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Abstract. A balanced incomplete block design iBIBD) B[ bc, A; V] is an arrangement of u ele- 
ments in blocks of k elemel: ts each, such that every pair of elements is contained in exactly h 
Llocks. A BIBD B[ k, 1; U] ifi caIled resolvable it’ the blocks can be par:itioned into (u - l)/(k - 1) 
families each coGsting of v/k mutually disjoint block;. Ray-Chaudhuri and Wilson 181 proved 
the existence of resolvable BIBD‘s B[3,1; ~$1 foe every u = 3 (mod 6). In addition to this result. 
the existence is proved here of resolvable BIBD’s B [ 4,1; U] for every u = 4 (mod 12). 

8 1. Introduction 

In the year I847 Kirkmrn [ 61 introduced the %:hool girl problem”. 
Fifteen school girls a:re arranged for a walk in 5 rows of three. Different 
row arrangements ha:se to be made for the 7 days of the week so that 
any pair of girls walk in the same row exactly one day of the week. In 
the general case the problem is to arrange (612 +3) girls in (2n + 1) rows 
of three and to f”and Gfferent row arrangements for (3n+ 1) days such 
that any pair of girlslbelongs to the same row on exactly one day. In 
modern terminol.ogy. such arrangement co?res;onds to the construc- 
tion of resolvable balanced incomplete block diesings with block-si:ze 3. 

Many partial solutions of the “school girl pr~oblem” have been found 
during the late li!%h r;:entury and early 2@th century. Most of them may 
be found in the book by Ball [ 1, pp. 267-2981. However, the complete 
solution of this problem has been given only lately by Ray-Chaudhuri 
and Wilson [ 81. 

The method used ‘:)y Ray-Chaudhuri and Wl%son may be applied to 
the construction of resolvable balanced incom]$ete block designs with 
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block-size 4, or, in th.e “school girl” terminology, to girls walking in 
rows of four. The complete solution of this problem is given herewith. 

$2. Pairwise balmccsd designs 

Let X be: a finite set (of points) and leit 73 = {Bi]i E I) be a family of 
subsets Bi (I called blocks) of X. The pair d[X, 8 ) is then tailed a design. 

The order of a dlesign (X, B) is IX] (the cardinality of X) and the set 
(]Bi] IB, E 8) is th e set of block&es of the design. 

Let u anll X be positive integers and K a set of positive integers. A 
design (.Y, ES) is a pairwise balanced design 13 [K, X; v] iff 

(i) ]A 1 = 11 (the design is of order u). 
(ii) { IBi] IBi E 73} 6 K (the design has block-sizes from K). 

I (iii) every pairset (,x, r} C X is contained in exactly X blocks Bi. 
In the sequel we sha% deal exclusively with designs having h = 1 and 
accordingly we condense our notationand denote pairwise balanced 
designs byB[K;v], f B[K, l;u]. 

The set of positive integers u for which pairwise balanced designs 
B[K;u] exist will be denoted by B(K). 

Clearly for every K 

(1) h:c B(K) 

holds. Also 

‘(2) h:c K’ * B(K) c B(K’) . 

From (1) and (2), 

(3 El(K) c B(@K)). 

On the other hand alsr3 

because if u E B(B(K)) then there exists a pairwise balanced design (X, 8) 
of order u and with blc>ck-sizes from B(K). Thus for PC ch block .I3 E ?j 
we may construct a paijrwise balanced designs (B, AB) with block-sizes 
from K. The clesign (X, A) where A = UBE3 AB is clearly a pairwise 
balanced design with block-size from K and consequently u t: B(K). 

BY (3) and (41, 
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(5) B(K) = B(B!K)). 

Further from (2) and (S), 

A pairwise balanced design B’[K; u] with K = {k} consisting of exact- 
ly one integer k 2 2 is called a balanced incomplete block de,sign (BIBD) 
and fill be denoted by B[ k; u] (for B[ (k$ ; u] ). Similarly, the set of 
positive integers u for which BIBD’s B[ k; u] exist will be denoted by 

B(k). 
Let a EIBD B [ k;u] be given: then every point of the BIBD is con- 

tained in exactly r = (u- l)/(k- 1) blocks (r !s the replication numzber 
of the BIBD) and the total number of blocks isI b = u(u-l)/(k(k-1)). 
Since r and b are necessarily integers, a necessary condition for the ex- 
istence of a BIBD B[ k; u] is 

u-l = O(mod (k-l)), 
V(U-1) f O(mod k(k-1)) . 

The condition (7) is not in general sufficient but it has been proved by 
Reiss [ 91 that it is sufficient for k = 3 and bir Hanani [ 3, 5 ] that it is 
sufficient for k = 4 and k = 5 

In the special case of BIBD’s it is obtamed from (5) and (6) 

B(k) = BUW)) 

(9) Kc B(k) =$ B(K) c B(k) 

respectively. 
A parallel class oi’ blocks of a design (X, B) is a subclass 8 1 C i3 such 

that each point x E X is contained in exactly one bl~k of B 1 , i.e., 8 1 

is a partition of X. A parallel class 8 1 is uniform if all blocks of 8 l have 
the same size. Of course, every parallel class of blocks of a BIBD is uni- 
form. 
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A resolwabk BPBD .B 4k[ k; v] is a BIBD B [ )k:; LF] the blocks of which 
can be partitioned into (u- 1 )/(k-- 1) (uniform) para’&: classes. The set 
of positive integers u for which re:solwable BIBD’s B”[ k; u] exist will 
be denoted1 by B’(k). 

Let u E .R*( (kb, then of course the condition (7) must be satisfied and 
Imoreover 2) = O(mod Ic), say u := ar,k. Ry (7), U- I = ak-,- 1 = O(mod (k- 1)) 
and it follows that cy = l(mod (k---l):1 or 

(10) I) = ,k(mod (k(k:--1)) 

which is a becessary condition for th: existent: of a resolvable BIBD 
P[ k;u] . LayXhaudhuri ahd Wilson [ 81 prctved that condition (10) 
s sufficient for k = 3. It will be prov;:d in this leaper that it is sufficeint 

also in the case of k = 4. 

5 3. Groug) divisible dIesigns 

A group div.isible design is a pairwise balanced design with a distin- 
guished parallel class of blocks. Mar? ,:recisely let u be a positive in- 
teger and K and 1cI sets of posi..the inl:ei,gers, then a group divisible de- 
sign GD(K, M; u] is a triple (X, G, A}, ‘\vhere X is a set having u points, 
G = iGil j E I) is a parallel class of subsets Gj (called groups) of X which 
partition X and satisfy { lGjl lGr E. G)l c M, and A = (Ai/ i E I} is a CRESS 

of subsets (bhh) of X satisfylng(I/tli/ IAi E A] C iK and SU& that 
every pair {x, JI:) C x is either contained in a unique group 8r a unique 
block, but not both. 

Tf-. set of positive integers u for which group divisible designs 
GDl& lJ4; u] exist will be denoted b!r IGD(K, II!). 

Clezlrly 

(10 GD(K, M) c B(K u M) 

holds. Further, by adjoining an additional point to each of the groups 
we obtain 
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where if H is a set of integers, then H + 1 := { hi + 11 hi E .H) . 
A group divisible design GD[K, 44; U] will be called a unijtwm group 

divisible design GD[ k, m; u] if both sets K = (k) , k 2 2 alrd M = (m} 
consist of one ineger each, i.e., if all the groups are of size m and all 
the blocks of size 4~. In such case u must bt: a multiple of m and u 2 mk. 
As usual GD(k, nzJ will denote the set of integers v for which GD[k, m; u] 
exist. 

As special cases of (11) and { 12) we have 

(14) GD(ic, m) + 1 C B( {k, m + 1) ) . 

In the case m = k- 1 the stronger result holds 

(1% GD(k, k-l) + 1 -B(k) . 

It is also easily verified that 

mK c GD(k, m) * mB(K) 6 GD(k, m) , 

where mH = (mhil hi E H } . Further 

(13 ms~GD(k,m)*mGD(s,t)+lcB~(k,mt+l),. 

The List result may be generalized, namely 

(18) mSE GD(k:, m) -3 mGD(S, T’) + 1 C B({k} U !mT+ 1)). 

Let us denote by R (k) the set of replication numbers for which 
BIBD’s with blockhsize k exist and accordingly by R “(k) the set of I 

rephcation numbers for which resolvable BIBD’s with block-size k 
exist. In other words 
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(1% R(k)= (ri(k--l)r+ EB(k)j, 

420 AR*(~) := (r] (k-l) r AJ.. f E B”(k)} . 

It is easily proved that 

421) R(k) = B(R(k)) J 

namely by (l), R(k) C B(R(k)); to prove B(Ri:k)) C .R(kr, let 
n E B(R(k)); from (15) and (W), 

cm R(k) = {rl (k-l)rE GD(k,, k-l)} 

and by (lb), (k-f)n E GD(k, k-l); c,onsequent& by (22), n E R(k). 
Let a resolvablle BIBD (X, 8) B*[k.;u] be giveg. For every parallel 

class Bi c 8 of blocks choose a distinct point y, + X and adjoin it to 
all the b!ocks of 13i. Further form an additional b’\ock from the r ele- 
ments yi, where r = (v- l)/(k- 1). T e obtained &,sign will be called a 
completed resohzble design ( FB [ k; r 1. More formally a completed re- 
solvable design CIB [ k;r ] is a pairwise 11.~ alanced design B [ {k + 1, r); kr + 1 ] 
having exactly one block of size K By CB(k) we shall denote the set of 
integers r for which completed resolvable design, CB[ k;r] exist. 

Clearly, 

(239 CB(k) = R*(k) 

holds. Further, 

(249 Kc CE3(k:, * B(K) c CB(k) . 

To prove (24) let r E B(K) and it will be shown that r E CB(k). 
CB[ k;r] is equivalent to GD[ {k + 1, r :I , k;rk] with exactly one block 
‘of size r (this block intersects each grolup in exactly one point). Con- 
sider a set of r groups having k points each and in each of the groups 
choose a specified point. On these r specified poitits form a pairwise 
balanced design B [K;r] amd for eat of its blopks Bi, form on the re- 
spective groups a group divisible design GD[ {k+ 1: IB,I} , k; klBil] in 
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such waxy that the block of size IBJ be the block Bi itself. Delete the 
block Ri. Take al; the other blocks of GD[ {k+ 1, @iI} , k; klBil] fcr 
all values of i and add the block of size r of all the specified points. The 
obtained design is GD[ {k+l,r}, k;rk] which proves (24). 

We can now prove 

(25) R*(k) = B(R*(k)). 

R*(k) C B(R *(k)) follows from (1). Further 3et r E B(R “(k)); then by 
(23) r E B(CB(k)) and putting in (24) K = CB(k), we obtain r E CB(k). 
Again by (23), r E R *(k). 

5 4. Transversal designs 

A transversal design T[ s; t ] is a uniform group divisible design 
GD[s, t;st] in which the block-size s is equal to the number o-fr’groups 
and consequently every block intersects every group in exactly one 
point. A transversal design T[s; t] has exactly t* blocks. A resolvnhle 
transversal design T*[s; t] is a transversal design T[s; t] i,r which the 
blocks can be partitioned into t parallel classes (each consisting sf t 

blocks). T(s) and T*(S) a~ the sets of integers t for which desigts 
T[s; t] and T*[s; t] respectively exist. 

Clearly, we have 

(26) s I s’ * T(s) I T(d) 

(27) T”is) = T(s+ 1) . 

Galois proved that if 4 is a prime-power then there exists a pro- 
jective plane lPG[2,~1 which is equivalent (see e.g. [ 2, p. ‘1751) to the 
statement 

(28) q* +q+l EB(q+l). 
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Deleting a block and its elements from I?@ [ 2, q ) a finite affine plane 
AG [ 2, q ] is o&:ained which is equivalent to 

(2% q2 E B(q); 

it is easily see’n that also 

(30) q2 E B*(q) 

holds. From (28) and (29) it follows by (15) 

C31) (z +qEGD(q+‘l,qJ 

,’ 
(3 1 ) 40. q2 - 1 E GD(q, q-l) 

respectively, and (3 II ) is equivalent to 

(33) qu(q+l)=T*(q). 

IMacEt’eish [ ‘71 proved that 

(34) ( tt, it’} c T(s) * tt’ E T(s) 

(for a simple proof see e.g. [ 2, I). 19 1 ] ). Making use of (26) and (33) it 
follows from (34) by induction 

Theorem 1. [ft =fIpgi is the factorization oft into powers of distinct 
primes, then t E T(s + 1) = T*(s>, where s = min pgi. 

It has been proved lately by Hanani [4], that 

(35) t >51 3 tE T*(4)= T(5) 
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(36) t> 62* TV T*(6)= T(J). 

Given a transversal design T[s + ll; t] ) if we delete some (or all) points 
from one of its groups we obtain 

(37) (tET(s+l)~O<_hf=_t)*st+h~GD({s,sc~) T{t,,ct}) 

and considering ( II), 

(38) (tET(s+l)I\ O<_h<_t) *st+h~B({s,s+l,t,h)). 

Let 

(39) U(k) = {ulk(k-1) u + kE B*(k)) . 

By (20), U(k) may also be defined as 

U(k) = {ulku + 1 E R*(k)} . 

Ray-Chaudhuri and Wilson [ 81 proved 

Tfleorem 2. Let k = 3 or 4. If {t, h) c U(k),Wh<_tandtc T(k+2), 
then w = (k+ 1) t+h f U(k). 

bof. By (3 I) with q = k, k(k+ 1) E G:-D(k + I, ii) and by (32) with 
q:=k+l,k(k+2)~GD(k+l,k).Furtl-~erby(37),w~GD((k+l,k+2}, 
{t.h})andby(118),,kw+l~B({k+l,~t+i, kh+l) ).Conaidering 
also that from (20) and (30) follows q -i- 1 E R “(4) and therefore 
k-t 1 E R*(k), and by (40), (kt + 1, kh -:- I} C: R*(k) it follows by (29, 
kw+ 1 E R’(k). 

$5. Special constructions 

In this section we shall give direct constructions of several resolvable 
BlBDl’s which will be needed later in this paper. The set X of points of 
the BJBD will be usually a set Z,? of residua modulo some integer az, or 
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a Galois field CF(q), or a Cartesian product of two or more such sets. 
The points will be given rr * I parentheses ( J and the letters x, y will de- 
note generators of Galois fields. Blocks ~111 be given in braces { } and 
whenever they should be taken cyclically this will be denoted by a note 
mod ( ) after the block,. Parallel classes of blocks will be given in brackets 

1 3 . 

Lemma 1. If q = 6 t -I- 1 is a prime-power9 then 3q E B “(3). 

Proof. Let X = Z, X GF(q). The blocks are 

[ 

((0, O), C ’ ? 0), (2,W 3 
((0,x”) (0,xa+2f),(0,x”+4’)} mod(3,-),ar=O, l,...,t-1, mod(-,q), 

((0 ,~*+lb,(l,X~+~~),(2,XQ+5t)) I mod(3,-),ar=O,l,..., t-1. 

[ ((O~*),(l,x*‘~‘), (2,~“+~~)} mod&,q)]mod(3, -), ~0, 1, . . . . t-l. 

’ Lemma 2. If’ q =z 6t + 1 is a prime-power, then 2q + 1 E B”(3). 

Proof. Let X = 2, x GF(q) U (0~). Further let.x be a generator of GF(q) 
and m an integer satis,fying 2.11~~ = xt + 1. The blocks are 

~{(O,O),(l,O),(-)I 9 

r ((0 

i 

~,Xa+t+m)9(o,X CY+31+m ), (0, X”+St+m )} , cK=o,, 1’: . . . . i-4, 1 mod(-, q) 

((0 J ~+2Bt+m),(l,XCY+2pf),(l,X’O+2Pt+~~} ) cy=O, t, . . . . t--1,@=0,1,2j 

hmm;a 3. Ifq = 4t + 1 is a prime-power, then 3q + 1 E B”(4). 

Proof. Let X = 2, x GF(q) U (4. The blocks are 
c ((0, 0); (1, (0, (2,0), (=)I > mod(--, q). 

((~,xQ’),(o,x~+~~), (l#“),( l,~~+~t)) mod(3,-), 01~0, 1, . ..) t--l1 I 

Lemma 4.49 E B*(3). 

PROOF. X = 23 X 223, The blocks are 

~(d>,o),,:l,O:~,(2,Q)},(O, W, (0,19), (0,15)) 3 
((1,18),(L19),c1,22)),((2,18),(2,19),(2,22)), 
((0,2), (Q!AMQ, 17)3,((1,2), (W), (Ll7)) 9 
{(2,2), (2,15), (2,17)), f(O,22), (1 9 15), i WN 9 
{CO, 11, (0,8), (0,13)} mod (3,--L ((0,3), f&9), ( i 3 4)) mod w-), 

mod( -,23), 



8 5. Spcial constructions 353 

/ {W),(o, 2M’M)) mod(3 A, {(0,5), ( 1,20), CL 11)) moW,-1, 
: {CO, 101, f 1 9 1% (2,12)) moW,-1. mod(-,23), 

[{(O;t.I),(l, 13),(2,16)} mod(-,23)1 mod(3,-), 
[ ((O,O), (1, lOI, C&W} mW--,231 moW ,-I, 
[ {(O,O), (1,2), (2,221) modi-,23)1 mod(3,-), 
[{(0,0),/l, 18‘,,(2,11;~} mod(-,23)1, 

[{(~,0),(2,18’~,(0,11)}mod(-,23)1. 

Lemma 5. 100 E B*(4). 

Proof. x=&X GF(25). x2= 2x + 2. The blwks ax 

~{(O,OMl,O~,(2,0),(3,0>), 
1 
I ! I 

! 
{( 01,X6a+6P),(q,X60+6P+2),(~,x6~+6pcS),(~,x6~+6~+l9~}, 

1 (mod( -,25), 

i 
ar = 0, 1) 2, 3, p = 0, iI) 

L{(O,XV), (1 ,xv+6), (2,xv+12), (3, x”+18)}, v = 3,4,7,9,10 12- ‘II 8 

[ ((0, ~4% (1, xfi?, (2, x~Z+~~), (3, x~+~*)} mod(-,2;)] , 

30-23 Y- 1 

p=O,1,2,5,6,8,11,19. 

Lemma 6. 172 E B*(4). 

Proof. X = GF(4) x GF(43). x = 3, y2 =y + 1. The blocks are 

((~,~~~(Y0,~~,~Y1,~),(Y2,~~~ 9 
--l 

I(0 9x 3a!+?p ) (0 , xj,+7p+21), (vp, x3a+7~--14), (v”, x3ru+5p”35)} , / 
9 I 

a = 0, 1, . ..) 6, j3 = 0, 1, 2, j 
I mod(-,43), ((yP,X3a+7i9, (yP,X3a+70+21), (y13+‘, x3a+7P+l4), (j~P+l ,X3a+7P+35)}, 1 

a = 0, 1, . ..) 6, /3 = 0, 1, 2. i 
[((O,O),(yO,x3~+~~),(yl,x~‘+33),(y2,~~~+~~)} mod(-,43)], 

7 = O,l, . ..) 13. 

Lemma 7. 232 E B*(4). 

Proof. X = 2, X 2, X Z,, Up). The blocks are 

~(O,O,OMl,O,O)~(2,O,O)J=~}~ 
~~0,0,1~,(0,0,1~~,~1,0,5,,(1,0,6,) modU,-,-A 

; 

iKO,O,P-W,(O,O, --/A-l),(l,p,O),(l,-p,O)}~od(3,-,-),/A= 1,2,3, 

((0, 1 9 9, (0,6,6), C {,I, f3, ( I,& 9) moW,--A 

((0,2,1),(0,S,10),(1,2,10),(1,5,l))mod(3,-,-), 

mod( -, 7,1 I). 
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{(0,3,4),(0,4,7),U,3,7),(1,4,4)1 mo~M3,-,-), 
1 

((0, I,E), (0,6,-E), ( 1,2,2@, (II z 5, --2~211 mod(3,-,--A E’ = + 1, 
{(O,P,3,E),(O,6,~-2~),(1,l2,-4~),(1,5,4e)~mod~3,-,-~, e=+l, 
((8,1,3~),(0,6,-3~),(1,3,2&(1,4,-2f)) mod(3,-,-),e=kl, mod(-,7,11). 
{(0,1,4~),(0,6,-4~),(1,3,-3&(1,4,3e)) mcDd(3,-,--I, e=kl, 
{~O,2,3e),(0,5,-3~),(1,3,-5e),(1,4,5e)) nwd(3,-,-)+=&I, 
((0,2,5~),(0,5,-Sf),(1,3,e),(1,4,--E)) modl;‘3,-- -), F+I Y - 5 1 

Lemma 8.388 E B*(4). 

Proof. X = d4x GF(97). x = 5. Thl: blocks are 

-l(O,O), ( 1, Oh cam), (3,O)) 3 

U Q, xZda +y , (a, x 24a+60+2) tclrl $4a+6,ir+40), (,&, x24a+6@+47)}, 
, , 

a=o, 1,2,3,p=o, l,..., 7, 
{CO, xv), ( 1 9 xv+q, (2, x8’+@), (3, xv+72:1) , 

, 1 

mod(-,97), 
V= 1,3-5,7,9-11,13,15-l’i’,19,21-23,25,27-29,31, 
33-35,37,39,41,43,45,48-51,54-57,60-63,66-69, 
72-X,78-6;1,84-88,90-95. 1 

[{~O,X~),~~,X~~~~),(~,X~+~~),(~,X~+~~)) mod(-,97)], 
~=0,2,6,8,12,14,18.,20,24,:!6,30,32,36,38,40,42,44, 
46,47,52-53,58-59,6&65,70-7 1,76-77,82-83,89. 

5 6. Harrison-type theorer IS 

Theorem 3. If km E B*(k), kn E B*(k) and n E T*(k), then kmn H?*(k). 

Roof. Consider B* [ k;km] as a design (X, E;) where the elements of X 
;.!re groups having n point s each. Let 8r C R be one of the parallel classes 
of blocks. For every block B of Br form a resolvable BIBD B* [ k;kn] OM 
Ithe union of groups of A!?. For every bloick c)f other parai: classes form 
‘i he blocks of T* [ k; n ] . 

Theorem 4. If 3m E B*(3) and 3n E B*(3), then 3mn E B*<3). 

~t)rwf. From ( 10) it follows that n s 1 (mod 2) and therefore l :y Theo_ 
rem 1,~ E T*(3). AccorId.Sngly the conditions of Theorem 3 are satisfied. 
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Theorem 5. If 4m E B*(4) and 4n ~43*(4), then 4mn E B*(4). 

Proof. From (10) it follows that !I E 1 (mod 3) and therefore by (35) 
and Theorem 1, n E r*(4) with possible exception of n = l&22,34 and 
46. Because of symmetry of wa and n it remains to prove tha: 4mn E B*(4) 
for (m, n} c { IO, 22,34,46} and this will be done herewith. We shall in 
most cases facrorise 4mn = 4m 1 n 1 so that n 1 = 4 and accordingly 
4nl= 16 E B*(4) by (30) and lzl = 4 E T*(4) by (33). It will remain to 
be proved that 4ml E B*(4). This is shown in table 1. 

Table 1 

m n 4mn 

10 10 400 

10 22 880 

10 34 1360 

10 46 1840 

22 22 1936 

22 34 2992 

23. 46 4048 

34 34 4624 

34 46 6256 

46 46 8464 

ml = 25.4mI = 100 E B*(4) by Lemma 5. 

ml = 55. 4ml = 220 = 3-73 + 1 EB*(~) by Lemma 3. 

ml=85.4ml=340= 3.113 + 1 E B*(4) by Lemma 3. 

1840 = 3-6 13 + 1 E B*(4) by Lemma 3. 

ml = 121.4m1 2’ 484 = 12.40 + 4. Put w = 40 = 5.8. 8 E U(4) be- 
cause 12-8 -+ 4 = 100 E B*(4) by Lemma 5.8 E T(6) by (26) and 
Theorem 1. Conse,qucntly by Theorem 2,40 E U(4). 

2992 = 3;997 + i EB*Q~) by Lemma 3. 

ml = 253. 4ml = 1012 = 3*337 + 1 E B*(4) by Lemma 3. 

4624 = 12.385 + 4. Put w = 385 = 5.73 + 20. 73 E U(4) becawz 
4-73 + 1 = 293 E R*(4) by Lemma 3. 20 E U(4) because 
4.20 + 1 = 81 EK*(~) by Lemma 3. 73 E T(6) by (33) and (26). 
Consequently by Theorem 2,385 E [J(4).- 

ml = 391.4ml = 1564 = 3*521 + 1 EB*(~) by Lemma 3. 

ml = 529. 4ml = 2116 = 12-176 + 4. pui IV = 176 = 5.37 -:- 1. 
37 E U(4) because 4.37 + 1 = 149 E R*(4) by Lemma 3. 1 E U(4) 
because 4-l + P = 5 E R*(4) by Lemma 3. 37 E T(6) by (213) and 
(26). Cowequently by Theorem 2, 176 E U(4). 

5 7. ResolvabEe designs 

The following theorem has been proved by Ray-Chaudhuri ar.d 
Wilson [ 81. 

Theorem 6. A necessary and sufficient condition J”br the existencse of a 
resolvable BIBD *[3;vl is that v = 3 (mod 6). 
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Proof. The necessity follows from ( 10). To prove sufficiency we shall 
show that for every non-negative integer 11, u E U(3) holds. For u = 0 thas 
is trivial, for u = 1 see (30). For 41 =3,6,9,12, 15 wehave 
I.I = 614 + 3 = 21,39,57,X, 93 respectively and ti E U(3) follows from 
Lemma 1. For tl = 2,4,8, 10,14,26 we have u = l&27,5 1,63,87, 159 
respectively and u E U(3) follow3 from Lemma: 2. For u = 5 we show 
that Y = 3u + t = 16 E R*(3): by (30), 9 E B*(S) and consequently by 
{20), 4 E R*[3), on the other hand by (29), 16 E R(4) and therefore by 
[25), 96 E R*(3). For u = 11, v = 69 and by Lemma 4,11 E U(3). For 
;d = 7, 13, ?y we have respectively u = 45 (= 3*3#5), 81 (= 3*3*9), 
165 (= 3*5* II I) and u E U(3) folfows from Theorem 4. 

For oth$values of u we prove u E U(3) by induction using Theorem 
? # d# 

For16Gu G20take t=4, tz=u-- 16, 
21 < II 4 25 take t=5, F = u - 20, 
28< u < 35 take t =7, h=u-28, 
36G 14 < 45 take lp = 9, h=u-36, 
46< u < 55 take t- 11, h =u-44, 
56 < u < 65 take i= 13, h=u-52 
66.G !I < 71 take t‘= 16, h = u - 64: 

Fortl> 72putu = 24E + l~z, I> 3,0 < m < 23, and for 
0 < n? < 4 take s=61-1,?2=4+m, 
5 < r~ < 23 take t=61+1,h=w+4. 

Tkleoresn 7.. A necessary and sufficient condithxz fi.v the existence of Q 
remlvable IHBD B* [4; u] is that tj = 4, (mod 12:). 

Proof. The necessity follows from ( 10). To proire qll fficiency we show 
+.h at for i: very non-negative integer u, u E U(4) !IO&. For u = 0 this is 
&ivial. For u = l-4,6-7,9- 10, 12- 13, 15, 18, X, 22,24,3 1,34,79 we 
have 12~ + 4 E B*(4) by Lemma 3 and accorditIg1, u E JQI). For ti = 8, 
f2u+4-100~B~(4)byLemma5.Foru=11,r=4u+1=45;by 

(33) and (26), 9 E T(5) and by (13), 45 E B((5,9).+; (5,9} C R*(4) be- 
cause as we proved already (1,2} c U(4) and there tore by (25), 
,4S E R*(4). For u = 14, 12~ + 4 = 172 E P’(4) by Lemma 6, for u = 19, 
$2u+ 4 E= 232 E R*(4) by Lemma 7, and for u = 32, 12~ + 4 = 388 E B*(4) 
by Lemma 8. For tl = 5, 16-17,21,23,33 we I-.avc respectively 
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I.1 = 64 (= 4=4*4), 196 (= 4* P*7), 2CI8 (= 4*4- 13), 256 (= 4*4* 16), 
280 (= 49”?9 lo), 400 (= 40 1 O* 10) and u E U(4) follosz from Theorem 5. 

For other values of u we prov? u E UC4) by induction using Theorcn 
2. , 

For 25 < u < 30 take t = 5, h = u - 25, 
35 G; u < 42 take t = 7, h = u - 35, 
43 < u < 48 take t = 8, h = u - 40, 
49 G: u < 54 take t = 9, h = u -45, 
55 G: u < 66 take t= 11, h = u- 55, 
67GuG78 take t=13 h = u - 65, 
8O<iu <89 take t=16, h = u - 80. 

Foru> 90putu =301+m,I>3,Q<~<29,andfor 
O< m<4 take t=61-l,h=5+m, 
5 < m < 24 take t=cil+l,h=m--5, 

25 < m < 29 take t=61+5,h=m-25. 
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