
Physics Letters B 743 (2015) 143–146
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Wheeler–DeWitt equation for 4D supermetric and ADM with massless 

scalar field as internal time

Leonid Perlov

Department of Physics, University of Massachusetts, Boston, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 January 2015
Received in revised form 11 February 2015
Accepted 13 February 2015
Available online 18 February 2015
Editor: B. Grinstein

The main result of this paper is the 4-dimensional supermetric version of the Wheeler–DeWitt equation, 
that uses only one time variable for the both roles – as internal time and for the ADM split, as 
Hamiltonian evolution parameter. We study the ADM split with respect to the scalar massless field 
serving as internal time. The 4-dimensional hyper-surfaces �φ=const span the 5-dimensional space with 
the scalar field being the fifth coordinate. As a result we obtain the analog of the Wheeler–DeWitt 
equation for the 4-dimensional supermetric. We compare the ADM action with the non-compactified 
Kaluza–Klein action for the same physical space and obtain the equation for the extrinsic curvature and 
the scalar massless field.

© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The massless scalar field serves as internal time in Einstein 
and Wheeler–DeWitt equations used in Loop Quantum Cosmol-
ogy [1,2]. One regards the massless scalar field as a parameter 
connecting the space–time coordinates. By doing that one does 
not replace the Lorentz time variable with the massless scalar 
field, but instead adds one more time variable, since the Lorentz 
time plays an important role in WDW derivation being an ADM 
split variable. The original form of the equation [3] uses the ADM 
split of the 4-dimensional Riemann space by the �t=const hyper-
surfaces. Therefore there are eventually two time variables in the 
Loop Quantum Cosmology version of WDW equation.

The goal of the current research is to use only one time vari-
able – the massless scalar field, for both purposes: the ADM 
split and as internal time. In order to achieve this we consider a 
4-dimensional Lorentz space as embedded into the 5-dimensional 
space by adding the massless scalar field as a fifth coordinate. We 
define a new ADM split by the �φ=const , scalar field equals con-
stant hyper-surfaces, and derive the analog of the Wheeler–DeWitt 
equation for the 4-dimensional supermetric. Such equation will de-
scribe the evolution of the 4-dimensional Lorentz hyper-surfaces 
along the scalar massless field.

We derive the dynamics equation by considering the Hilbert–
Einstein 5-dimensional action in two different forms: the new 

E-mail address: leonid.perlov@umb.edu.
http://dx.doi.org/10.1016/j.physletb.2015.02.030
0370-2693/© 2015 The Author. Published by Elsevier B.V. This is an open access article 
SCOAP3.
ADM split and the non-compactified version of the Kaluza–Klein 
formalism.

The Kaluza–Klein 5-dimensional unified theory was known for 
a long time [7]. By varying the Hilbert–Einstein vacuum action in 
the 5-dimensional space, one obtains the 4-dimensional Einstein 
equation with the electromagnetic and matter stress-tensor on the 
right hand side plus the Maxwell equation. The magic is proba-
bly due to the Campbell conjecture stating that any 4-dimensional 
Riemann space can be embedded into the 5-dimensional Ricci flat 
space [10]. One had yet to explain why the fifth dimension was not 
observable in the classical world. To address it, Klein introduced 
the compactified model, [8], where the fifth coordinate belonged 
to a compact group.

In the WDW equation used in the Loop Quantum Cosmology 
the fifth coordinate plays the role of internal time and has a physi-
cal meaning of the scalar massless field. Therefore there is no need 
in any compactification procedures. Hence we use in this paper the 
non-compactified Kaluza–Klein formalism.

A few recent papers studied the conventional ADM in the 
5-dimensional space [4,5,9], where the split was carried out by 
the time-constant �t=const hyper-surfaces, rather than by matter-
constant �φ=const hyper-surfaces used in this paper. Following that 
research, the 3-dimensional supermetric Wheeler–DeWitt equation 
was studied in [6].

The paper is organized as follows. In Section 2, we carry out 
the new ADM split by the �φ=const hyper-surfaces. In Section 3, 
we consider Kaluza–Klein non-compactified representation. In Sec-
tion 4, we derive the 4-dimensional supermetric Wheeler–DeWitt 
equation. We conclude with the discussion in the final Section 5.
under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

http://dx.doi.org/10.1016/j.physletb.2015.02.030
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:leonid.perlov@umb.edu
http://dx.doi.org/10.1016/j.physletb.2015.02.030
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2015.02.030&domain=pdf


144 L. Perlov / Physics Letters B 743 (2015) 143–146
Fig. 1. The 4 + 1 split with the lapse function φ and the shift vector �φ.

2. ADM split with the massless scalar field as internal time

2.1. 5D ADM spacelike and timelike split

We begin with the ADM split in the 5-dimensional Riemann 
space with respect to the scalar massless field as internal time. The 
Riemann space coordinates are (x0, x1, x2, x3, y), the metric below 
is a 4-dimensional Lorentz metric plus the massless scalar field 
corresponding to the fifth coordinate. For the 5-dimensional metric 
we use the notation g̃ AB for the 4-dimensional metric we use gμν , 
where the indices are μ, ν = 0, . . . , 3 and A, B = 0, . . . , 4⎛
⎜⎝

gμν · · · 0
...

. . .
...

0 0 εφ2

⎞
⎟⎠

gμν – is a four dimensional Lorentz space metric, φ(xμ) is a mass-
less scalar field, ε equals to 1 for the spacelike and −1 for the 
timelike split hypersurface cases.

Consider the 4 +1 split of the 5-dimensional space–time-matter 
manifold M by the four dimensional hyper-surfaces �φ=const .

We proceed similar to 3 + 1 case with φ playing the role of 
the time lapse N , and �φ playing the role of the time shift �N , with 
the very important difference: we consider both �φ=const spacelike 
and timelike cases. The spacelike case corresponds to ε = 1, while 
the timelike to ε = −1.

We project the 5-dimensional covariant derivative and decom-
pose it into lapse and shift:

5∇u v = ε g̃(5∇u v,n)n + (5∇u v − ε g̃(5∇u v,n)n) (1)

g̃(n,n) = ε, and g̃(n, v) = 0,∀ v ∈ T p� (2)

We then define the extrinsic curvature to be the first term 
in (1)

K (u, v)n = ε g̃(5∇u v,n)n = −ε g̃(5∇un, v)n (3)

As for the second term in (1), it is a 4-dimensional covariant 
derivative in the 4-dimensional space.

4∇u v = 5∇u v − ε g̃(5∇u v,n)n = 5∇u v − K (u, v)n (4)

It is easy to prove that the expression above is a 4-dimensional 
connection (covariant derivative). One should prove that it satisfies 
the Leibniz law, preserves the metric and is torsion free.

By applying the above formula to the massless scalar field we 
obtain (see Fig. 1)

∂y = εφn + �φ φ = g̃(∂y,n) (5)
5∇μ∂ν = εKμνn + 4�λ

μν∂λ (6)

5∇μn = −εK λ
μ∂λ (7)
We use (7) in order to project the 5-dimensional Riemann cur-
vature tensor to the 4-dimensional subspace and obtain the Gauss 
and Codazzi equations for the 5-dimensional space.

By the Riemann tensor definition:

5 R(∂μ, ∂ν)∂λ = 5∇ν
5∇μ∂λ − 5∇μ

5∇ν∂λ (8)

and (6), (7) we obtain the Gauss equation in 5-dimensional space-
like ADM

5 R4
μνλ = 4∇μKνλ − 4∇ν Kμλ (9)

and the Codazzi equation for the 5-dimensional ADM

5 Rσ
μνλ = 4 Rσ

μνλ + ε(KμλK σ
ν − KνλK σ

μ) (10)

By contracting the indexes in the above formula we get the ex-
pression for the 4 + 1 scalar Riemann curvature

5 R = 4 R + ε(K 2 − Kμν K μν) (11)

2.2. 5-dimensional ADM Hamiltonian

The Hilbert–Einstein 5-dimensional vacuum space action with 
the metric as above

S =
∫

dy L = 1

(16π G̃)

∫
dy dx4

√
g̃ 5 R (12)

By using (11) we can now write the action via 4 + 1 decompo-
sition:

S = 1

(16π G̃)

∫
dyd4x

√
εφ

√−g (4 R + ε(K 2 − Kμν K μν)) (13)

we used the 
√

g̃ = √
εφ

√−g , and G̃ is a 5-dimensional gravita-
tional constant.

Since we are considering the case of the comoving coordinates 
�φ = 0, i.e. only lapse and no shift, the extrinsic curvature is

Kμν = ε

2φ

∂ gμν

∂ y
, K A4 = 0 (14)

From (13) and (14) we obtain the expression for the momen-
tum

πμν = ∂L

∂
�
gμν

=
√

ε
√−g

16π G̃
ε(gμν K − K μν), πA4 = 0 (15)

where we used �
gμν to denote the derivative with respect to the 

fifth coordinate ∂ gμν

∂ y to distinguish it from the usual dot symbol, 
the derivative with respect to time variable x0.

From the momentum expression and Legendre transform we 
obtain the Hamiltonian:

HADM =
√

ε
√−g

16π G̃

∫
d4x φ(ε(K 2 − K μν Kμν) − 4 R)

=
√

ε
√−g

16π G̃

∫
d4x φH (16)

Thus the Hamiltonian constraint becomes:

H =
(√

ε
√−g

16π G̃

)
(ε(K 2 − K μν Kμν) − 4 R) (17)
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2.3. 4-Dimensional supermetric

We can now see if the 4-dimensional supermetric can be de-
fined similar to DeWitt’s [3] 3-dimensional one. Fortunately it 
works. One can check that

2(Kμν K μν − K 2) = (K μν − gμν K )(K αβ − gαβ K )(gμα gνβ

+ gμβ gνα − 2

3
gμν gαβ) (18)

or by introducing the 4-dimensional supermetric notation

Gμναβ = (gμα gνβ + gμβ gνα − 2

3
gμν gαβ) (19)

and recalling the expression (15) for the momentum πμν we can 
rewrite (18) as

2(Kμν K μν − K 2) =
(

16π G̃√
ε
√−g

)2
1

ε2
πμνπαβ Gμναβ (20)

We can now obtain the expression for the ADM Hamiltonian. 
From (17) and (20)

H = −
(

8π G̃
√

ε√−gε2

)
πμνπαβ Gμναβ −

(√
ε
√−g

16π G̃

)
4 R (21)

3. Kaluza–Klein non-compactified theory

In this section by using Kaluza–Klein non-compactified theory, 
we will obtain a different expression for the action of the same 
physical space. It will be expressed in the terms of the mass-
less scalar field. By comparing it with the action in terms of ex-
trinsic curvature obtained in the previous section we will derive 
4-dimensional supermetric analog of the Wheeler–DeWitt equa-
tion.

We begin with the introduction to the Kaluza–Klein theory. One 
considers the 5-dimensional Hilbert–Einstein action [10] in vac-
uum

S = 1

(16π G̃)

∫
dy dx4

√
g̃ 5 R (22)

and by varying it with respect to the following 5-dimensional met-
ric⎛
⎜⎝

gμν + φ2 Aμ Aν · · · φ2 Aμ

...
. . .

...

φ2 Aν · · · εφ2

⎞
⎟⎠

one obtains the Einstein equation in 4-dimensional space with 
the electromagnetic and matter stress energy tensor on the r.h.s.
plus the Maxwell equation for the electromagnetic field. We con-
sider the case Aμ = 0 with no electromagnetic field and only the 
massless scalar field φ being present. The metric then becomes ex-
actly as considered in the previous section. The action (22) is also 
the same as the one considered in the 5-dimensional ADM model 
above. Thus we have two formalisms describing the same physical 
system: 5D ADM and 5D Kaluza–Klein.

The 5-dimensional Riemann scalar can be expressed by using 
4-dimensional Riemann scalar and the massless scalar field φ as 
follows:

5 R = 4 R + g̃44 5 R44 = 4 R + ε 5 R44

φ2
(23)

The last term can be expressed via the 5-dimensional metric 
[11] to obtain
5 R44 = −εφ � φ −
�
gαβ �

gαβ

2
− gαβ ��

gαβ

2
+

�

φgαβ �
gαβ

2φ

− gμβ gαν �
gαβ

�
gμν

4
, (24)

where � φ = gμν∇ν
∂φ
∂xμ .

We can now rewrite the action expression (22) by using (23)

S = 1

(16π G̃)

∫
dy dx4√εφ

√−g

(
4 R + ε 5 R44

φ2

)
(25)

or by using (24)

S = 1

(16π G̃)

∫
dy dx4√εφ

√−g

(
4 R − ε2 �φ

φ
− ε

�
gαβ �

gαβ

2φ2

− εgαβ ��
gαβ

2φ2
+

�

φεgαβ �
gαβ

2φ3
− εgμβ gαν �

gαβ
�
gμν

4φ2

)
(26)

From (26) we obtain the momentum

πφ = ∂L

∂
�

φ
=

√−g

(16π G̃)

√
εεgαβ �

gαβ

2φ2
(27)

4. Wheeler–DeWitt equation for 4-dimensional supermetric

By comparing the ADM and Kaluza–Klein actions (13) and (25)
we obtain the following equation expressing the extrinsic curva-
ture via the massless scalar field:

ε(K 2 − Kμν K μν) = ε 5 R44

φ2
(28)

by using the expression (20) for 4-dimensional supermetric, it be-
comes:

−1

2

(
16π G̃√−g

)2

πμνπαβ Gμναβ =
5 R44

φ2
(29)

by substituting for 5 R44 its expression from (24), we obtain:

−1

2

(
16π G̃√−g

)2

πμνπαβ Gμναβ

= −ε� φ

φ
−

�
gαβ �

gαβ

2φ2
− gαβ ��

gαβ

2φ2
+

�

φgαβ �
gαβ

2φ3

− gμβ gαν �
gαβ

�
gμν

4φ2
(30)

After substituting πφ from (27)

−1

2

(
16π G̃√−g

)2

πμνπαβ Gμναβ

= 16π G̃√
ε
√−g

1

φ
πφ

�

φ − ε� φ

φ
−

�
gαβ �

gαβ

2φ2
− gαβ ��

gαβ

2φ2

− gμβ gαν �
gαβ

�
gμν

4φ2
(31)

We carry out the quantization as in DeWitt’s paper [3], i.e., by 
replacing the momenta with the quantum operators:

πμν → −i
∂

∂ gμν

πφ → −i
∂

∂φ
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While the spacelike case (ε = 1) leaves us with the complex 
i in the r.h.s. of the equation, for the timelike case ε = −1 it 
becomes real and we obtain the analog of the quantum Wheeler–
DeWitt equation for the 4-dimensional supermetric:

1

2

(
16π G̃√−g

)2

Gμναβ

∂

∂ gμν

∂

∂ gαβ

�

= ±16π G̃√−g

1

φ

�

φ
∂

∂φ
� −

(
ε� φ

φ
−

�
gαβ �

gαβ

2φ2
− gαβ ��

gαβ

2φ2

− gμβ gαν �
gαβ

�
gμν

4φ2

)
� (32)

or, when writing the wave function � with its argument:

1

2

(
16π G̃√−g

)2

Gμναβ

∂

∂ gμν

∂

∂ gαβ

�(gμν,φ)

= ±16π G̃√−g

1

φ

�

φ
∂

∂φ
�(gμν,φ) −

(
ε� φ

φ
−

�
gαβ �

gαβ

2φ2

− gαβ ��
gαβ

2φ2
− gμβ gαν �

gαβ
�
gμν

4φ2

)
�(gμν,φ) (33)

We have to mention that when one uses the scalar field as in-
ternal time, the formalism depends on the time function φ and 
might fail if it has critical points or its gradient becomes space-
like. The obtained Wheeler–DeWitt equation for the 4-dimensional 
supermetric resembles the conventional Schrödinger equation as it 
contains the internal time derivative in the right hand side and, 
unlike the original Wheeler–DeWitt equation, presents the evolu-
tion with respect to internal time.

5. Discussion

We considered the 4-dimensional Lorentz manifold embedded 
into the 5-dimensional space with the massless scalar field to be 
the fifth coordinate. We used the massless scalar fields as internal 
time and performed the ADM split by the hyper-surfaces �φ=const . 
We considered both spacelike and timelike cases. As a result we 
obtained the Hamiltonian formalism for the 4-dimensional super-
metric similar to the DeWitt 3-dimensional supermetric [3]. We 
then studied the same physical space from the Kaluza–Klein point 
of view and obtained the different expression for the system action 
expressed via the massless scalar field. By using both actions from 
ADM and Kaluza–Klein we obtained the 4-dimensional analog of 
the Wheeler–DeWitt equation with the 4-dimensional supermetric. 
Finally we were able to quantize that equation similar to DeWitt’s 
approach in [3], i.e., by replacing the momentum functions with 
the momentum operators, and obtained the quantum Wheeler–
DeWitt equation for the timelike case. The obtained equation re-
sembles the conventional Schrödinger equation as it contains the 
internal time derivative in the right hand side and, unlike the orig-
inal WDW, presents the evolution with respect to it.
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