differential and integral equations), vectors (systems of linear or nonlinear algebraic equations), or real or complex numbers (single algebraic equations with single unknowns). Except in special cases, the most commonly used solution methods are iterative - when starting from one or several initial approximations a sequence is constructed that converges to a solution of the equation. Iterative methods are also applied for solving optimization problems. In such cases, the iteration sequences converge to an optimal solution of the problem at hand. Since all of these methods have the same recursive structure, they can be introduced and discussed in a general framework.

Our study is motivated by the elegant works by Meyer [15], Ezquerro and Hernández [11], and Proinov [17,18], and optimization considerations (see also [1-3,5,13,14]). Meyer provided a general structure for the convergence analysis of (NM) in [15], which enables us to consider, in the same framework, Kantorovich-type semilocal convergence results and theorems based on monotonicity considerations. Here, we use our new idea of recurrent functions to provide a tighter semilocal analysis of (NM) with weaker conditions and for the same computational cost as before (see [1-3,5,11,13,15,17,18]). Other approaches on the Kantorovich-type semilocal convergence of (NM) can also be found in [4-8,12,17,18].

The paper is organized as follows: Section 2 contains the terms and concepts needed in this study; Sections 3 and 4 contain two different semilocal convergence approaches for (NM). Finally, Section 5 develops special cases and numerical examples containing nonlinear integral equations of Chandrasekhar type and a two-point boundary value problem with Green's kernel.

2. Preliminaries

To make the study as self-contained as possible, we reintroduce concepts that can be found in [1-3,5,13,15].

Definition 2.1. A Banach space \mathcal{X} with convergence structure is a triple ($X, \mathcal{V}, \mathcal{W}$) satisfying:
(1) $(X,\|\|$.$) is a real Banach space.$
(2) $\left(\mathcal{V}, \mathcal{C},\|.\|_{\mathcal{V}}\right)$ is a real Banach space that is partially ordered by the closed convex cone \mathcal{C}; the norm $\|\cdot\|_{\mathcal{V}}$ is assumed to be monotone on \mathcal{C}.
(3) \mathcal{W} is a closed convex cone in $\mathcal{X} \times \mathcal{V}$ satisfying $\{0\} \times \mathcal{C} \subset \mathcal{W} \subset \mathcal{X} \times \mathcal{C}$.
(4) The following map $/ . /: \mathscr{D} \longrightarrow \mathcal{C}$ is well defined:

$$
\begin{equation*}
/ x /:=\inf \{p \in \mathcal{C}:(x, p) \in \mathcal{W}\} \tag{2.1}
\end{equation*}
$$

where

$$
\mathscr{D}:=\{x \in \mathcal{X}: \exists p \in \mathcal{C},(x, p) \in \mathcal{W}\} .
$$

(5) For every $x \in \mathscr{D}$, we have

$$
\begin{equation*}
\|x\| \leq\|/ x /\|_{\nu} \tag{2.2}
\end{equation*}
$$

We use standard properties of partial orderings on \mathcal{V} and $\mathcal{X} \times \mathcal{V}$ (see [9,16]). The set \mathscr{D} satisfies $\mathscr{D}+\mathscr{D} \subset \mathscr{D}$ and $s \mathscr{D} \subset \mathscr{D}$ for $s>0$ whereas

$$
U(a):=\{x \in \mathcal{X}:(x, a) \in \mathcal{W}\}
$$

defines a generalized neighborhood of zero.
Definition 2.1 is motivated by the following examples (see [1-3,5,15]):
Example 2.2. Let $\mathcal{X}=\mathbb{R}^{n}$ equipped with the maximum norm.
(a) Let $\mathcal{V}=\mathbb{R}, \mathcal{W}=\left\{(x, p) \in \mathbb{R}^{n+1}:\|x\|_{\infty} \leq p\right\}$. This case is concerned in classical convergence analysis in a Banach space.
(b) Let $\mathcal{V}=\mathbb{R}^{n}, \mathcal{W}=\left\{(x, p) \in \mathbb{R}^{2 n}:|x| \leq p\right\}$, i.e., if $x=\left(x_{i}\right)_{i=1}^{n}$ and $p=\left(p_{i}\right)_{i=1}^{n}$, then $|x| \leq p$ $\Longleftrightarrow x_{i} \leq p_{i}$, for all $1 \leq i \leq n$. This case is concerned in componentwise analysis and error estimates.
(c) Let $\mathcal{V}=\mathbb{R}^{n}, \mathcal{W}=\left\{(x, p) \in \mathbb{R}^{2 n}: 0 \leq x \leq p\right\}$. This case is used in monotone convergence analysis.

Remark 2.3. The convergence analysis is based on monotonicity considerations in $X \times \mathcal{V}$. Let $\left(x_{n}, p_{n}\right) \in W^{N}$ be an increasing sequence; then

$$
\left(x_{n}, p_{n}\right) \leq\left(x_{n+m}, p_{n+m}\right) \Longrightarrow 0 \leq\left(x_{n+m}-x_{m}, p_{n+m}-p_{m}\right) .
$$

If $p_{n} \longrightarrow p$, we obtain $0 \leq\left(x_{m+n}-x_{n}, p-p_{n}\right)$. Using (2.2) of Definition 2.1, we have

$$
\left\|x_{n+m}-x_{n}\right\| \leq\left\|p-p_{n}\right\|_{\nu} \xrightarrow[n \rightarrow \infty]{0}
$$

Then $\left\{x_{n}\right\}$ is a Cauchy sequence. When deriving error estimates we shall use the sequence $p_{n}=a_{0}-a_{n}$ with a decreasing sequence $\left\{x_{n}\right\} \in \mathcal{C}$ to obtain the estimate

$$
0 \leq\left(x_{m+n}-x_{n}, a_{n}-a_{n+m}\right) \leq\left(x_{m+n}-x_{n}, a_{n}\right) .
$$

If $x_{n} \longrightarrow x$ this implies the estimate $/ x-x_{n} / \leq a_{n}$.
Definition 2.4. We denote the space of multilinear, symmetric, bounded operators $A: X^{n} \longrightarrow X$ on a Banach space \mathcal{X} by $\mathcal{L}\left(X^{n}\right)$ and for an ordered Banach space \mathcal{V}, we let

$$
\mathscr{L}_{+}\left(\mathcal{V}^{n}\right)=\left\{L \in \mathcal{L}\left(\mathcal{V}^{n}\right): 0 \leq x_{i}(1 \leq i \leq n) \Longrightarrow 0 \leq L\left(x_{1}, \ldots, x_{n}\right)\right\} .
$$

A map $L \in \mathcal{C}^{1}\left(\mathcal{V}_{L} \longrightarrow V\right)$ on an open subset V_{L} of an ordered Banach space \mathcal{V} is defined to be order convex on an interval $[a, b] \subset V_{L}$ if

$$
c, d \in[a, b], \quad c \leq d \Longrightarrow L^{\prime}(d)-L^{\prime}(c) \in \mathscr{L}_{+}(\mathcal{V})
$$

Definition 2.5. As the set of bounds for an operator $A \in \mathscr{L}\left(X^{n}\right)$, we define

$$
B(A)=\left\{L \in \mathcal{L}_{+}\left(\mathcal{V}^{n}\right):\left(x_{i}, p_{i}\right) \in \mathcal{W} \Longrightarrow\left(A\left(x_{1}, \ldots, x_{n}\right), L\left(p_{1}, \ldots, p_{n}\right)\right) \in \mathcal{W}\right\} .
$$

Lemma 2.6 ([13]). Let $A:[0,1] \longrightarrow \mathcal{L}\left(\mathcal{X}^{n}\right)$ and $L:[0,1] \longrightarrow \mathcal{L}_{+}\left(\mathcal{V}^{n}\right)$ be continuous maps; then

$$
\forall t \in[0,1]: L(t) \in B(A(t)) \Longrightarrow \int_{0}^{1} L(t) \mathrm{d} t \in B\left(\int_{0}^{1} A(t) \mathrm{d} t\right),
$$

which will used for the remainder of Taylor's formula.
Finally the following conventions are needed: Let $T: y \longrightarrow y$ be a map on a subset y of a normed space. Then $T^{n}(x)$ denotes the result of n-fold application of T and in the case of convergence, we write

$$
T^{\infty}(x)=\lim _{n \rightarrow \infty} T^{n}(x)
$$

In particular, we define a right inverse through:
Definition 2.7. Let $A \in \mathscr{L}(\mathcal{X})$ and $y \in \mathcal{X}$ be given. Then we can write

$$
A^{\star} y:=z \Longleftrightarrow z \in T^{\infty}(0), \quad T(x):=(\ell-A) x+y \Longleftrightarrow z=\sum_{j=0}^{\infty}(\ell-A)^{j} y
$$

provided this limit exists.

3. Semilocal convergence analysis of (NM)

We provide sufficient semilocal convergence conditions for (NM) to determine a zero x^{\star} of operator G on Banach space. Our results are stated for the operator

$$
\begin{equation*}
F(x)=A G\left(x_{0}+x\right), \tag{3.1}
\end{equation*}
$$

where x_{0} is the initial guess for (NM) and A is an approximation of $G^{\prime}\left(x_{0}\right)^{-1}$. That is, the following result is affine invariant in the sense of [10].

Theorem 3.1. Let \mathcal{X} be a Banach space with a convergence structure $(\mathcal{X}, \mathcal{V}, \mathcal{w})$ with $\mathcal{V}=(\mathcal{V}, \mathcal{C}$, $\left.\|\cdot\|_{\mathcal{V}}\right)$, an operator $F \in \mathcal{C}^{1}\left(\mathcal{X}_{F} \longrightarrow \mathcal{X}\right)$ with $\mathcal{X}_{F} \subseteq \mathcal{X}$, an operator $L \in \mathcal{C}^{1}\left(\mathcal{V}_{L} \longrightarrow \mathcal{V}\right)$ with $\mathcal{V}_{L} \subseteq \mathcal{V}$, an operator $L_{0} \in \mathcal{C}^{1}\left(\mathcal{V}_{L_{0}} \longrightarrow \mathcal{V}\right)$ with $\mathcal{V}_{L} \subseteq \mathcal{V}_{L_{0}}$ and a point $a \in \mathcal{C}$ such that the following hypotheses are satisfied:

$$
\begin{equation*}
U(a) \subseteq \mathcal{X}_{F} \quad \text { and } \quad[0, a] \subseteq \mathcal{V}_{L} \tag{3.2}
\end{equation*}
$$

L is order convex on $[0, a]$, satisfying

$$
\begin{equation*}
L^{\prime}(|x|+|y|)-L^{\prime}(|x|) \in B\left(F^{\prime}(x)-F^{\prime}(x+y)\right) \tag{3.3}
\end{equation*}
$$

for all $x, y \in U(a)$ with $|x|+|y| \leq a$;
L_{0} is order convex on $[0, a]$, satisfying $L_{0}^{\prime} \leq L^{\prime}$ on \mathcal{V}_{L} and

$$
\begin{equation*}
L_{0}^{\prime}(|x|)-L_{0}^{\prime}(0) \in B\left(F^{\prime}(0)-F^{\prime}(x)\right) \tag{3.4}
\end{equation*}
$$

for all $x \in U(a)$ with $|x| \leq a$;

$$
\begin{align*}
& L_{0}^{\prime}(0) \in B\left(I-F^{\prime}(0)\right) \quad \text { and } \quad(-F(0), L(0)) \in \mathcal{W} ; \tag{3.5}\\
& L(a) \leq a ; \tag{3.6}
\end{align*}
$$

and

$$
\begin{equation*}
L^{\prime}(a)^{n} a \longrightarrow 0 \quad \text { as } n \longrightarrow \infty . \tag{3.7}
\end{equation*}
$$

Then sequence $\left\{x_{n}\right\}$ generated by (NM)

$$
\begin{equation*}
x_{0}=0, \quad x_{n+1}=x_{n}+F^{\prime}\left(x_{n}\right)^{\star}\left(-F\left(x_{n}\right)\right) \tag{3.8}
\end{equation*}
$$

is well defined, remains in $U(a)$ for all $n \geq 0$, and converges to the unique zero x^{\star} of operator F in $U(a)$.
Moreover, the following estimates hold true for all $n \geq 0$:

$$
\begin{align*}
& \mid x_{n+1}-x_{n} / \leq d_{n+1}-d_{n}, \tag{3.9}\\
& / x_{n+1}-x^{\star} / \leq b-d_{n}, \tag{3.10}
\end{align*}
$$

where

$$
\begin{equation*}
b=L^{\infty}(0) \tag{3.11}
\end{equation*}
$$

is the minimal fixed point of operator $\operatorname{Lin}[0, a]$ and sequence $\left\{d_{n}\right\}$ is given by

$$
\begin{equation*}
d_{0}=0, \quad d_{n+1}=L\left(d_{n}\right)+L_{0}^{\prime}\left(\left|x_{n}\right|\right) c_{n}, \quad c_{n}=/ x_{n+1}-x_{n} / . \tag{3.12}
\end{equation*}
$$

Furthermore, sequence $\left(x_{n}, d_{n}\right) \in(X \times \mathcal{V})^{N}$ is well defined, remains in \mathcal{W}^{N} and is monotone.
Remark 3.2. (a) If $L_{0}^{\prime}=L^{\prime}$ on \mathcal{V}_{L}, then hypotheses of Theorem 3.1 reduce to the ones in [15, Theorem 5]. However, note that in general

$$
\begin{equation*}
L_{0}^{\prime} \leq L^{\prime} \tag{3.13}
\end{equation*}
$$

holds and $\frac{L^{\prime}}{L_{0}^{\prime}}$ can be arbitrarily large [4-8].
Condition (3.4) is not an additional hypothesis. In practice, computing operator L^{\prime} also requires determining L_{0}^{\prime}. Moreover, operator L_{0}^{\prime} always exists (if L^{\prime} exists). The benefits of introducing condition (3.4) are given in Remark 3.5.
(b) Assume conditions (3.2)-(3.4) of Theorem 3.1 hold and

$$
\exists t \in(0,1): L(a) \leq t a .
$$

Then there exists $a^{\prime} \in[0, t a]$ satisfying all conditions of Theorem 3.1. The zero $z \in U\left(a^{\prime}\right)$ is unique in $U(a)$ [15].

Let $L \in \mathcal{C}^{1}\left(\mathcal{V}_{L} \rightarrow \mathcal{V}\right)$ be a map satisfying the conditions of Theorem 3.1. Then L is monotone. Therefore, sequences $b_{n}=L^{n}(0)$ and $c_{n}=L^{n}(a)$ are monotone with

$$
0 \leq b_{n} \leq b_{n+1} \leq c_{n+1} \leq c_{n} \leq a .
$$

In view of (3.7), we conclude that the sequence $\left\{c_{n}-b_{n}\right\}$ converges to zero [13]. That is, we obtain that $b=L^{\infty}(0)$ is well defined and is the smallest solution of $L(p) \leq p$ in $[0, a]$.

In the case of Remark 3.2(b), we obtain

$$
0 \leq c_{n}-b_{n} \leq t^{n} a .
$$

That is, $b=L^{\infty}(0)$ is well defined and the following inequalities hold:

$$
\begin{aligned}
& L^{\prime}(b)(a-b) \leq L(a)-L(b) \leq t(a-b) \\
& b=L(b) \leq L(a) \leq t a \Longrightarrow b \leq \frac{t}{1-t}(a-b)
\end{aligned}
$$

so

$$
L^{\prime}(b)^{n} b \leq \frac{t}{1-t} L^{\prime}(b)^{n}(a-b) \leq \frac{t^{n+1}}{1-t}(a-b) \longrightarrow 0 .
$$

Therefore, $a^{\prime}=b$ satisfies the additional hypothesis of Remark 3.2(b).
As a special case, we obtain the following result for affine maps:
Corollary 3.3 ([15]). Let $L \in L_{+}(\mathcal{V})$ and $a, p \in \mathcal{C}$ be given such that

$$
L p+a \leq p \quad \text { and } \quad L^{n} p \longrightarrow 0
$$

Then the map

$$
(I-L)^{\star}:[0, a] \longrightarrow[0, a]
$$

is well defined and continuous.
As substitute for the Banach lemma we use:
Lemma 3.4 ([15]). Let $A \in L(X), L \in B(A), y \in \mathscr{D}$ and $p \in \mathcal{C}$ be given as in Theorem 3.1 such that

$$
L p+/ y / \leq p \quad \text { and } \quad L^{n} p \longrightarrow 0
$$

Then $x=(I-A)^{\star} y$ is well defined, $x \in \mathscr{D}$ and

$$
|x| \leq(I-L)^{\star} / y / \leq p
$$

The proof of Lemma 3.4 is easy. Simply note that the sequence $\left\{b_{n}\right\}$ defined by

$$
b_{0}=0, \quad b_{n+1}=L b_{n}+/ y / \leq p
$$

is well defined and converges to

$$
b=(I-L)^{\star} / y / \leq p .
$$

If we consider $x_{n+1}=A x_{n}+y, x_{0}=0$, then the sequence $\left(x_{n}, b_{n}\right)$ is monotone in $X \times \mathcal{V}$. Hence, the statement follows from the general principles in Section 2.
Proof of Theorem 3.1. Conditions of Theorem 3.1 are satisfied for b replacing a. We shall show that for each n, there exists x_{n+1} solving

$$
\begin{equation*}
p=\left(I-F^{\prime}\left(x_{n}\right)\right) p+\left(-F\left(x_{n}\right)\right) . \tag{3.14}
\end{equation*}
$$

Let $n=1$ and $p=b$. Using (3.3)-(3.6) we get

$$
\begin{align*}
\left|I-F^{\prime}(0)\right| b+|-F(0)| & \leq L_{0}^{\prime}(0) b+|-F(0)| \\
& \leq L^{\prime}(0) b+|-F(0)| \\
& \leq L(b)-L(0)+L(0)=L(b)=b . \tag{3.15}
\end{align*}
$$

Hence, x_{1} is well defined and $\left(x_{1}, b\right) \in \mathcal{W}$.

We also have

$$
\begin{equation*}
x_{1}=\left(I-F^{\prime}(0)\right) x_{1}+(-F(0)), \tag{3.16}
\end{equation*}
$$

so

$$
\begin{equation*}
\left|x_{1}\right| \leq L_{0}^{\prime}(0)\left|x_{1}\right|+L(0)=d_{1}, \tag{3.17}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
d_{1}=L_{0}^{\prime}(0)\left|x_{1}\right|+L(0) \leq L^{\prime}(0) b+L(0) \leq L(b)-L(0)+L(0)=L(b)=b . \tag{3.18}
\end{equation*}
$$

Let us assume that $\left(x_{k}, d_{k}\right)$ is well defined and monotone for all $k \leq n$, with

$$
\begin{equation*}
0 \leq\left(x_{k-1}, d_{k-1}\right) \leq\left(x_{k}, d_{k}\right), \quad d_{k} \leq b . \tag{3.19}
\end{equation*}
$$

Using (3.4) and (3.5), we have

$$
\begin{align*}
\left|I-F^{\prime}\left(x_{k}\right)\right| & \leq\left|\left(I-F^{\prime}(0)\right)+\left(F^{\prime}(0)-F^{\prime}\left(x_{k}\right)\right)\right| \\
& \leq\left|I-F^{\prime}(0)\right|+\left|F^{\prime}(0)-F^{\prime}\left(x_{k}\right)\right| \\
& \leq L_{0}^{\prime}(0)+L_{0}^{\prime}\left(\left|x_{k}\right|\right)-L_{0}^{\prime}(0)=L_{0}^{\prime}\left(\left|x_{k}\right|\right), \tag{3.20}
\end{align*}
$$

so

$$
\begin{equation*}
L_{0}^{\prime}\left(\left|x_{k}\right|\right) \in B\left(I-F^{\prime}\left(x_{k}\right)\right) \tag{3.21}
\end{equation*}
$$

In view of Lemma 3.4, we must solve for p :

$$
\begin{equation*}
L_{0}^{\prime}\left(\left|x_{k}\right|\right) p+\left|-F\left(x_{k}\right)\right| \leq p \tag{3.22}
\end{equation*}
$$

We need an estimate on $\left|-F\left(x_{k}\right)\right|$. By Taylor's theorem, (3.3) and Lemma 3.4, we obtain in turn

$$
\begin{align*}
\left|-F\left(x_{k}\right)\right| & =\left|-F\left(x_{k}\right)+F\left(x_{k-1}\right)+F^{\prime}\left(x_{k-1}\right)\left(x_{k}-x_{k-1}\right)\right| \\
& \leq \int_{0}^{1}\left[L^{\prime}\left(\left|x_{k-1}\right|+t c_{k-1}\right)-L^{\prime}\left(\left|x_{k-1}\right|\right)\right] c_{k-1} \mathrm{~d} t \\
& =L\left(\left|x_{k-1}\right|+c_{k-1}\right)-L\left(\left|x_{k-1}\right|\right)-L^{\prime}\left(\left|x_{k-1}\right|\right) c_{k-1} \\
& \leq L\left(d_{k-1}+d_{k}-d_{k-1}\right)-L\left(d_{k-1}\right)-L^{\prime}\left(\left|x_{k-1}\right|\right) c_{k-1} \\
& \leq L\left(d_{k}\right)-L\left(d_{k-1}\right)-L_{0}^{\prime}\left(\left|x_{k-1}\right|\right) c_{k-1} \\
& =L\left(d_{k}\right)-d_{k} . \tag{3.23}
\end{align*}
$$

Let $p=b-d_{k}$. Then, we have by (3.20) and (3.23)

$$
\begin{align*}
L_{0}^{\prime}\left(\left|x_{k}\right|\right) p+\left|-F\left(x_{k}\right)\right|+d_{k} & \leq L^{\prime}\left(d_{k}\right)\left(b-d_{k}\right)+L\left(d_{k}\right) \\
& \leq L(b)-L\left(d_{k}\right)+L\left(d_{k}\right)=L(b)=b . \tag{3.24}
\end{align*}
$$

Hence, x_{k+1} is well defined by Lemma 3.4, and $c_{k} \leq b-d_{k}$. Therefore, d_{k+1} is well defined too and we obtain

$$
\begin{align*}
d_{k+1} & \leq L\left(d_{k}\right)+L_{0}^{\prime}\left(d_{k}\right)\left(b-d_{k}\right) \\
& \leq L\left(d_{k}\right)+L^{\prime}\left(d_{k}\right)\left(b-d_{k}\right) \\
& \leq L\left(d_{k}\right)+L(b)-L\left(d_{k}\right)=L(b)=b . \tag{3.25}
\end{align*}
$$

In view of the estimate

$$
\begin{align*}
c_{k}+d_{k} & \leq L_{0}^{\prime}\left(\left|x_{k}\right|\right) c_{k}+\left|-F\left(x_{k}\right)\right|+d_{k} \\
& \leq L_{0}^{\prime}\left(\left|x_{k}\right|\right) c_{k}+L\left(d_{k}\right)=d_{k+1}, \tag{3.26}
\end{align*}
$$

we deduce the monotonicity

$$
\begin{equation*}
\left(x_{k}, d_{k}\right) \leq\left(x_{k+1}, d_{k+1}\right), \tag{3.27}
\end{equation*}
$$

which also implies (3.9).

It follows inductively from (3.12) that

$$
\begin{equation*}
L^{k}(0) \leq d_{k} \leq b, \tag{3.28}
\end{equation*}
$$

which together with $L^{k}(0) \longrightarrow b$, implies that $d_{k} \longrightarrow b$ as $k \longrightarrow \infty$.
By Section 2, sequence $\left\{x_{n}\right\}$ converges to some $x^{\star} \in U(b)$. By setting $k \longrightarrow \infty$ in (3.23), we deduce that x^{\star} is a zero of operator F.

Estimate (3.10) now follows from (3.9) by using standard majorization techniques (see [5,6,11]).
The uniqueness statement is given in [13], where the modified Newton method

$$
\begin{equation*}
x_{n+1}=x_{n}-F\left(x_{n}\right) \tag{3.29}
\end{equation*}
$$

is considered. Clearly, sequence ($x_{n}, L^{n}(0)$) is monotone in $X \times \mathcal{V}$.
Moreover, if there exists a zero $y^{\star} \in U(a)$ of F, then it was shown in [13] that

$$
\begin{equation*}
\left|y^{\star}-x_{n}\right| \leq L^{n}(a)-L^{n}(0) \longrightarrow 0 \quad \text { as } n \longrightarrow \infty, \tag{3.30}
\end{equation*}
$$

which implies $\lim _{n \rightarrow \infty} x_{n}=y^{\star}$. But, we showed that $\lim _{n \rightarrow \infty} x_{n}=x^{\star}$. Hence, we deduce

$$
\begin{equation*}
x^{\star}=y^{\star} . \tag{3.31}
\end{equation*}
$$

That completes the proof of Theorem 3.1.
Remark 3.5. If equality holds in (3.13) then our Theorem 3.1 reduces to [15, Theorem 5]. Otherwise (i.e., if $L_{0}^{\prime}<L^{\prime}$), the former theorem improves the latter. Indeed, the majorizing sequence $\left\{q_{n}\right\}$ used in [15] is given by

$$
\begin{equation*}
q_{0}=0, \quad q_{n+1}=L\left(q_{n}\right)+L^{\prime}\left(\left|x_{n}\right|\right) c_{n} \tag{3.32}
\end{equation*}
$$

In view of (3.12) and (3.32), a simple inductive argument shows

$$
\begin{equation*}
d_{n}<q_{n}, \quad(n \geq 1) \tag{3.33}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{n+1}-d_{n}<q_{n+1}-q_{n}, \quad(n \geq 1) . \tag{3.34}
\end{equation*}
$$

Hence, sequence $\left\{d_{n}\right\}$ is a tighter majorizing sequence for $\left\{x_{n}\right\}$ than $\left\{q_{n}\right\}$. As already noted in Remark 3.2, these advantages are obtained under the same hypotheses and for the same computational cost as in [15].

By simply replacing L^{\prime} by L_{0}^{\prime} in the definitions of the operators involved, we can also improve the a posteriori estimates given in [15] under the hypotheses of Theorem 3.1. More, precisely in order for us to obtain a posteriori estimates, we define

$$
\begin{equation*}
R_{n}(p)=\left(I-L_{0}^{\prime}\left(\left|x_{n}\right|\right)\right)^{\star} S_{n}(p)+c_{n} \tag{3.35}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{n}(p)=L\left(\left|x_{n}\right|+p\right)-L\left(\left|x_{n}\right|\right)-L_{0}^{\prime}\left(\left|x_{n}\right|\right) p . \tag{3.36}
\end{equation*}
$$

Operator S_{n} is monotone on the interval $I_{n}=\left[0, a-\left|x_{n}\right|\right]$; moreover, if there exists $p_{n} \in \mathcal{C}$ such that $\left|x_{n}\right|+p_{n} \leq a$, and

$$
\begin{equation*}
S_{n}\left(p_{n}\right)+L_{0}^{\prime}\left(\left|x_{n}\right|\right)\left(p_{n}-c_{n}\right) \leq p_{n}-c_{n}, \tag{3.37}
\end{equation*}
$$

then operator $R_{n}:\left[0, p_{n}\right] \longrightarrow\left[0, p_{n}\right]$ is well defined by Corollary 3.3, and monotone. We then have

$$
\begin{align*}
d_{n}+c_{n} \leq d_{n+1} & \Rightarrow L(a)-L\left(d_{n}\right)-L_{0}^{\prime}\left(\left|x_{n}\right|\right) c_{n} \leq a-d_{n}-c_{n} \\
& \Rightarrow S_{n}\left(a-d_{n}\right)+L_{0}^{\prime}\left(\left|x_{n}\right|\right)\left(a-d_{n}-c_{n}\right) \leq a-d_{n}-c_{n}, \tag{3.38}
\end{align*}
$$

which implies that $a-d_{n}$ is a suitable choice for p_{n}.

Other ways for choosing suitable p_{n} are given by the following:
Proposition 3.6. Assume that

$$
\begin{equation*}
R_{n}(p) \leq p \text { for some } p \in I_{n} . \tag{3.39}
\end{equation*}
$$

Then

$$
\begin{equation*}
c_{n} \leq R_{n}(p)=\bar{p} \leq p \tag{3.40}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{n+1}\left(\bar{p}-c_{n}\right) \leq \bar{p}-c_{n} . \tag{3.41}
\end{equation*}
$$

Proof. Using (3.23), the order convexity of L_{0}, L and the estimate

$$
\begin{equation*}
S_{n}(p)+L_{0}^{\prime}\left(\left|x_{n}\right|\right)\left(\bar{p}-c_{n}\right)=\bar{p}-c_{n}, \tag{3.42}
\end{equation*}
$$

we get

$$
\begin{equation*}
S_{n+1}\left(\bar{p}-c_{n}\right)+\left|-F\left(x_{n+1}\right)\right|+L_{0}^{\prime}\left(\left|x_{n+1}\right|\right)\left(\bar{p}-c_{n}\right) \leq \bar{p}-c_{n} . \tag{3.43}
\end{equation*}
$$

That completes the proof of Proposition 3.6.
Proposition 3.7. Assume that the conditions of Theorem 3.1 hold and there exists a solution $p_{n} \in I_{n}$ satisfying

$$
\begin{equation*}
R_{n}(p) \leq p \tag{3.44}
\end{equation*}
$$

Define a sequence

$$
\begin{equation*}
a_{n}=p_{n}, \quad a_{m+1}=R_{m}\left(a_{m}\right)-c_{m} \quad(m \geq n) . \tag{3.45}
\end{equation*}
$$

Then the following a posteriori estimate holds:

$$
\begin{equation*}
/ x^{\star}-x_{m} / \leq a_{m} . \tag{3.46}
\end{equation*}
$$

Proof. An induction argument shows

$$
\begin{equation*}
R_{m}\left(a_{m}\right) \leq a_{m}, \tag{3.47}
\end{equation*}
$$

so

$$
\begin{equation*}
a_{m+1}+c_{m} \leq a_{m}, \tag{3.48}
\end{equation*}
$$

and consequently we deduce the monotonicity of $\left(x_{m}, a_{n}-a_{m}\right)$ in $\mathcal{X} \times \mathcal{V}$.
That completes the proof of Proposition 3.7.
The properties of R_{n} imply the existence of $R_{n}^{\infty}(0)$, which is a suitable choice for p_{n} in Proposition 3.7. Hence we arrive at:
Corollary 3.8. Assume that the conditions of Theorem 3.1 hold and there exists $p \in I_{n}$ satisfying

$$
R_{n}(p) \leq p .
$$

Then the following a posteriori estimates hold:

$$
\begin{equation*}
\left|x^{*}-x_{n}\right| \leq R_{n}^{\infty}(0) \leq p . \tag{3.49}
\end{equation*}
$$

As already noted in [15], in view of the estimate

$$
\begin{equation*}
S_{n}(p)+/-F\left(x_{n}\right) /+L_{0}^{\prime}\left(\left|x_{n}\right|\right) p \leq p \Longrightarrow R_{n}(p) \leq p, \tag{3.50}
\end{equation*}
$$

one may consider further majorization:

$$
\begin{equation*}
Q_{n}(p)=L\left(\left|x_{n-1}\right|+c_{n-1}+p\right)-L\left(\left|x_{n-1}\right|\right)-L_{0}^{\prime}\left(\left|x_{n-1}\right|\right) c_{n-1} . \tag{3.51}
\end{equation*}
$$

Note that an application to a two-point boundary value problem was given in [15] in the case $L_{0}^{\prime}=L_{0}$. Further discussion on applications and practical aspects can be found in [3,5,13,14,19].

Remark 3.9. If $L_{0}^{\prime}=L^{\prime}$, then our a posteriori estimates reduce to the ones in [15]. However, if $L_{0}^{\prime}<L^{\prime}$, then our a posteriori estimates are tighter. So far, we have shown how to improve on the error estimates given in [15]. We are now wondering whether we can also weaken the sufficient convergence conditions (3.6) and (3.7).

It turns out that this can be done (see Section 4), using our new idea of recurrent functions [5-7].

4. (NM) and recurrent functions

We need to define some operator sequences.
Definition 4.1. Let $\eta \in \mathcal{C}$. Define operators

$$
f_{n}, h_{n}, \beta_{n}:[0,1) \longrightarrow X
$$

and

$$
\delta: I_{\delta}=\left[1, \frac{1}{1-\gamma}\right] \times[0,1)^{4} \longrightarrow X, \quad \gamma \in[0,1)
$$

by

$$
\begin{align*}
f_{n}(\gamma)= & \left\{\int_{0}^{1}\left(L^{\prime}\left(\left(\frac{1-\gamma^{n-1}}{1-\gamma}+t \gamma^{n-1}\right) \eta\right)-L^{\prime}\left(\frac{1-\gamma^{n-1}}{1-\gamma} \eta\right)\right) \mathrm{d} t+\gamma L_{0}^{\prime}\left(\frac{1-\gamma^{n}}{1-\gamma} \eta\right)\right\}-\gamma, \tag{4.1}\\
h_{n}(\gamma)= & \left\{\int_{0}^{1}\left(L^{\prime}\left(\left(\frac{1-\gamma^{n}}{1-\gamma}+t \gamma^{n}\right) \eta\right)-L^{\prime}\left(\left(\frac{1-\gamma^{n-1}}{1-\gamma}+t \gamma^{n-1}\right) \eta\right)\right) \mathrm{d} t\right. \\
& \left.+\left(L^{\prime}\left(\frac{1-\gamma^{n-1}}{1-\gamma} \eta\right)-L^{\prime}\left(\frac{1-\gamma^{n}}{1-\gamma} \eta\right)\right)+\gamma\left(L_{0}^{\prime}\left(\frac{1-\gamma^{n+1}}{1-\gamma} \eta\right)-L_{0}^{\prime}\left(\frac{1-\gamma^{n}}{1-\gamma} \eta\right)\right)\right\}, \tag{4.2}
\end{align*}
$$

$\overline{\beta_{n}}(\gamma)=\int_{0}^{1}\left(L^{\prime}\left(\left(\frac{1-\gamma^{n+1}}{1-\gamma}+t \gamma^{n+1}\right) \eta\right)+L^{\prime}\left(\left(\frac{1-\gamma^{n-1}}{1-\gamma}+t \gamma^{n-1}\right) \eta\right)\right.$

$$
\left.-2 L^{\prime}\left(\left(\frac{1-\gamma^{n}}{1-\gamma}+t \gamma^{n}\right) \eta\right)\right) \mathrm{d} t
$$

$$
+\left(2 L^{\prime}\left(\frac{1-\gamma^{n}}{1-\gamma} \eta\right)-L^{\prime}\left(\frac{1-\gamma^{n-1}}{1-\gamma} \eta\right)-L^{\prime}\left(\frac{1-\gamma^{n+1}}{1-\gamma} \eta\right)\right)
$$

$$
+\gamma\left(L_{0}^{\prime}\left(\frac{1-\gamma^{n+2}}{1-\gamma} \eta\right)+L_{0}^{\prime}\left(\frac{1-\gamma^{n}}{1-\gamma} \eta\right)-2 L_{0}^{\prime}\left(\frac{1-\gamma^{n+1}}{1-\gamma} \eta\right)\right)
$$

$$
\begin{equation*}
\beta_{n}(\gamma)=\overline{\beta_{n}}(\gamma), \tag{4.3}
\end{equation*}
$$

$$
\bar{\delta}\left(v_{1}, v_{2}, v_{3}, v_{4}, \gamma\right)
$$

$$
=\int_{0}^{1}\left(L^{\prime}\left(\left(v_{1}+v_{2}+v_{3}+t v_{4}\right) \eta\right)+L^{\prime}\left(\left(v_{1}+t v_{2}\right) \eta\right)-2 L^{\prime}\left(\left(v_{1}+v_{2}+t v_{3}\right) \eta\right)\right) \mathrm{d} t
$$

$$
+\left(2 L^{\prime}\left(\left(v_{1}+v_{2}\right) \eta\right)-L^{\prime}\left(v_{1} \eta\right)-L^{\prime}\left(\left(v_{1}+v_{2}+v_{3}\right) \eta\right)\right)
$$

$$
+\gamma\left(L_{0}^{\prime}\left(\left(v_{1}+v_{2}+v_{3}+v_{4}\right) \eta\right)+L_{0}^{\prime}\left(\left(v_{1}+v_{2}\right) \eta\right)-2 L_{0}^{\prime}\left(\left(v_{1}+v_{2}+v_{3}\right) \eta\right)\right)
$$

$$
\begin{equation*}
\delta\left(v_{1}, v_{2}, v_{3}, v_{4}, \gamma\right)=\bar{\delta}\left(v_{1}, v_{2}, v_{3}, v_{4}, \gamma\right) \tag{4.4}
\end{equation*}
$$

Moreover, define function $f_{\infty}:[0,1) \longrightarrow X$ by

$$
\begin{equation*}
f_{\infty}(\gamma)=\lim _{n \longrightarrow \infty} f_{n}(\gamma) \tag{4.5}
\end{equation*}
$$

It then follows from (4.1) and (4.5) that

$$
\begin{equation*}
f_{\infty}(\gamma)=b\left(L^{\prime}\left(\frac{\eta}{1-\gamma}\right)+\gamma L_{0}^{\prime}\left(\frac{\eta}{1-\gamma}\right)\right)-\gamma . \tag{4.6}
\end{equation*}
$$

It can also easily be seen from (4.1)-(4.4) that the following identities hold:

$$
\begin{align*}
& f_{n+1}(\gamma)=f_{n}(\gamma)+h_{n}(\gamma), \tag{4.7}\\
& h_{n+1}(\gamma)=h_{n}(\gamma)+\beta_{n}(\gamma), \tag{4.8}
\end{align*}
$$

and for

$$
\begin{equation*}
v_{1}=\sum_{i=0}^{n-2} \gamma^{i}, \quad v_{2}=\gamma^{n-1}, \quad v_{3}=\gamma^{n}, \quad v_{4}=\gamma^{n+1} \tag{4.9}
\end{equation*}
$$

we have

$$
\begin{equation*}
\delta\left(v_{1}, v_{2}, v_{3}, v_{4}, \gamma\right)=\beta_{n}(\gamma) \tag{4.10}
\end{equation*}
$$

Finally, let us define sequence $\left\{t_{n}\right\}$ by

$$
\begin{align*}
& t_{0}=0, \quad t_{1}=L_{0}(0)+L_{0}^{\prime}(0) \eta \\
& t_{n+1}=t_{n}+L_{0}^{\prime}\left(t_{n}\right)\left(t_{n}-t_{n-1}\right)+\int_{0}^{1}\left(L^{\prime}\left(t_{n-1}+t\left(t_{n}-t_{n-1}\right)\right)-L^{\prime}\left(t_{n-1}\right)\right) \mathrm{d} t\left(t_{n}-t_{n-1}\right) . \tag{4.11}
\end{align*}
$$

We need the following result on majorizing sequences for (NM).
Lemma 4.2. Assume that there exist $\eta, a \in \mathcal{C}$ and $\alpha \in(0,1)$ such that

$$
\begin{align*}
& \frac{\eta}{1-\alpha} \in[0, a] \tag{4.12}\\
& 0 \leq L_{0}^{\prime}\left(t_{1}\right)+\int_{0}^{1}\left(L^{\prime}\left(t t_{1}\right)-L^{\prime}(0)\right) \mathrm{d} t \leq \alpha I \tag{4.13}\\
& \delta\left(v_{1}, v_{2}, v_{3}, v_{4}, \gamma\right) \geq 0 \quad \text { on } I_{\delta}, \tag{4.14}\\
& h_{1}(\alpha) \geq 0, \tag{4.15}
\end{align*}
$$

and

$$
\begin{equation*}
f_{\infty}(\alpha) \leq 0, \tag{4.16}
\end{equation*}
$$

where 0 and I are the zero endomorphism and the identity operator on \mathcal{X}, respectively. Then the iteration $\left\{t_{n}\right\}(n \geq 0)$ given by (4.10) is non-decreasing, bounded from above by

$$
\begin{equation*}
t^{\star \star}=\frac{\eta}{1-\alpha}, \tag{4.17}
\end{equation*}
$$

and converges to its unique least upper bound t^{\star} satisfying

$$
\begin{equation*}
t^{\star} \in\left\langle 0, t^{\star \star}\right\rangle . \tag{4.18}
\end{equation*}
$$

Moreover, the following error bounds hold for all $n \geq 0$:

$$
\begin{equation*}
0 \leq t_{n+1}-t_{n} \leq \alpha\left(t_{n}-t_{n-1}\right) \leq \alpha^{n} \eta \tag{4.19}
\end{equation*}
$$

and

$$
\begin{equation*}
t^{\star}-t_{n} \leq \frac{\eta}{1-\alpha} \alpha^{n} \tag{4.20}
\end{equation*}
$$

Proof. Estimate (4.19) holds if

$$
\begin{equation*}
0 \leq L_{0}^{\prime}\left(t_{n}\right)+\int_{0}^{1}\left(L^{\prime}\left(t_{n-1}+t\left(t_{n}-t_{n-1}\right)\right)-L\left(t_{n-1}\right)\right) \mathrm{d} t \leq \alpha I \tag{4.21}
\end{equation*}
$$

holds for all $n \geq 1$.
In view of (4.13) and (4.17), estimate (4.21) holds for $n=1$. We also have by (4.10) and (4.21) that

$$
0 \leq t_{2}-t_{1} \leq \alpha\left(t_{1}-t_{0}\right)
$$

Let us assume that (4.19) and (4.21) hold for all $k \leq n$. Then, we have

$$
\begin{equation*}
t_{n} \leq \frac{1-\alpha^{n}}{1-\alpha} \eta . \tag{4.22}
\end{equation*}
$$

Moreover, (4.19) and (4.21) will hold if

$$
\begin{equation*}
\left\{\int_{0}^{1}\left(L^{\prime}\left(\left(\frac{1-\alpha^{n-1}}{1-\alpha}+t \alpha^{n-1}\right) \eta\right)-L^{\prime}\left(\frac{1-\alpha^{n-1}}{1-\alpha} \eta\right)\right) \mathrm{d} t+\alpha L_{0}^{\prime}\left(\frac{1-\alpha^{n}}{1-\alpha} \eta\right)\right\}-\alpha \leq 0 . \tag{4.23}
\end{equation*}
$$

Estimate (4.23) motivates us to define functions f_{n} (for $\gamma=\alpha$) and show instead

$$
\begin{equation*}
f_{n}(\alpha) \leq 0 \tag{4.24}
\end{equation*}
$$

We have by (4.7)-(4.10), (4.14) and (4.15) that

$$
\begin{equation*}
f_{n+1}(\alpha) \geq f_{n}(\alpha) . \tag{4.25}
\end{equation*}
$$

In view of (4.5) and (4.25), estimate (4.24) will hold if (4.16) holds true. The induction is completed.
It follows that iteration $\left\{t_{n}\right\}$ is non-decreasing, bounded from above by $t^{\star \star}$ (given by (4.17)) and hence converges to t^{\star} satisfying (4.18).

Finally, estimate (4.20) follows from (4.19) by using standard majorizing techniques [5,6]. That completes the proof of Lemma 4.2.

We can show the following semilocal convergence result for (NM).
Theorem 4.3. Let \mathcal{X} be a Banach space with a convergence structure $(\mathcal{X}, \mathcal{V}, \mathcal{W})$ with $\mathcal{V}=(\mathcal{V}, \mathcal{C}$, $\left.\|\cdot\|_{\mathcal{V}}\right)$, an operator $F \in \mathcal{C}^{1}\left(\mathcal{X}_{F} \longrightarrow \mathcal{X}\right)$ with $\mathcal{X}_{F} \subseteq \mathcal{X}_{\text {, an operator } L} \in \mathcal{C}^{1}\left(\mathcal{V}_{L} \longrightarrow \mathcal{V}\right)$ with $\mathcal{V}_{L} \subseteq \mathcal{V}$, an operator $L_{0} \in \mathcal{C}^{1}\left(\mathcal{V}_{L_{0}} \longrightarrow \mathcal{V}\right)$ with $\mathcal{V}_{L} \subseteq \mathcal{V}_{L_{0}}$ and a point $a \in \mathcal{C}$ such that the following hypotheses are satisfied for (3.2)-(3.5):

$$
\begin{align*}
& L(\eta) \leq \eta, \quad \eta=L_{0}^{\infty}(0), \quad \eta \leq a ; \tag{4.26}\\
& L^{\prime}(\eta)^{n} \eta \longrightarrow 0 \quad \text { as } n \longrightarrow \infty ; \tag{4.27}
\end{align*}
$$

and the hypotheses of Lemma 4.2 hold for $\left|x_{1}\right| \leq \eta$ where x_{1} solves

$$
\begin{equation*}
p=\left(I-F^{\prime}(0)\right) p+(-F(0)) . \tag{4.28}
\end{equation*}
$$

Then sequence $\left\{x_{n}\right\}$ generated by (NM) is well defined, remains in $U\left(t^{\star}\right)$ for all $n \geq 0$, and converges to a zero x^{\star} of operator F in $U\left(t^{\star}\right)$.

Moreover, the following estimates hold true for all $n \geq 0$:

$$
\begin{align*}
& / x_{n+1}-x_{n} / \leq t_{n+1}-t_{n}, \tag{4.29}\\
& / x_{n+1}-x^{\star} / \leq t^{\star}-t_{n} . \tag{4.30}
\end{align*}
$$

Furthermore, sequence $\left(x_{n}, t_{n}\right) \in(X \times \mathcal{V})^{N}$ is well defined, remains in \mathcal{W}^{N} and is monotone.

Proof. As in Theorem 3.1, we have that b_{0} is the smallest fixed point of operator L_{0} in $[0, a]$ guaranteed to exist by (3.5), (4.26), (4.27), and Lemma 3.4 since

$$
\begin{align*}
L_{0}^{\prime}(0) \eta+|-F(0)| & \leq L_{0}(\eta)-L_{0}(0)+L_{0}(0) \\
& =L_{0}(\eta)=\eta \tag{4.31}
\end{align*}
$$

Eq. (4.28) is satisfied for $p=\eta$. Therefore, x_{1} is well defined and $\left(x_{1}, \eta\right) \in \mathcal{W}$. We also have

$$
\left|x_{1}\right| \leq L_{0}^{\prime}(0)\left|x_{1}\right|+L(0)=L_{0}^{\prime}(0) \eta+L_{0}(0)=t_{1}
$$

and

$$
t_{1} \leq L_{0}(\eta)-L_{0}(0)+L_{0}(0)=L_{0}(\eta) \leq \eta \leq t^{\star} .
$$

We also have

$$
\begin{aligned}
L_{0}^{\prime}\left(\left|x_{1}\right|\right)\left(t_{1}-t_{0}\right)+\left|-F\left(x_{1}\right)\right| & \leq L_{0}^{\prime}\left(t_{1}\right)\left(t_{1}-t_{0}\right)+\int_{0}^{1}\left(L^{\prime}\left(\left|x_{0}\right|+t c_{0}\right)-L^{\prime}\left(\left|x_{0}\right|\right)\right) c_{0} \mathrm{~d} t \\
& =L_{0}^{\prime}\left(t_{1}\right)\left(t_{1}-t_{0}\right)+\int_{0}^{1}\left(L^{\prime}\left(t c_{0}\right)-L^{\prime}(0)\right) c_{0} \mathrm{~d} t \\
& =t_{2}-t_{1} \leq \alpha\left(t_{1}-t_{0}\right)
\end{aligned}
$$

which together with Lemma 3.4 implies that x_{2} is well defined and (4.29) holds for $n=1$. Let us assume that $\left(x_{k}, t_{k}\right)$ is well defined and monotone for all $k \leq n$, i.e.,

$$
0 \leq\left(x_{k-1}, t_{k-1}\right) \leq\left(x_{k}, t_{k}\right), \quad \text { and } \quad t_{k} \leq t^{\star}, \quad k=1, \ldots, n .
$$

In view of (3.4), (3.6), (3.20), (3.23), and the definition of sequence $\left\{t_{n}\right\}$, we have in turn, for $p=$ $t_{k}-t_{k-1}$,

$$
\begin{align*}
& L_{0}^{\prime}\left(\left|x_{k}\right|\right)\left(t_{k}-t_{k-1}\right)+\left|-F\left(x_{k}\right)\right| \\
& \quad \leq L_{0}^{\prime}\left(t_{k}\right)\left(t_{k}-t_{k-1}\right)+\int_{0}^{1}\left[L^{\prime}\left(\left|x_{k-1}\right|+t c_{k-1}\right)-L^{\prime}\left(\left|x_{k-1}\right|\right)\right] c_{k-1} \mathrm{~d} t \\
& \quad \leq L_{0}^{\prime}\left(t_{k}\right)\left(t_{k}-t_{k-1}\right)+\int_{0}^{1}\left[L^{\prime}\left(\left|t_{k-1}\right|+t\left(t_{k}-t_{k-1}\right)\right)-L^{\prime}\left(\left|t_{k-1}\right|\right)\right]\left(t_{k}-t_{k-1}\right) \mathrm{d} t \\
& \quad=t_{k+1}-t_{k} \leq \alpha\left(t_{k}-t_{k-1}\right) . \tag{4.32}
\end{align*}
$$

It follows from (4.32) and Lemma 3.4 that x_{k+1} is well defined, and (4.29) holds for all n. Sequence t_{k+1} is well defined too and bounded above by t^{\star}. According to Section $2,\left\{x_{n}\right\}$ converges to some $x^{\star} \in U\left(t^{\star}\right)$. By setting $k \longrightarrow \infty$ in the upper bound of $\left|-F\left(x_{k}\right)\right|$ given in (4.32), we obtain that x^{\star} is a zero of operator F.

Estimate (4.30) follows from (4.29) as in Theorem 3.1. That completes the proof of Theorem 4.3.

Remark 4.4. (a) Note that $t^{\star \star}$, given in closed form by (4.17), can replace t^{\star} in Theorem 3.1.
(b) In view of the proof of Theorem 4.3, it follows that sequence $\left\{s_{n}\right\}$ given by

$$
\begin{aligned}
& s_{0}=0, \quad s_{1}=L_{0}(0)+L_{0}^{\prime}(0)\left|x_{1}\right|, \\
& s_{n+1}=s_{n}+L_{0}^{\prime}\left(\left|x_{n}\right|\right) c_{n}+\int_{0}^{1}\left(L^{\prime}\left(\left|x_{n-1}\right|+t c_{n-1}\right)-L^{\prime}\left(\left|x_{n-1}\right|\right)\right) c_{n-1} \mathrm{~d} t
\end{aligned}
$$

is also a finer majorizing sequence for $\left\{x_{n}\right\}$ than t_{n}.
(c) The monotone case. This is a particular case of Theorem 3.1 (or Theorem 4.3) but is omitted here, since it follows along the lines of Theorem 13 in [15], where X is itself partially ordered
and satisfies the conditions for \mathcal{V} in Definition 2.1. We set $\mathcal{X}=\mathcal{V}, \mathcal{D}=\mathcal{C}^{2}$ and $/ . /=I$ (see Case 3 in Example 2.2). Then (NM) is given by

$$
\begin{aligned}
& u_{0}=u, \quad u_{n+1}=u_{n}+\left(A G^{\prime}\left(u_{n}\right)\right)^{\star}\left(-A G\left(u_{n}\right)\right), \\
& G \in \mathcal{C}^{1}\left(\mathcal{V}_{G} \longrightarrow y\right), \quad A \in L(y \longrightarrow X), \\
& u, v \in \mathcal{V}, \quad L_{0}(p)=p-F(p), \quad[u, v] \subseteq \mathcal{V}_{G}, \quad \text { and } \quad a=v-u
\end{aligned}
$$

5. Application and special cases

Application 5.1. Let X be a Banach space with real norm $\|$.$\| . We shall check the conditions of$ Theorem 3.1, and [15, Theorem 5]. Let us assume for simplicity that $F^{\prime}(0)=I$ and that there exists a monotone operator $E:[0, a] \longrightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\left\|F^{\prime}\left(x_{0}\right)^{-1}\left(F^{\prime}(x)-F^{\prime}(y)\right)\right\| \leq E(\|x-y\|)\|x-y\| \tag{5.1}
\end{equation*}
$$

for all $x, y \in U(a)$.
Define L by

$$
\begin{equation*}
L(p)=\eta+\int_{0}^{p} \mathrm{~d} s \int_{0}^{s} \mathrm{~d} t E(t), \quad \eta \geq\left\|F^{\prime}\left(x_{0}\right)^{-1} F\left(x_{0}\right)\right\| . \tag{5.2}
\end{equation*}
$$

We have to solve (3.6) for $E(t) \leq E(a)=\ell$, i.e.,

$$
\begin{equation*}
\eta+\frac{1}{2} \ell a^{2} \leq a, \tag{5.3}
\end{equation*}
$$

which is possible if

$$
\begin{equation*}
h_{K}=\ell \eta \leq \frac{1}{2} \tag{5.4}
\end{equation*}
$$

Condition (5.4) is the-famous for its simplicity and clarity-Kantorovich sufficient convergence hypothesis for (NM) [12, Chapter 12], [4-6,16].

In view of (5.1), there exists a monotone operator $E_{0}:[0, a] \longrightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\left\|F^{\prime}\left(x_{0}\right)^{-1}\left(F^{\prime}(x)-F^{\prime}\left(x_{0}\right)\right)\right\| \leq E_{0}\left(\left\|x-x_{0}\right\|\right)\left\|x-x_{0}\right\| \tag{5.5}
\end{equation*}
$$

for all $x \in U(a)$.
Define operator L_{0} by

$$
\begin{equation*}
L_{0}(p)=\eta+\int_{0}^{p} \mathrm{~d} s \int_{0}^{s} \mathrm{~d} t E_{0}(t) . \tag{5.6}
\end{equation*}
$$

Set

$$
E_{0}(a)=\ell_{0} .
$$

Then it can easily be seen that the hypotheses of Lemma 4.2 and Theorem 4.3 hold if

$$
\begin{equation*}
h_{A H}=\bar{\ell} \eta \leq \frac{1}{2}, \tag{5.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{\ell}=\frac{1}{8}\left(\ell+4 \ell_{0}+\sqrt{\ell^{2}+8 \ell_{0} \ell}\right) \tag{5.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha=\frac{2 \ell}{\ell+\sqrt{\ell^{2}+8 \ell_{0} \ell}} . \tag{5.9}
\end{equation*}
$$

In view of (5.4) and (5.7), we have

$$
\begin{equation*}
h_{K} \leq \frac{1}{2} \Longrightarrow h_{A H} \leq \frac{1}{2} \tag{5.10}
\end{equation*}
$$

but not necessarily vice versa, unless $\ell_{0}=\ell$.
Hence, in this special case, our Theorem 4.3 is weaker than [15, Theorem 5].
In the rest of the study, we provide examples, where (5.4) is violated but (5.7) is satisfied and $\ell_{0}<\ell$. More applications can be found in [1-7,13-15].

Example 5.2. Let $X=y=\mathbb{R}^{2}$ equipped with the max-norm and

$$
x_{0}=(1,1)^{T}, \quad U_{0}=\left\{x:\left\|x-x_{0}\right\| \leq 1-\varpi\right\}, \quad \varpi \in\left[0, \frac{1}{2}\right) .
$$

Define function F on U_{0} by

$$
\begin{equation*}
F(x)=\left(\xi_{1}^{3}-\varpi, \xi_{2}^{3}-\varpi\right), \quad x=\left(\xi_{1}, \xi_{2}\right)^{T} . \tag{5.11}
\end{equation*}
$$

Using hypotheses of Theorem 3.1, we get

$$
\eta=\frac{1}{3}(1-\varpi), \quad \ell_{0}=3-\varpi, \quad \text { and } \quad \ell=2(2-\varpi)
$$

The condition (5.4) is violated, since

$$
\frac{4}{3}(1-\varpi)(2-\varpi)>1 \quad \text { for all } \varpi \in\left[0, \frac{1}{2}\right)
$$

Hence, there is no guarantee that (NM) converges to $x^{\star}=(\sqrt[3]{\varpi}, \sqrt[3]{\varpi})^{T}$, starting at x_{0}.
However, our condition (5.7) is true for all $\varpi \in I=\left[.450339002, \frac{1}{2}\right.$). Hence, the conclusions of our Theorem 3.1 can apply for solving Eq. (5.11) for all $\varpi \in I$.

Example 5.3. Let $\mathcal{X}=\mathcal{y}=\mathcal{C}[0,1]$ be the space of real-valued continuous functions defined on the interval $[0,1]$ with norm

$$
\|x\|=\max _{0 \leq s \leq 1}|x(s)| .
$$

Let $\theta \in[0,1]$ be a given parameter. Consider the "cubic" integral equation

$$
\begin{equation*}
u(s)=u^{3}(s)+\lambda u(s) \int_{0}^{1} q(s, t) u(t) \mathrm{d} t+y(s)-\theta . \tag{5.12}
\end{equation*}
$$

Here the kernel $q(s, t)$ is a continuous function of two variables defined on $[0,1] \times[0,1]$; the parameter λ is a real number called the "albedo" for scattering; $y(s)$ is a given continuous function defined on $[0,1]$ and $x(s)$ is the unknown function sought in $\mathcal{C}[0,1]$. Equations of the form (5.12) arise in the kinetic theory of gases [5]. For simplicity, we choose $u_{0}(s)=y(s)=1$, and $q(s, t)=\frac{s}{s+t}$, for all $s \in[0,1]$ and $t \in[0,1]$, with $s+t \neq 0$. If we let $\mathscr{D}=U\left(u_{0}, 1-\theta\right)$, and define the operator F on \mathscr{D} by

$$
\begin{equation*}
F(x)(s)=x^{3}(s)-x(s)+\lambda x(s) \int_{0}^{1} q(s, t) x(t) \mathrm{d} t+y(s)-\theta, \tag{5.13}
\end{equation*}
$$

for all $s \in[0,1]$, then every zero of F satisfies Eq. (5.12). We have the estimates

$$
\max _{0 \leq s \leq 1}\left|\int \frac{s}{s+t} \mathrm{~d} t\right|=\ln 2
$$

Therefore, if we set $\xi=\left\|F^{\prime}\left(u_{0}\right)^{-1}\right\|$, then it follows from hypotheses of Theorem 3.1 that

$$
\begin{aligned}
& \eta=\xi(|\lambda| \ln 2+1-\theta), \\
& \ell=2 \xi(|\lambda| \ln 2+3(2-\theta)) \quad \text { and } \quad \ell_{0}=\xi(2|\lambda| \ln 2+3(3-\theta)) .
\end{aligned}
$$

It follows from Theorem 3.1 that if condition (5.7) holds, then problem (5.12) has a unique solution near u_{0}. This assumption is weaker than the one given before using the Newton-Kantorovich hypothesis (5.4).

Note also that $\ell_{0}<\ell$ for all $\theta \in[0,1]$.
Example 5.4. Consider the following nonlinear boundary value problem [5]:

$$
\left\{\begin{array}{l}
u^{\prime \prime}=-u^{3}-\gamma u^{2} \\
u(0)=0, \quad u(1)=1 .
\end{array}\right.
$$

It is well known that this problem can be formulated as the integral equation

$$
\begin{equation*}
u(s)=s+\int_{0}^{1} Q(s, t)\left(u^{3}(t)+\gamma u^{2}(t)\right) \mathrm{d} t \tag{5.14}
\end{equation*}
$$

where Q is the Green function

$$
Q(s, t)= \begin{cases}t(1-s), & t \leq s \\ s(1-t), & s<t .\end{cases}
$$

We observe that

$$
\max _{0 \leq s \leq 1} \int_{0}^{1}|Q(s, t)|=\frac{1}{8} .
$$

Let $x=y=\mathcal{C}[0,1]$, with norm

$$
\|x\|=\max _{0 \leq s \leq 1}|x(s)| .
$$

Then problem (5.14) is in the form (1.1), where $F: \mathscr{D} \longrightarrow y$ is defined as

$$
[F(x)](s)=x(s)-s-\int_{0}^{1} Q(s, t)\left(x^{3}(t)+\gamma x^{2}(t)\right) \mathrm{d} t,
$$

and

$$
G(x)(s)=0 .
$$

It is easy to verify that the Fréchet derivative of F is defined in the form

$$
\left[F^{\prime}(x) v\right](s)=v(s)-\int_{0}^{1} Q(s, t)\left(3 x^{2}(t)+2 \gamma x(t)\right) v(t) \mathrm{d} t .
$$

If we set $u_{0}(s)=s$ and $\mathscr{D}=U\left(u_{0}, R\right)$, then since $\left\|u_{0}\right\|=1$, it is easy to verify that $U\left(u_{0}, R\right) \subset$ $U(0, R+1)$. It follows that $2 \gamma<5$; then

$$
\begin{aligned}
& \left\|I-F^{\prime}\left(u_{0}\right)\right\| \leq \frac{3\left\|u_{0}\right\|^{2}+2 \gamma\left\|u_{0}\right\|}{8}=\frac{3+2 \gamma}{8}, \\
& \left\|F^{\prime}\left(u_{0}\right)^{-1}\right\| \leq \frac{1}{1-\frac{3+2 \gamma}{8}}=\frac{8}{5-2 \gamma}, \\
& \left\|F\left(u_{0}\right)\right\| \leq \frac{\left\|u_{0}\right\|^{3}+\gamma\left\|u_{0}\right\|^{2}}{8}=\frac{1+\gamma}{8} \\
& \left\|F\left(u_{0}\right)^{-1} F\left(u_{0}\right)\right\| \leq \frac{1+\gamma}{5-2 \gamma} .
\end{aligned}
$$

On the other hand, for $x, y \in \mathscr{D}$, we have

$$
\left[\left(F^{\prime}(x)-F^{\prime}(y)\right) v\right](s)=-\int_{0}^{1} Q(s, t)\left(3 x^{2}(t)-3 y^{2}(t)+2 \gamma(x(t)-y(t))\right) v(t) \mathrm{d} t .
$$

Consequently (see [5]),

$$
\begin{aligned}
& \left\|F^{\prime}(x)-F^{\prime}(y)\right\| \leq \frac{\gamma+6 R+3}{4}\|x-y\|, \\
& \left\|F^{\prime}(x)-F^{\prime}\left(u_{0}\right)\right\| \leq \frac{2 \gamma+3 R+6}{8}\left\|x-u_{0}\right\| .
\end{aligned}
$$

Therefore, the conditions of Theorem 3.1 hold with

$$
\eta=\frac{1+\gamma}{5-2 \gamma}, \quad \ell=\frac{\gamma+6 R+3}{4}, \quad \ell_{0}=\frac{2 \gamma+3 R+6}{8} .
$$

Note also that $\ell_{0}<\ell$.
Finally note that the results obtained here compare favorably to the ones given in [11,17,18] for the special case where \mathcal{X} is a Banach space with real norm $\|$.$\| .$

References

[1] I.K. Argyros, Generalized conditions for the convergence of inexact Newton methods on Banach spaces with a convergence structure and applications, Pure Math. Appl. 7 (1996) 197-214.
[2] I.K. Argyros, Inexact Newton methods and nondifferentiable operator equations on Banach spaces with a convergence structure, Approx. Theory Appl. (N.S.) 13 (1997) 91-103.
[3] I.K. Argyros, Improving the rate of convergence of Newton methods on Banach spaces with a convergence structure and applications, Appl. Math. Lett. 10 (1997) 21-28.
[4] I.K. Argyros, A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Appl. 298 (2004) 374-397.
[5] I.K. Argyros, in: C.K. Chui, L. Wuytack (Eds.), Computational Theory of Iterative Methods, in: Studies in Computational Mathematics, vol. 15, Elsevier Publ. Co., New York, USA, 2007.
[6] I.K. Argyros, S. Hilout, Efficient Methods for Solving Equations and Variational Inequalities, Polimetrica Publisher, Milano, Italy, 2009.
[7] I.K. Argyros, S. Hilout, Enclosing roots of polynomial equations and their applications to iterative processes, Surveys Math. Appl. 4 (2009) 119-132.
[8] I.K. Argyros, S. Hilout, Improved generalized differentiability conditions for Newton-like methods, J. Complexity 26 (2010) 316-333.
[9] E. Bohl, Monotonie: Lösbarkeit und Numerik bei Operatorgleichungen, in: Springer Tracts in Natural Philosophy, vol. 25, Springer-Verlag, Berlin, New York, 1974, (German).
[10] P. Deuflhard, G. Heindl, Affine invariant convergence theorems for Newton's method and extensions to related methods, SIAM J. Numer. Anal. 16 (1979) 1-10.
[11] J.A. Ezquerro, M.A. Hernández, Generalized differentiability conditions for Newton's method, IMA J. Numer. Anal. 22 (2002) 187-205.
[12] L.W. Kantorowitsch, G.P. Akilow, in: A.P. Robertson (Ed.), Functional Analysis in Normed Spaces (D.E. Brown, Trans.), in: International Series of Monographs in Pure and Applied Mathematics, vol. 46, The Macmillan Co., New York, 1964, (Translated from the Russian).
[13] P.W. Meyer, The modified Newton method in generalized Banach spaces, Numer. Math. 43 (1984) 91-104.
[14] P.W. Meyer, Newton's method in generalized Banach spaces, Numer. Funct. Anal. Optim. 9 (1987) 249-259.
[15] P.W. Meyer, A unifying theorem on Newton's method, Numer. Funct. Anal. Optim. 13 (1992) 463-473.
[16] J.M. Ortega, W.C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, New York, London, 1970.
[17] P.D. Proinov, General local convergence theory for a class of iterative processes and its applications to Newton's method, J. Complexity 25 (2009) 38-62.
[18] P.D. Proinov, New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems, J. Complexity 26 (2010) 3-42.
[19] J.S. Vandergraft, Newton's method for convex operators in partially ordered spaces, SIAM J. Numer. Anal. 4(1967) 406-432.

