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We present a new derivation of upper bounds for the decay of higher order
derivatives of solutions to the unforced Navier-Stokes equations in R". The
method, based on so-called Gevrey estimates, also yields explicit bounds on the
growth of the radius of analyticity of the solution in time. Moreover, under
the assumption that the Navier—Stokes solution stays sufficiently close to a solution
of the heat equation in the L? norm—a result known to be true for a large class
of initial data—lower bounds on the decay of higher order derivatives can be
obtained.  © 2000 Academic Press

1. INTRODUCTION

We study the decay of solutions to the unforced Navier-Stokes equa-
tions in R”,

Ou—vAu+u-Vu+Vp=0, (la)
V.-u=0, (1b)
u(0) =uy. (1c)
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Previous works by Kato [9], Schonbek [ 12-16], Kajikiya and Miyakawa
[8], Wiegner [ 19], Schonbek and Wiegner [ 18], and others have estab-
lished upper and lower bounds on the rate of decay for various norms, spa-
tial dimensions and classes of initial data. Similar results can be established
in exterior domains (see [ 18] for references); in this article, however, we
exclusively consider the case where the domain is the whole of R”.

On a periodic domain, the generic decay is exponential with a rate given
by the lowest eigenvalue of the Stokes operator. For special initial data the
solution may decay faster: Foias and Saut [ 5] have shown that every solu-
tion to the two-dimensional Navier—Stokes equations with a potential
forcing in a periodic domain decays to zero exponentially fast with a rate
which is equal to one of the eigenvalues of the Stokes operator. Further-
more, the set of initial data whose solutions decay with the same rate lie
on an analytic manifold.

On R”, due to the lack of a positive lowest eigenvalue of the Stokes
operator—in other words, due to the absence of a Poincaré inequality—the
rates of decay are generally algebraic rather than exponential in time.
However, there are special classes of initial data that lead to exponential
decay [ 14, 15].

The key for estimating the asymptotic decay rate is the formal smallness
of the quadratic nonlinearity u - Vu in (1) when the solution u is small. One
therefore hopes that solutions to the heat equation

d,v=v Av, (2a)

v(to) = ulty), (2b)

approximate the Navier—Stokes solution u arbitrarily well for z, sufficiently
large. Note that since V- v =0 initially, v will remain divergence free for all
t > t,. This is easily proved by taking the divergence of (2a) and integrating
against V- v.

The purpose of this paper is to present a method which allows to easily
translate bounds on the L? decay of u and v into bounds on the decay of
higher order derivatives. We state the result in terms of the operator 4 =
/ — 4 which, like —4 itself, is an unbounded, self-adjoint, and non-
negative operator on L*(R"). Powers of 4 can be expressed in terms of the
Fourier transform by (A'w)” (&)=1&|"w(&), and the canonical H" norm
(7) is equivalent to the norm |-| +|[4"- |, where ||-|| = ||-| 2.

Our main assumption is that algebraic decay with rate y > 0 has already
been proved for some class of initial data. More precisely, we suppose the
following.
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Assumption 1. There exist positive real numbers M, and y which may
depend on u, such that

M,
(1+20)”

lu(1)]1? < for all 7>0, (3)

where u(?) is a solution to the Navier—Stokes equations (1).

Assumption 2. There exist constants M,, M5, and M,, which may
depend on u,, so that for every & >0 there exist 7, and ¢,, with ¢, >,=0,
so that for all 1 >¢,,

eM
) = o)1 < (4)
and, for every me N,
M5(m) 2 M 4(m)
o < m <=7
T < MmOl < e (5)

where u(?) is a solution to the Navier—Stokes equations (1), and v(¢) solves
the heat equation (2).

In addition, we require that

lim inf u(£)]] g < o0, (6)

where r>n/2 is such that ne[r, r+2); H(R") is the usual Sobolev space
of order r endowed with the norm

w3 =] (141817 9] dé. (7

R”

Remark 1. Assumption 1 has been proved for initial data uye
LY (R") n L}R") when n>2 and y=n/2 [9, 12, 13, 19]. If, in addition,
n=2,3 and u, has non-zero average, Schonbek [13] has shown that
Assumption 2 holds for m=0. On the other hand, for special initial data
one can prove faster decay rate. For instance, if the Fourier transform of
the initial data, (), has a zero of order one at £ =0, then Assumption 1
can be improved to y=(n/2)+ 1. A lower bound with the same order of
decay can be established if the initial data lies outside a set of functions of
radially equidistributed energy (Schonbek [ 14, 15]).
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Remark 2. Assumption 2 with m =0 directly implies a lower bound on
the L? decay of u. In fact, it is the key step in Schonbek’s derivation [ 14]
of such bounds.

Remark 3. The independence of M, and M, on u, is generally not
trivial. For details see [ 14, 15].

A sufficient condition for upper and lower bounds on derivatives of the
heat solution to decay at the same algebraic rate is given in the following.

ProrosiTiON 3. Estimates (5) holds for any real number m =0 provided
that the Fourier transform of the initial data i, € H™(R") and satisfies

pr)=]_, iolre)|” do ==+ o(r =) (8)

as r— 0.

Proof. We follow the steps in [15]. To simplify notation, take ¢, =0.
Using the Fourier representation of the heat solution and the Plancherel
theorem, we find

7o) = [ 9P g ag(2)| dg

=Vol(n)j e ~2rp2mEn =1y dp (9)
0

>_o2 fl i le=sds o (10)
/[m+y OS ST+0 PR

as t— oo. This implies the lower bound in (5), where the choice of M,
depends on the initial data. For the upper bound, split (9) into two parts
before changing variables:

-1/
47o(1) < Vol(n) | =272 = p(r) dr
r2m+n—1p(r) dr

—1/4

cy Vi ey —s o(s/t)\? ~ 2
<t"‘+7£) s e 1+ o/t ds

+Vol(n) e =2V | A™ug||% (11)

+ Vol(n) e_zv\ﬂj
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For ¢ sufficiently large, the term in parentheses will be bounded inde-
pendent of ¢. This implies the upper bound in (5). ||

We now state the main result of this paper.

THEOREM 4. Let u be a solution to the Navier—Stokes equations (1), with
initial value uy € L%(R"™), which satisfies (6) and Assumption 1. Then there
exists a constant ¢, = c(M, y, n) such that for every real number m >0

2m\ 2" 1
[A™u(1)|* < ¢, <e> Ao (12)

If, in addition, u, € L'(R") and Assumption 2 is satisfied, then there exists a
positive constant ¢, = c,(M,, y, n, m) such that

&)

A™u(t)|? > ———.
4O >

(13)

Remark 4. All claims in this paper are formal; i.e., they apply to suf-
ficiently differentiable global strong solutions of the Navier—Stokes equa-
tions, or to appropriately constructed sequences of approximate solutions.
See [ 15, 18] for a discussion.

Remark 5. Theorem 4 and its proof hold true in any spatial dimension
n. Note, however, that the underlying L? bounds exhibit strong dependence
on n via y and ¢,. In particular, the validity of Assumption 2 is not known
for n> 3.

The upper bound (12) has previously been derived for n=2 by
Schonbek [16], and more generally by Schonbek and Wiegner [ 18], using
a Fourier splitting approach. We believe the lower bound (13) has not been
published before.

The proof of Theorem 4 is based on a characterization of real analytic
functions in terms of decay of the Fourier transform, which we detail in
Section 2. The key idea is that we introduce a seminorm which contains
bounds on all derivatives weighted as terms of an exponential sum. There-
fore, a single estimate in this seminorm is sufficient to a posteriori
reconstruct bounds on all derivatives of u.

In Section 3 we derive a preliminary result, namely that solutions to the
Navier-Stokes equations enter a subclass of the real analytic functions in
an arbitrarily short time. This section is the R” version of work by Foias
and Temam [6] (also see [4]) on the Navier—Stokes equations with peri-
odic boundary conditions. We include it for completeness. Our main
estimate, which implies upper bounds on the decay of the higher order
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derivatives, is proved in Section 4. The estimate for the lower bounds is
very similar and is given in the final Section 5.

We finally remark that our technique is applicable to a wide range of dis-
sipative unforced nonlinear partial differential equations, provided they
have an analytic nonlinearity which is of formally higher order as the solu-
tion decays towards zero. Once bounds on the L? decay are established, the
higher derivatives will decay faster with the natural scaling given by the
linear part of the equation. Examples are the Boussinesq equations for
weakly compressible fluids, the equations of magnetohydrodynamics whose
L? decay has been studied by Schonbek et al. [17], the generalized viscous
KdV equation considered by Bona et al. [1], and a model for internal
waves in a two-layer fluid derived by Choi and Camassa [2], which will
be the subject of a joint forthcoming paper with R. Camassa.

2. CHARACTERIZATION OF REAL ANALYTIC FUNCTIONS

A function we C*(R") is said to be real analytic if for every bounded
subdomain Q2 = R” there are constants p >0 and M > 0 (which may depend
on w and Q) such that for every x e Q and every a € N” one has

!
0 w(x)| < M ~r. (14)
We employ the usual multi-index notation in which
laf =3 a, al=]] !, =] oy. (15)

1 j=1 j=1

The constant p = p(£2) is a lower bound on the radius of analyticity on a
given subdomain Q2 < R” (see, e.g., John [7]). The class of real analytic
functions on R” is denoted C“(R").

We introduce the spaces, parametrized by 7 >0,

Z(e™: H")={we H'(R"): e“we H'(R")}, (16)

which can be endowed with the norm || + |4"e¢™ - ||. The union of these
spaces over all positive 7 is a subclass of the real analytic functions.

THEOREM 5. For any r =0,

Ce(R") > |) 2(e™: H"). (17)

>0
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Remark 6. On the periodic box T” (17) actually holds as an
equality—see [ 11] for a review of this case. On R”, however, the spaces on

the right enforce decay at infinity, whereas analytic functions generally do
not decay at infinity (consider, for example, the constant function).

Proof. Let we Z(e™: H") for some 7 >0, and fix « € N” with |«| >r and
a bounded domain < R”, sufficiently smooth such that the Sobolev
embedding theorem applies. For simplicity, assume that r >n/2. We then
have

Ha"‘wHLw(Q)Sc(.Q) |\5°‘vv\\Hr(g)<c(Q) HaaWHHV(R")- (18)

We set || =m and note that, by the polynomial identity,

n m |7 |7
(Tiel) = ¥ SIS Tk a9

i=1 Iﬂlzmﬂ! i=1 ti=1

Therefore,
10 3y = | TGP (1117 1(&)1 de
i=1
ol
<[l IRy 1)1 de
m: Jrn

| 12
<= <m> IR,,ezf'é'(l+|f|2)r|W(f)|2df

“m!\ "
al\2m!
_ Ay )2
_<T”‘> 7 le® 1v\\Hr(Rn). (20)

We estimate the ration m!/a! for m =2 by using Stirling’s formula:

m! m!
7<7
ol T (L(m/n+1))"

<(m/e)m\/27-[7;/”exp(l/12(m— l))gcnm.
((m/ne)™™ /2r(m/n))

(21)

Substituting (21) back into (20), we obtain an estimate of the form (14)

with p = r/\/Z. The case when r <n/2 can be treated in much the same way
by translating the index m in (20) by a fixed integer. ||
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Remark 7. In particular, the proof shows that if we 2(e™: H"), its

radius of analyticity is r/ﬁ on the whole of R”. We could therefore call
the right side of (17) the class of uniformly analytic functions.

When r>n/2, Z(e™: H'(T")) is known to be a multiplicative topological
algebra [4], and is therefore well suited for the study of analytic nonlinear
partial differential equations with periodic boundary conditions. This
property can easily be shown to carry over to functions defined on R”.
However, our main result relies—through Lemma 9 below—on obtaining
estimates in the seminorm || A"e™ - ||, so that the inequality for products is
more subtle.

LEMMA 6. Let ©=0, r>n/2, and s<n/2. Then there exists a constant
C=C(n,r,s) such that any two functions v and w in 2(e™*: H") satisfy the
inequality

[4"e™ (vw)] 2 < C(n, 7, )([|A"e™ W]l fr—s
+ (| A%e™ 0| s [ ATe™W]| 12). (22)
Proof. Use the Plancherel theorem, the triangle inequality, the inequality
(x4 )" <2"7Y(x"+ y"), and the convolution estimate || f* gl 2 < | £l .1llg|l 2
to obtain
|A"e™ (vw)?

2

=£Rn |§|2r62r|é| df

J,, on e —n) dy

<] (I, 1000 bte = g+ 6= eemay ) g
<er [ ([ et e e o -t an) oz

ver (] emamni le—alr et e -mian) ae
<ar([ e mnae) parer?

2
vo ([ e ool de) paretl? 23)
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The L! norm of a Fourier transform 7 is easily estimated,
J 1 dE=[ 11 (1) (1) )] dg

1/2
<<JW &> (1 + Iélz)s_’dé> | A%u]l gyr-s. (24)

The remaining integral is finite for r>n/2 and s <n/2. By applying this
estimate to (23), we obtain (22). |

In the remainder of this section, we prove a series of technical estimates
which relate Gevrey norms to Sobolev norms of finite order.

Lemma 7. For every r 20 and 1> 0 one has the inequality
lA ™ u|? <2 || A"ul? + 2% | 4" Te™u|%. (25)

Proof. For every x>0 one has e*<1+xe*. Therefore, by the
Plancherel theorem,

e ul®= | e e a1 de
<)l (reiger? ja)) dg

<2 [ e (4 (e e ) [a(E) 1 de. (26)
IR'I
This last expression is equal to the right side of (25). ||

Lemma 8. For all nonnegative p, q, and t,
A7 e™u)® <e | APull? + (27)*7 | AP " Te™u|%, (27)
Proof. For every x>0 and m >0 one has e*<e+ x™e”, since e*<e

on [0,1] and e*<x™e* for x>=1. Now proceed as in the proof of
Lemma 7. ||

LemMmA 9.  Provided that 2qg =p >0 and © >0,

lA]? < c(p, q) T2 ||u]| || A7e™ul. (28)
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Proof. Again with the Plancherel theorem, we obtain
)= [ |¢21al? d¢
R’l

= [ jeppemretia ) e et ja) dé
Rﬂ

<max [E[2777e "l |u| | 47e™ul. (29)
&l =0

An elementary calculation shows that the maximum is attained at |¢| =
(2¢ — p)/r, and thus

(30)

(2g—p)*~re~=2  for 2¢>p,
(¢, p)=

for 2g=p. 1

3. SHORT-TIMES UNIFORM ANALYTICITY

In this section we demonstrate that a solution to the Navier—Stokes
equations enters some class Z(e™: H") in an arbitrarily short time. This
has been proved by Foias and Temam [6] in the case of periodic bound-
ary conditions, and in [3] for the Navier—Stokes equations on the two-
dimensional rotating sphere; corresponding results for the Navier—Stokes
equations in L” spaces have recently been obtained by Kukavica and
Grujic [10].

On R”", the algebra inequality (22) contributes two extra terms, so our
task is to show that these do not affect the validity of the basic result. We
assume that the existence of a solutions ue L*([0, T]; H(R")), r>n/2, is
known for some 7> 0.

To simplify notation, we set

J, =lA4"u| 7, (31a)
G,=||A"e"u| %, (31b)

where 7 =1(7) is to be specified later.
By direct calculation one finds

1G, =G, 1, — VG, 1 — fw ATe™(u- V) A7e™ u dx. (32)
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Note that the contribution of the pressure term is zero because A com-
mutes with the Leray projection onto divergence free vector fields. Let us
first estimate the contribution from the nonlinearity. Noting that

| A%e™u| gyr—s < c(GY? + G12), (33)

we employ the Cauchy—-Schwarz inequality and Lemma 6, and write

f A"e™(u-Vu) A"e™u dx
Rn

<A (u-Vu)| | A"e ||
<a(G?+G?) G216 +e(GE + G2 G (34)
Now interpolate G, by using Lemma 8 with p=s and ¢ =r —s; similarly,

interpolate G,,,; by using Lemma 8 with p=s+1 and ¢g=r—s. After
applying the Young inequality, one finds

f A"e™(u-Vu) A"e™u dx
Rn

< | A7e™(u-Vu)| | A"e™u|

S JPGYPGYE + eV G4 e(1 47779 G,GY2 L, (35)

where n/4 <r/2 <s<n/2.

For the remainder of this section, set 7 =t. Interpolate the first term on
the right of (32), then use estimate (35) and, once more, the Young
inequality, to obtain a differential inequality of the form

G, <cl|ulm) G, +c(r, s, T) G}. (36)

Since G,(0) = |[uy %, is assumed to be finite, there exists a o€ (0, T'] such
that G,(¢) is finite for 1€ [0, o).

4. UPPER BOUNDS

In this section we derive a more subtle differential inequality for G,
which, in contrast to (36), is valid for long times. The key observation is
that the radius of uniform analyticity, p = r/ﬁ, increase like \ﬂ ast— o
as for solutions of the heat equation. Once we have established the optimal
decay rate for the Gevrey norm, we can use Lemma 9 to immediately
reconstruct the decay rates for norms of finite order derivatives of u.
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The basic structure of the argument is determined by a rather
straightforward estimate involving only contributions from the linear terms
of the Navier-Stokes equations. Consider the first two terms on the right
of (32), and assume that 7 > 0. Then we can use an interpolation inequality
and the Young inequality for the first term, while breaking up the second
term into several fractions. Since Lemma 7 implies

G,—2J,

2_[2 <GrJrls (37)

we all together obtain

. 1 v vG,—2J,
Gy 1 — VGr+1\ G +5 ”Gr+1_§Gr+1_ET
17 v1 1 v
=|= G -G
<21’ 8r> +<2 8> i
v 1 v 1 3y
ffG ffJ —— G, . 38
8T +2 8 r+1 ( )

Combining Lemma 9 with ¢ =r and the Young inequality gives

1 1
Jr<C3ﬁJ0+§Gr' (39)

Moreover, we set

T=/15+at, (40)

where 7,>0 and 0 <a<v/2 are to be determined later. In any case, we
immediately find that

(41)

so that the first two terms on the right of (38) are nonpositive and can be
neglected.

The main technical complication now arises from the contributions of
the nonlinearity. Our goal is to show that these do not affect the decay
properties of the solution to leading order. We thus revisit the estimate
on the nonlinear term, Eq.(35), and interpolate J, by using Lemma 9
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with p=r and g=s; J,,, is interpolated in an analogous manner. After
applying the Young inequality, we find

J A"e™(u-Vu) A"e™u dx
Rn

< Cs ,L.(r/2) —SJ(1)/4 G3/4 Gl/Z + CGT(r/Z) —5— IJ(1)/4 Gf/4

+ey(l1 +777%) G, G2

r+1
< C7Tr_2SJ(1)/2 63/2 + CGT(r/2) —s— 1](1)/4 Gf/4

3
+cg(1 + 720 =9) Gf+l

3 G, .1 (42)

All together, we obtain the differential inequality

: v 1
Gr< 8 2G +C3 2(r+1)J0+2C7Tr 2SJ1/2G3/2
+ 2661 T TG+ 2e5(1 4720 79) G (43)

We will now argue that at least locally and—as we shall see later—for
suitably small initial data globally, the “nonlinear” terms in (43) are of
lower order compared to to G,. Specifically, we demand that

v 1

—2s71/2 1/2 2)—s—171/4 ~1/4
372?>C7Tr SJO/ Gr/ +C6T(r/) s J()/ Gr/

+cg(1+72779) G,, (44)

where se [(r/2), (r/2) + 1) is fixed. Due to the result of Section 3, we can
assume without loss of generality that u, € Z(e°!: H") for some ¢ > 0. Note
that G, is an increasing function of 7, so that, at the initial time =0, G,
is bounded between |A7uy|?> when 7=1,=0 and |A4"e’u||> when
t=1y=0. Thus, the left side of (44) diverges faster than the right side as
7 — 0, so that we can satisfy condition (44) at =0 by choosing 7, € (0, o]
small enough. Moreover, the differential inequality (43) admits a local
smooth solution, so that (44) is already satisfied near t=0. We will con-
sider 7, fixed in this way from now on.

So as long as (44) is satisfied, we only need to solve the linear differential
inequality

. 5
G, < —2G,+ ;fmJ (45)
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where ¢ =1/16. According to Assumption 1, J,< M ,(t,/7)® provided «, in
(40), is chosen sufficiently small. The final form of the differential inequality
is then

. (46)
The integrating factor for this linear differential inequality is
(i) @
so that
i 26/a 2(6/e—y—r—1)
o (t*7G,) <kt . (48)

If we fix a, in (40), small enough so that J > «(y + r), we can conclude that

Kk 12\
Gr(t) < <Gr(0) _5 — O((V + ’,) I-g()’+r)><-[2>

+ k 1
(6 —a(y+r) 2@+

(49)

Provided we can show that condition (44) remains satisfied for all ¢,
estimate (49) will be global in time. Here it is sufficient to show that

32
il T2(C7Tr725J(1)/2Gi/2 + CGT(I/Z)fsfl‘](l)/4Gi/4 + (,'8(1 + .L.2(rfs)) Gr)
vV

<g(7) (50)

for some non-increasing function g(7). Estimate (49) shows that this is the
case whenever y >0 and

k 1
S—a(y+r)g? ™"’

G,(0)> (51)

in other words, if the constant M; in Assumption 1, which depends on
norms of the initial data, is small enough. This can always be achieved by
waiting long enough before initializing (49). Note that assumption (6)
guarantees that G,(0), and thus the choice of 7, do not need change as we
wait to let M, decrease.
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All together, we obtain that

Ce
Gr(f)<m

+ O(1~ %), (52)

The upper bound on the decay of || 4™ul|/, Eq. (12), is now a direct conse-
quence of Lemma 9 with p=r and ¢=m, i.e.,

lA™u|2 < e(m, r) T ~2mJ Y2 G2

TO y CG 12
<c(m,r)t" ="M }/2 <> < + 0(1_25/"‘)>

T ,L.Z(y+r)

<cgc(m, r) (14 O(z7+r =), (53)

,L_2(y+m)

where c¢(m, r) is given by (30), ¢, is independent of m, and y +r <J/a.

Remark 8. Estimate (52) shows that the radius of uniform analyticity
of a decaying solution to the Navier—Stokes equations increases like \/Z

Remark 9. The restriction n/2>s>r/2, which we imposed in the
estimation of the nonlinear term, Eq. (42), and is subsequently used in
the context of (44) to determine the initial value for 7, is technical and
can be removed, for example, by interpolating the nonlinear term down to
|A™ul|| for some real number m > 0, and using (53) to obtain the result for
general r. In particular, it will be important in the next section that (52)
holds with r replaced by r+ 1.

5. LOWER BOUNDS

Let v denote the solution to the heat Eq. (2). Suppose Assumption 2 is
satisfied. Without loss of generality we can take f,=0, and assume that
uy € Z(e°t: H") n LY(R") for some o > 0. Our goal is to prove that the dif-
ference w =u — v between Navier—Stokes and heat solution in |A™- | can
be made sufficiently small so that u must decay at the same rate.

We first derive an estimate on the difference w in Z(e*: H"). Clearly, w
satisfies

ow=vAw—u-Vu—Vp (54a)
V-w=0. (54b)
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As the heat equation preserves the divergence condition, we also have
V-w=0 for all £=0. We now proceed exactly as in the previous section.

Setting

S =AW 3, (35)
G = A e w72, (56)

and repeating the steps leading to Eq. (38), we find
1,
3 G, <tGPGE v +c(GVP+ G GYE G2

+¢,(GY2,+G2) G,

r+1
17 v1 1 Y
=|l--—== 19 —1t—— 1Y%
<2f 812> ’+<2” 8> Pl
v 1 c 1 1
_16,[2%—’_23,[2(r+1)%+0<,[3y+5r/2+1>' (57)

The order of decay of the “nonlinear” terms arises from (52) by choosing
the smallest possible s =r/2. Recall that, through appropriate choice of « in
Section 4, the second term on the right of (52) is of higher order. Thus, for
r< 2, the second of the nonlinear terms can be estimated by

(G21+G2) G,
:(G://gﬂ + G:/i1) G,

=G,/3,1G, +higher order terms

1 1 '
<0 <_L.y+r/2+1> 0 <12(V+’)> + higher order terms. (58)

When r>2, G, has to be interpolated first, for example, through use of
Lemmas 8 and 9. The first of the nonlinear terms is estimated in a similar
way.

With the choice of 7 as in Section 4, the first two terms on the right of
(57) can be neglected. Moreover, by using (4) we obtain the differential
inequality

, o &cg 1
Y, < _,L_Z‘(qr+,[2(y+r+l)+0<T3y+5r/2+1>’ (39)
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which can be integrated in exactly the same way as in Section 4. We find
that

&c 1 1
g’([) < TZ(y-gl—r) + 0 <T3y+5r/2+3> + 0 <,L_2oc/5>' (60)

Finally, we employ Lemma 9 exactly as in the derivation of estimate (53)
at the end of Section 4, thereby obtaining

ecyy(m, r)

2
|A7w]|” < 26+ m

+ higher order terms. (61)

For a given m we only need choose ¢ small enough so that M;(m) >ec,,,
whence the triangle inequality implies a lower bound on the decay of
|A™u| as stated in Theorem 4.
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