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Abstract. A balanced incomplete block design {BIBD) B[4, A;v] is an arrangement of v ele-
ments in blocks of k elements each, such that every pair of elements is contained in exactly A
Llocks. A BIBD B[k, 1;v] is called resolvable i the blocks can be par:itioned into (v — 1)/(k — 1)
families each consisting of v/k mutually disjoin: block,. Ray-Chaudhuri and Wilson [8] proved
the existence of resolvable BIBD’s B{3, 1; v] for every v =3 (mod 6). In addition to this result,
the existence is proved here of resolvable BIBD's B[4, 1; v] for every v =4 (mod 12).

§ 1. Introduction

In the year 1847 Kirkman [6] introduced the “school girl problem”.
Fifteen school girls are arranged for a walk in 5 rows of three. Different
row arrangements have to be made ior the 7 days of the week so that
any pair of girls walk in the same row exactly one day of the week. In
the general case the problem is to arrange (6n+3) girls in (2n+1) rows
of three and to find different row asrangements for (3n+1) days such
that any pair of girlsﬁbelongs to the saine row on exactly one day. In
modern terminology such arrangement costesponds to the construc-
tion of resolvable balanced incomplete block desings with block-size 3.

Many partial solutions of the “‘school girl problem” have been found
during the late 19th century and early 2Cth century. Most of them may
be found in the book by Ball [ 1, pp. 267—-298]. However, the complete
solution of this problem has been given only lately by Ray-Chaudhuri
and Wilson [8].

The method used »y Ray-Chaudhuri and Wilson may be applied to
the construction of resolvable balanced incomplete block designs with
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block-size 4, or, in the “school girl” terminology, to girls walking in
rows of four. The complete solution of this problem is given herewith.

§ 2. Pairwise balanced designs

Let X be a finite set (of points) and let B = {B;|i € I'} be a family of
subsets B; (called blocks) of X. The pair (X, B) is then cziled a design.

The order of a design (X, B) is |X| (the cardinality of X) and the set
{IB;| |B; € 13} is the set of block-sizes of the design.

Let v and X\ be positive integers and K a set of positive integers. A
design (Y, B) is a pairwise balanced design B{K, \;v] iff

(i) 1A | = v (the design is of order v).

(ii) {1B,;! \B; € B} C K (the design has block-sizes from K).

(iii) every pairset {x, ¥} C X is contained in exactly A blocks B;.
In the sequel we shall deal exclusively with designs having A = 1 and
accordingly we condense our notation.and denote pairwise balanced
desigas by B[ K, v] = B[K, 1;v].

The set of positive integers v for which pairwise balanced designs
B[ K, v] exist will be denoted by B(KX).

Clearly for every K

¢)) K c B(K)

holds. Also

(2) KCK'=B(K)C B(K").
From (1) and (2),

3) EB(K) € B(B(K)).

On the other hand also

4) B(K) D B(B(K)),

because if v€ B(B(K)) then there exists a pairwise balanced design (X, B)
of order v and with block-sizes from B (K). Thus for ¢- ch block B€ R

we may construct a pairwise balanced designs (B, Ap) with block-sizes
from K. The design (X, A) where A =Upy Ap is clearly a pairwise
balanced design with block-size from X and consequently v € B(KX).

By (3) and (4),
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(5) B(K) = B(B(K)).
Further from (2) and (5),
(6) KCBX)Y=B(K)C BK").

A pairwise balanced design B[K, v] with K = {k} consisting of exact-
ly one integer kK > 2 is called a balanced incomplete block design (BIBD)
and will be denoted by B[k, v] (for B[ {k} ;v]). Similarly, the set of
positive integers v for which BIBD’s B[ k; v] exist will be denoted by
B(k).

Let a RIBD B [k;v] be given: then every point of the BIBD is con-
tained in exactly r = (v—1)/(k— 1) blocks (r is the replication number
of the BIBD) and the total number of blocks is b = v(v—1)/(k(k—1)).
Since r and b are necessarily integers, a necessary condition for the ex-
istence of a BIBD B[k, v] is

. v—1 = 0(mod (k—1)),
(M n(u—1) = O(mod k(k—1)) .

The condition (7) is not in general sufficient but it has been proved by
Reiss [9] that it is sufficient for K = 3 and by Hanani [3, 5] that it is
sufficient fork=4and k=5

In the special case of BIBD’s it is obtarned from (5) and (6)

(&) B(k) = B(B(k))

and

9 KC B(k)= B(K) C B(k)
respectively.

A parallel class ot blocks of a design (X, B) is a subclass B; C 3 such
that each point x € X is contained in exactly one block of B, i.e., B,
is a partition of X. A parallel class B, is uniform if all blocks of B, have
the same size. Of course, every parallel class of blocks of a BIBD is uni-
form.
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A resolvable BIBD B¥[k; v] is a BIBD B[k, v] the blocks of which
can be partitioned into (v—1)/(k—1) (uniform) parallcl classes. The sei
of positive integers v for which resolvable BIBD'’s B *[k; v] exist will
be denoted by B*(k).

Let v € B¥(%), then of course the condition (7) must be satisfied and
moreover v = (mod k), say v=ak. By (7), v—1 = ak--1 = 0(mod (k—1))
and it follows that « = 1(mod (k1)) or

(10) ‘ v= k(mod (k(k—1))

which is a iecessary condition for th: existence of a resolvable BIBD
B*[k,v]. Ray-Chaudhuri and Wilson [8] proved that condition (10)

s sufficient for k = 2. It will be proved in this naper that it is sufficeint
also in the case of k = 4.

§ 3. Group divisible designs

A group divisible design is a pairwise balanced design with a distin-
guished parallel class of blocks. Mor¢ ‘recisely let v be a positive in-
teger and K and M sets of positive integers, then a group divisible de-
sign GDIK, M;v] is a triple (X, G, A), where X is a set having v points,
G= ‘{G,-i j €1} is a parallel class of subsets G; (called groups) of X which
partition X and satisfy {IG;| |G; € G} M, and A = {4;|i€ I} isa class
of subsets (blocks) of X satisfying{l4,] 14; € A} C K and such that
every pair {x,y} C X is either contaired in a unique group or a unique
block, but not both.

T} set of positive integers v for which group divisible designs
GD\, £, M; v] exist will be denoted by GD(K, M).

Clearly

(1 GD(X, M) C B(KU M)

holds. Further, by adjoining an additional point to each of the groups
we obtain
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(12) GD(K,M)+1CB(KUM+1))
where if H is a set of integers, then H+ 1 ={h, + 1| /i, € H}.

A group divisible design GD[ K, M; v] will be called a uniform group
divisible design GD[k, m;v] if both sets K = {k}, k > 2 and M = {m}
consist of one in:eger each, i.e., if all the groups are of size m and all
the blocks of size k. In such case v must be a multiple of m and v > mk.
As usual GD (%, m) will denote the set of integers v for which GD [k, m; v]
exist.

As special cases of (11) and {12) we have
(13) GD(k,m)C B({k,m})
and
(14) GD(k,m)y+1CB({km+1}).

In the case m = k—1 the stronger resuit holds

(15) GD(k,k—1)+1=B(k).

It is also easily verified that

(16) mK € GD(k, m) = mB(K) C GD(k, m),

where mH = {mh;| h; € H} . Further

(17) ms € GD(k, m)= mGD(s, 1)+ 1 C Bi{k,mt + 1} ,.
The last result may be generalized, namely

(18) mS € GD(k, m) = mGD(S, I} + 1 C B({k} v (mT +1)).

Let us denote by R (k) the set of replication numbers for which
BIBD’s with block-size k exist and accordingly by R *(k) the set of
replication numbers for which resolvable BIBD’s with block-size k
exist. In other words ~
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(19 R(k)= {ri (k—=1)r+ 1€ B(k)}

(20) R*(k)={rl (k=1)r+ 1€ B*(k)} .
It is easily proved that

(21 R(k) =B(R(K)),

namely by (1), R(k) C B(R(k)); to prove B(R/k}) C R(k), let
n € B(R(k)); from (15) ard (1Y),

(22) R(k)={rl (k—1)r € GD(k, k—1)}

and by (16), (k—1)n € GD(k, k—1); consequentiv, by (22), n € R(k).
Let a resolvable BIBD (X, B) B*[k:v] be given. For every parallel
class B; C B of blocks choose a distinct point y, & X and adjoin it to
all the blocks of B;. Further form an additional biock from the i ele-
ments y;, where r = (v—1)/(k—1). The obtained «!«sign will be called a
completed resolvable design B[k, r\. More forriclly a completed re-
solvable design CB[k;r] is a pairwise l.alanced design B[{k+1,7}; Lr+1]
having exactly one biock of size ». By CB (k) we shall denote the set of
integers r for which cornpleted resolvable design, CBlk, r] exist.
Clearly,

23) CB(k) = R*(k)
holds. Further,
(24) KcC CB(k)= B(K)C CB(k).

To prove (24) let r € B(K) and it will be shown that r € CB (k).
CB[k;r] is equivalent to GD[ {k+1,r}, k;rk] with exactly one block
of size r (this block intersects each group in exactly one point). Con-
sider a set of r groups having k points cach and ir each of the groups
choose a specified point. On these r specified points form a pairwise
balanced design B [K;r] and for 2ach of its blccks B;, form on the re-
spective groups a group divisible design GD[ {k+1, 1B;i} , k; kiB;] in
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such way that the block of size |B;| be the block B, itself. Delete the
block B;. Take al the other blocks of GD[{k+1, iB,|}, &, k|B,l] for
all values of i and add the block of size r of all the specified points. The
obtained design is GD[ {k+1,r}, k;rk] which proves (24).

We can now prove

(25) R*(k) = B(R*(k)).

R*(k) C B(R*(k)) follows from (1). Further et r € B(R *(k)); then by
(23) r € B(CB(k)) and putting in (24) K = CB(k), we obtain r € CB(k).
Again by (23), r € R*(k).

§4. Transversal designs

A transversal design T|s, t] is a uniform group divisible design
GDls, ¢, st] in which the block-size s is equal to the number of groups
and consequently every biock intersects every group in exactly one
point. A transversal design T'[s, ¢] has exactly 12 blocks. A resolvable
transversal design T*[s; t] is a transversal design T[s; ] in which the
blocks can be partitioned into ¢ parallel classes (each consisting of ¢
biocks). T(s) and T*(s) are the sets of integers # for which designs
T[s, t] and T*[s; t] respectively exist.

Clearly, we have

(26) s<s'=T@E)DTE)
and
(27 T*(s)=T(s+1).
Galcﬁs proved that if ¢ is a prime-power then there exists a pro-
jective plane PG[2,q] which is equivalent (see e.g. [2, p. 175]) to the

statement

(28) qg* +q+1€B(@+1).
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Deleting a block and its elements from PG [2, ¢] a finite affine plane
AG [2,q] is obtained which is equivaient to

(29)  q¢* €B(g)

it is easily seen that also

G0 4> €B%Q

holds. From (28) and (29) it follows by (15)

31 (2 +qeGD(g+1,9)

and

(32 g*>-1€GD(q,q-1)

respectively, and (31) is equivalent to

(33) qeT@+1)=T*Qq) .
MacNeish [7] proved that

(34) {t,'} CT(Gs)=t' € T(s)

(for a simple proof see e.g. [2, p. 191]). Making use of (26) and (33) it
foliows from (34) by induction

Theorem 1. If ¢ =Hp:?" is the factorisation of t into powers of distint
primes, then t € T(s +1) = T*(s), where s = min p}i.

It has been proved lately by Hanani [4], that
(35) t>51=teT*4)=T(5)

and
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(36) 1>62=>teT*6)=T(7).

Given a transversal design T[s+ 1;¢], if we delete some (or all) pomts
from one of its groups we obtain

GD CETGE+DAOSE<)=>st+he GD({s,s+1},{t h})

and considering (11),

(38) CeETE+DAOLShLS)=>ust+thsB({s,s+1,t,h}).
Let

39) Uk) = {ulk(k—1)u + k€ B*(k)}.

By (20), U(k) may also be defined as

(40) Uk) = {ulku+1€ R*k)}.

Ray-Chaudhuri and Wilson [8] proved

Theorem 2. Let k=3 or4.If {t, h} C Uk),D<h<tand i€ T(k+2),
thenw=(k+1) t+h € Uk).

Proof. By (31) withg =k, k(k+1) < GD(k+1,k) and by (32) with
q=k+1,k(k+2)€ GD(k+1,k). Further by (37), we GD({k+ 1,k +2},
{t.h})and by (18), kw+1€B({k+1, kt+1, kh+ 1} ). Considering
also that from (20) and (30) follows g +- 1 € R*(q) and therefore

k+ 1€ R*(k), and by (40), {kt+1,kh -1} C R*{k) it follows by (25),
kw+1€ R*(k).

85. Special constructions
In this section we shall give direct constructions of several resolvable

BIBD’s which will be needed later in this paper. The set X of points of
the BIBD will be usually a set Z,, of residua modulo some integer n, or



352 H. Hanani et al., Or: resolvable designs

a Galois field GF (g), or a cartesian product of two or more such sets.

The points will be given in parentheses ( ' and the letters x, y
note generators of Galois fields. Blocks will be given in braces

will de-
{ }and

whenever they should be taken cyclically this will be denoted by a note
mod ( ) after the block. Parallel classes of blocks will be given in brackets

[ 1.
Lemma 1. If g = 6¢+ 1 is a prime-power, then 3q € B¥*(3).
Proof. Let X = Z; X GF(g). The blocks are

{(0,0),{",0),(2,00} ,
{(O’XQ ) (0’xa+2t)’ (Osxa+4t)} mod (39 -)9a = 0’ 1’ secy t_la

{0, x**9),(1,x2%31),(2,x**3)} mod(3,-),« =0, 1,...,-1.

Od(_’ (I),

[ {(O’ x(! )s(l;xa+2t), (2a xa+4t)} mOd(-s Q)] mOd(sa '—)9 o= 05 19 ey t—l'

Lemma 2. If q = 6¢+ 1 is a prime-power, then 2q + 1 € B*(3).

Proof. Let X =Z, X GF(g) U (=). Further let x be a generator of GF(q)

and m an integer satisfying 2x™ = x’ + 1. The blocks are
[{(0,0),(1,0), (=)},
i'{(o’ xa+l+m )9 (0’ xa+3!+m )’ (09 xa+5t+m )} ’ a=0" 1:‘ e Z“’l,

mod(—,q)

{(0, x28t+m) (1, x** 281, (1,3 2814}, 0=0, 1, ., 1,620, 1,2,

Lemma 3. If g = 4t + 1 is a prime-power, then 3q + 1 € B*(4).

Proof. Let X = Z; X GF(q) U (). The blocks are

[{(09 0)',.( l ’ 0)3 (2, 0)7 (°°)} > ]mOd(“‘, q)-

{(0,x%), (0, x3*2), (1,x**7), (1,x**3")} mod (3,-), @=0, 1,..., 1.
Lemma 4. 69 € B*(3). |
Proof. X = Z3 X Z,5. The blocks are
{(1,18),(1,19),(1,22)},{(2,18),(2,19),(2,22)},
{(0,2).(0,4),(0,17M},{(1,2),(1,4). (1,17},

{(2,2),(2,15),(2,17},{(0,22),(1,15),(2,4)},
{(09 1)9 (09 8), (0,, 13)} InOd (3’_)9 {(O$ 3)» (09 9), (i ’ 14)} mOd (3 :-)9

[{(0,0,(1,0),(2,0)},{0,18),(0,19),(0, 15)} , ]

macd(—,23),
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10,7, 21), (1,6} mod(3,-), (0,5), 1,20), (2, 11)} mod(3.-), )
1{(0,10),¢1,16),(2,12)} mod(3,-). mod(-23),
1{(C;9),(1,13),(2,16)} mod(—,23)] mod(3,—),
[{(0,0), (1,10}, (2, 14)} mod(-,23)] mod(2,-),
[{(0,0),(1,2),(2,22)} mod(—,23)] mod(3,-),
£{(0,0),(1,18),(2,11)} mod(—,23)],
[{(1,0),(2,18),(0,11)} mod(-,23)].

Lemma 5. 100 € B3*(4).

Proof. X =Z, X GF(25). x2=2x + 2. The blucks ar:
. {(0,0),(1,0),(2,0),(3,0)},
{(a x6a+68) (g x62+68+2) (o x6a+68+5) (g x6a+66+19)} ' .
! «=0,1,2,3,8=0,1,| Mod=29
{(O xv), (1,xv46) (2, xv+12) (3,xv*18)} p=3.4,7,9,10,12—18 20—”3J
[{(0, x#), (1, xu*6) (2, x#+12) (3, x+*18)} mod(—,25)],
©=0,1,2,5,6,8,11,19.

Lemma 6. 172 € B*(4).

_ Proof. X=GF(4)X GF(43). x = 3,v2=y + 1. The blocks are

{(0,0),{»9,0),(»1,0),(»2,0)},

{(0 x.,a+76) (0, x1a+7ﬁ+21) (¥8, xIa+7g8- 14) (y8, x3a+l{3+35)} |
=0,1,...,6,8=0, 1, 2,l

{(yﬁ x3a+76) (yﬂ x3a"’7ﬂ+21) (yB+l x31+75+14) (1)ﬁ+1 x3(¥4 7ﬁ+35)}

L =0,1,..,6,8= 012.]

[{(0,0)’ (yoyx3'y+:'), (yl ’x3’y+33)’ (yz.x3’v+22)} mod(_.,43)] ,
vy=0,1,...,13.

—

mod(—,43),

Lemma 7. 232 € B*(4).

Proof. X = Z3X Z;X Z,,U (). The blocks are
[{(0,0,0),(1,0,0),(2,0,0), (=)}, !
(0,0, 1),(0,0,10),(1,0,5),(1,0, 6)} mod(3,—,-),

{(0,0,u+1), (0,0, —u—1),(1,1,0), (1,-4,0)} mod(3,—,—),n=1,2,3,
{(0,1,5), (0,6,6),(1,1,6),(1,6,5)} mod(3,--,-),
{(0,2,1),(0,5,10),(1,2,10), (1,5, )}mod(3,—,-), i

mod(—, 7,11).
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{(0,3,4),(0,4,7),(1,3,7),(1,4,4)} mod{3,—,-),
{(0,1,¢),(0,6,—€),(1,2,2€),(1,5,--2¢)} mod(3,—,—), e =¢1,
{(0,1,2¢),(0,6,-2¢),(1,2,—4€),(1,5,4€)} mod(3,—,—), e=#1, ,
{(0,1,3€),(0,6,—3¢),(1,3,2¢),(1,4,-2¢)} mod(3,—,—), e==1, | mod(—,7,11).
{(0,1,4¢),(0,6,—4¢€),(1,3,-3¢),(1,4,3¢)} mad(3,—,—), e=¢1,
{{0,2,3¢),(0,5,—3¢),(1,3,-5¢),(1,4,5¢)} mod(3,—,~), e==1,
| {€0,2,5€),(0,5,—5€),(1,3,6), (1,4,—€)} medi3,—,—), e=1, |

Lemma 8. 388 € B*(4).

_ Proof. X = Z,X GF(97). x = 5. The blocks are
{(0,0),(1,0),(2,0),(3,0)},

{(a, x28a+6B) (o, x28a+66+2) (o, x24a+63+40) (y x24a+68+47)}
«=0,1,2,3,8=0,1,..,7,
{0, x¥), (1, xv+28), (2, xv+48) (3,xv*+12}, mod(—,97),
v=1,3-5,7,9-11,13,15-17,19,21-23,25,27-29,31,
33-35,37,39,41,43,45,48—51,54—57,60—63,66—69,
i 72—-75,78—-81,84—88,90—95. ' J

[{(0,x#), €1, xK* 24), (2, x#**8), (3, x#*72)} mod(—,97)],

u=0,2,6,812,14,18.20,24,26,30,32,36,38,40,42,44,
46,47,52—53,58—59,64—65,70~71,76—77,82—83, 89.

§6. Harrison-type theorer s
Theorem 3. If km € B*(k), kn € B*(k) and n € T*(k), then kmn € B*(k).

Proof. Consider B*[ k;km] as a design (X, B) where the elements of X
are groups having n points each. Let B; C B be one of the parallel classes
of blocks. For every block B of B; form a resolvable BIBD B*[ k;kn] on

the union of groups of B. For every block of other parai’ classes formn
ihe blocks of T*[ k;n].

Theorem 4. [f 3m € B*(3) and 3n € B*(3), then 3imn € B*(3).

Proof. From (10) it follows that » = 1 (mod 2) and therefore "y Theo-
rem 1, n € T*#(3). Accordingly the conditions of Theorem 3 are satisfied.
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Theorem 5. If 4m € B*(4) and 4n € B*(4), then 4mn € B*(4).

Proof. From (10) it follows that 7z = 1 (mod 3) and therefore by (35)

and Theorem 1, n € T*(4) with possibie exception of n = 10, 22, 34 and
46. Because of symmetry of m and » it remains to prove that 4mn € B*(4)
for {m, n} ¢ {10, 22, 34,46} and this wili be done herewith. We shal! in
most cases factorise 4mn = 4m n, so that n; =4 and accordingly

4n, = 16 € B*(4) by (30) and n, = 4 € T*(4) by (33). It will remain to

be proved that 4m, € B*(4). This is shown in table 1.

Table 1

m n 4mn

10 10 400  m;=25.4m, =100 € B*(4) by Lemma 5.

10 22 880  my=55.4m;=220 = 373 + 1€ B*(4) by Lemma 3.
10 34 1360 my=85.4m;=340=3113 +1 € B*(4) by Lemma 3.
10 46 1840 1840 = 3613 + 1= B*(4) by Lemma 3.

22 22 1936 my=121.4my =484 = 12'40 + 4, Put w =40 = 5-8. 8 € U(4) be-
cause 12'8 +4 = 100 & B*(4) by Lemma 5. 8 € T(6) by (26) and
Theorem 1. Consequently by Theorzm 2, 40 € U(4).

22 34 2992 2992 =3'997 + i € B*{4) by Lemma 3.

22 46 4048 my =253.4m=1012= 3337 + 1 € B*(4) by Lemma 3.

34 34 4624 4624 = 12385 +4. Put w = 385 = 5-73 + 20. 73 € U(4) becausz
473 + 1 =293 € R*(4) by Lemma 3. 20 € U(4) because
420+ 1 =81 € R*(4) by Lemma 3. 73 € T(6) by (33) and (26).
Consequently by Theorem 2, 385 € U(4).

34 46 6256 my =391.4m,; = 1564 = 3-521 + 1 € B*(4) by Lemma 3.

46 46 8464 my=529.4m; =2116 =12:176 +4. Putw=176 =537 + 1.
37 € U(4) because 4:37 + 1 = 149 € R*(4) by Lemma 3. 1 € U(4)

because 4'1 + 1 = 5 € R*(4) by Lemma 3. 37 € T(6) by (%3) and
(26). Con-equently by Theorem 2, 176 € U(4).

§7. Resolvable designs

The following thecrem has been proved by Ray-Chaudhuri ard
Wilson [8].

Theorem 6. A necessary and sufficient condition for the existence of a
resolvable BIBD B*[3;v} is that v = 3 (mod 6).
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Dunnf Tha maracgit
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show that for ev ry non-negative nteger i, u € U(3) holds. Foru =0 this
is trivial, for u = 1 see (30). Foru =3,6,9,12, 15 we have

~ L VY e mdla o Y e TTAIN £ L

v=6u+3=21, 39 5/ 75, 93 respectively and u € U(3) follows from
Lemma 1. Foru =2,4,8, 10, 14, 26 we have v = 15,27, 51,63, 87, 159
respectively and u € U(3) follows from Lemma 2. For u = 5 we show
that r = 3u + 1 = 16 € R*(3): by (30), 9 € B*(3) and consequently by
{20}, 4 € R*{3), on the other hand by (29), 16 € B(4) and therefore by
{25), 16 R*(3). Foru=11.v=69 and by Lemma 4, 11 € U(3). ¥or
=7, 13,27 we have respectively v = 45 (= 3-3-5), 81 (= 3-3-9),
165 (= 3-5-11) and u € U(3) follows from Thecrem 4.

For othcr;'values of u we prove u € U(3) by induction using Theorem
2, i

rorl6<u <20take =4, h=u-—16,
21 <u < 25take t=35, bk =u-20,
28<u < 35take =7, h=u-—128,
36 < u <45 take =9, h=u-36,

46<u <55take =11, h=u-—44,
56<u <.65take =13, h=u-352,
66<u<7Tltake =16, h=u-—64.
t70ru>72putu—241+mI>3 0< m< 23, and for
OS<Km<4 take =6l-1,h=4+m,
S5<m<23take t=6l+1,h=m—4.

Theorem 7. A necessary and sufficient condition for the existence of a
resolvable BIBD B*(4;v] is that v= 4 (mod 12).

Proof. The necessity follows from (10). To prove sufficiency we show

fhat for ¢very non-negative integer u, u € U(4) holas. For u = 0 this is
irivial. Foru = 1-4,6-7,9-10, 12—13, 15, 18 2C, 22,24,31, 34,79 we
have 121 + 4 € B*(4) by Lemma 3 and accordingly u €774). For« = 8,
{2u+4=100€ B*(4) by Lemma 5. Foru=11,r =4u+1=45; by

{33) and (26), 9 € T(5) and by (13), 45 € B({5,9};{5,9} C R*(4) be-
cause as we proved already {1, 2} C U(4) and there fore by (25),

45€ R*(4). Foru=14,12u+4 =172 € B*(4) by Lemma 6, foru = 19,
t2u+4=232€ B*(4) by Lemma 7, and foru =32, 12u + 4 = 388 € B*(4)
by Lemma 8. Foru =5,16—17, 21, 23, 33 we Fave respectively
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v=64(=444), 196 (=4-7-7), 208 (= 4-4-13), 256 (= 4-4-16),
280(=4-7-10), 400 (= 4:10-10) and u € U(4) follows from Theorem S.
For other values of u we prove u € U(4) by induction using Theorem

2. )
For25<u <30 take ¢=35, h=u-25,

35<u <42 take =7, h=u-35,

43 < u <48 take =38, h=u-—40,

49<u <54 take (=9, h=u-45,

55<u <66 take r=11. h=u->55,

67<u <78 take =13 h=u-—65,

80<u <89 take r=16, h=u-80.
Foruz90putu=30l+m, 1> 3,0<m< 29, and for

0<m<4 take r=6l—-1,h=5+m,

S<Km<?24 take ¢=6lt1,h=m-5,

25<m<29 take t=6[+5 h=m-25.
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