.S. (1995). The VLA4/VCAM-1 adhesion pathway defines contrasting mech-

anisms of lodgement of transplantedmurine hemopoietic progenitors between

bone marrow and spleen. Proc. Natl. Acad. Sci. USA 92, 9647–9651.

Raulo, E., Chernousov, M.A., Carey, D.J., Nolo, R., and Rauvala, H. (1994).

Isolation of a neuronal cell surface receptor of heparin binding growth-associ-

ated molecule (HB-GAM). Identification as N-syndecan (syndecan-3). J. Biol.

Chem. 269, 12999–13004.

Rocha, V., Labopin, M., Sanz, G., Arcese, W., Schwerdtfeger, R., Bosi, A., Ja-

cobsen, N., Ruutu, T., de Lima, M., Finke, J., et al; Acute Leukemia Working

Party of European Blood and Marrow Transplant Group; Eurocord-Netcord

Registry. (2004). Transplants of umbilical-cord blood or bone marrow from

unrelated donors in adults with acute leukemia. N. Engl. J. Med. 351, 2276–

2285.

Salter, A.B., Meadows, S.K., Muramoto, G.G., Himburg, H., Doan, P., Daher,

P., Russell, L., Chen, B., Chao, N.J., and Chute, J.P. (2009). Endothelial

progenitor cell infusion induces hematopoietic stem cell reconstitution in vivo.

Blood 113, 2104–2107.

Stoica, G.E., Kuo, A., Aigner, A., Sunitha, I., Souttou, B., Malerczyk, C.,

Caughey, D.J., Wen, D., Karavanov, A., Riegel, A.T., and Wellstein, A.

(2001). Identification of anaplastic lymphoma kinase as a receptor for the

growth factor pleiotrophin. J. Biol. Chem. 276, 16772–16779.

Sugiyama, T., Kohara, H., Noda, M., and Nagasawa, T. (2006). Maintenance of

the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in

bone marrow stromal cell niches. Immunity 25, 977–988.

Tang, W., Li, Y., Osimiri, L., and Zhang, C. (2011). Osteoblast-specific tran-

scription factor Osterix (Osx) is an upstream regulator of Satb2 during bone

formation. J. Biol. Chem. 286, 32995–33002.

Tezuka, K., Takeshita, S., Hakeda, Y., Kumegawa, M., Kikuno, R., and Hashi-

moto-Gotoh, T. (1990). Isolation of mouse and human cDNA clones encoding

a protein expressed specifically in osteoblasts and brain tissues. Biochem.

Biophys. Res. Commun. 173, 246–251.

Zhang, J., Niu, C., Ye, L., Huang, H., He, X., Tong, W.G., Ross, J., Haug, J.,

Johnson, T., Feng, J.Q., et al. (2003). Identification of the haematopoietic

stem cell niche and control of the niche size. Nature 425, 836–841.

Zon, L.I. (2008). Intrinsic and extrinsic control of haematopoietic stem-cell self-

renewal. Nature 453, 306–313.
ell Reports 2, 964–975, October 25, 2012 ª2012 The Authors 975


	Pleiotrophin Regulates the Retention and Self-Renewal of Hematopoietic Stem Cells in the Bone Marrow Vascular Niche
	Introduction
	Results
	PTN Regulates HSC Self-Renewal and Is Necessary for Hematopoietic Regeneration In Vivo
	PTN Regulates the HSC Pool in a Microenvironment-Dependent Manner
	Deletion of Protein Tyrosine Phosphatase Receptor zeta Expands the HSC Pool In Vivo
	PTPRZ Signaling Is HSC Autonomous
	BM ECs and CXCL12+ Reticular Cells Express PTN in the HSC Niche
	PTN Regulates HPC Homing to the BM Niche
	Administration of Anti-PTN Promotes HSPC Mobilization

	Discussion
	Experimental Procedures
	Mice
	Isolation of Murine BM HSCs
	Colony-Forming-Cell and CFU-S12 Assays
	CRU Assay
	PTN Reporter Mice
	PTN Treatment of Ptprz1−/− Cells In Vitro
	Human CB Transplant Model

	Supplemental Information
	Licensing Information
	Acknowledgments
	References


