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Abstract 

Since the discovery of isotopic fractionation of mercury in nature, mass dependent fractionation (MDF) and mass independent 
fractionation (MIF) of mercury isotopes are used as a tracer to understand the mercury cycle. MIF is a powerful tool in 
understanding the Hg transformations and reaction mechanisms. Here we look into the MIF of the two odd isotopes of mercury 
(199Hg and 201Hg) in sediment samples collected from lakes and springs of Florida, Lake Erie, and Yucatan Peninsula. The 

199Hg and 201Hg of the sediments range from + 0.52‰ to -0.48‰.  From the isotopic signature we interpret the possible source 
of Hg in the Yucatan Peninsula carbonate to be Hg(II) from the water column. Hg in the Florida lakes and spring sediments 
primarily comes from litterfall. Lake Erie appears to have an anthropogenic source. This study suggests that the MIF signature of 
Hg isotopes can be used to qualitatively determine the primary source(s) of Hg in sediments.  
 
© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of AIG-11. 
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1. Introduction  

The discovery of MDF and MIF of mercury isotopes in natural samples like fish [1,2,3,4,5] human hair from gold 
mining communities [6], epiphytes [7,8], peat cores and coal bearing formations [7,9,10] cinnabar ore [11,12], 
source rocks in the upper crust [12], hydrothermal systems [12,13,14], arctic snow [15], Great Lake rain and vapour 
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[16], atmospheric Hg species [17]  and sediments [2,18,19,20,21,22,23] has provided new insights into the cycling 
of this toxic element in the environment. Hg isotopic composition in sediments can provide varied information 
regarding source, changing physicochemical condition, paleo-environment etc. In this study we evaluated the 
feasibility of using the Hg isotopic signature in sedimentary records to qualitatively assess the primary sources of 
mercury in sediments.  For this purpose we used the isotopic signature of a large variety of natural samples reported 
in the literature and the results of experimental studies to characterize the Hg sources.  

2. Sampling and Methods 

Sediments from 2 lakes (Snag and Marquis), 6 springs (Big Spring, Bluehole, Mill Pond, Madison Blue, Manatee 
and Wacissa) in Florida, Lake Erie (Ohio) and carbonate sediments from the Celestum Lagoon on the Yucatan 
Peninsula were analysed for Hg concentrations and Hg isotope ratios. Samples from the Celestum Lagoon were 
collected using acrylic push cores [24]. Lake Erie samples were collected using a mini box core. Sediment cores 
from the Florida lakes were collected using a polycarbonate push core to preserve the sediment –water interface. For 
the Florida springs, bedload sediments were collected from the sediment-water interface using a drag bucket by the 
Florida Department of Environmental Protection. 
 
1-5 grams of wet sediment was leached in aqua regia and 30% H2O2 in a tightly capped 120 ml Savillex PFA 
container at room temperature for 24 hrs, placed on a platform shaker for 2 hours, ultrasonicated and filtered. The 
same technique was applied to SRM NIST 2704 Buffalo River Sediment to confirm >98% recovery of mercury. The 
samples were analysed for Hg concentrations and isotope ratios using a cold-vapor introduction system (CETAC 
HGX – 200) interfaced to a MC-ICP-MS. Inside HGX-200, the sample solutions were mixed with 5% w/v% SnCl2 
in 1 N HCl to generate cold Hg vapour. Typical instrument sensitivity was 200 mV on 202Hg on 1 ppb NIST SRM 
3133 Hg standard with an uptake rate of 350 μl min−1 at 6 rpm pump speed. Washout time was ~10 min until the 
wash signal stabilize at <1% of the preceding measured solution. The SnCl2 solution was prepared daily from a 98% 
pure SnCl2·2H2O salt (ACROS) in 1 M HCl and purged with argon gas for 30 min to remove any traces of Hg. 
HNO3 and HCl used for the experiments were all purified in-house through sub boiling, double distillation. The total 
procedural blank, including instrumental background is <10 pg, and insignificant relative to the amounts of Hg 
extracted from the samples. Instrumental mass bias correction was done using matrix matched sample-standard 
bracketing technique [3,17]. The isotopic compositions of Hg were measured using single block of 50 cycles with 8s 
integration/cycle. The mercury isotope ratios are expressed relative to the NIST 3133 Hg standard reference material 
in  (‰) notation: AHg = [(AHg/198Hg)sample/(AHg/198Hg)NIST3133] -1 x1000o/oo. MIF is reported as Δ notation as the 
difference between the measured and the theoretical MDF value [25].  

  
Total Hg concentrations of wet sediments measured in the MC-ICP-MS were calculated by comparing the signal 
intensity of 202Hg of 1 ppb bracketing standards with the sample. The total Hg concentrations for the Snag Lake 
sediments were compared to the values obtained by analysing the samples by Cold Vapor Atomic Fluorescence 
Spectrometry using a Tekran 2600 Mercury Analyzer (EPA method 1631). The maximum differences in 
concentration obtained by these two different methods were ≤10%. Given the fact that the measurements were made 
on different sample splits using different analytical techniques, we consider the agreement to be quite acceptable. 

3. Results and Discussions 

All the sediment samples show MDF and MIF of 199Hg and 201Hg isotopes, with 199Hg and 201Hg values ranging 
between -0.46 to 0.52 ‰. We did not observe any MIF of 200Hg as has been observed in atmospheric samples in 
some studies [16, 17, 26]. The top 20 cm of the Lake Erie sediments show positive 202Hg whereas all the other 
sediments show negative 202Hg. Sediments from Florida lakes and springs show negative MIF whereas those from 
Lake Erie and the Yucatan Peninsula show positive MIF of the odd isotopes (Table 1).  

The primary source of mercury to most aquatic systems (including their watersheds) is from the atmosphere through 
wet and dry deposition, urban and industrial discharges and catchment weathering. Catchment erosion contributes a 
small fraction of the total mercury in the sediments unless the bedrock in the catchment area is Hg bearing ore [27]. 
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Variations in the isotopic composition of Hg in the sediments are likely due to a combination of processes: different 
sources of Hg and the subsequent effects from various physicochemical reactions in the water column and 
sediments. We assumed that the primary sources of mercury in the sediments could be 1. Direct deposition of 
anthropogenic mercury from local point sources, 2. Direct deposition of atmospheric mercury from regional and far-
distant sources, 3. Residual mercury in the form of Hg(II) scavenged from water column after partial photoreduction 
of Hg(II) and methylmercury 4. Mercury associated with litterfall from terrestrial plants surrounding the water body. 
Once mercury gets deposited in the sediments, bacterial methylation and demethylation of Hg(II) inside sediments 
are thought to be significant processes [28,29,30] that can cause isotopic fractionation. Experimental studies 
demonstrated that methylation-demethylation can only produce MDF but not MIF [31,32,33,34]. However bacterial 
methylation-demethylation causing MIF in lake sediments have been postulated by previous studies [35] based on 
the argument that bacterial communities in natural habitats can have numerous combinations of species and strains 
interacting with each other and the few that can be cultured yield only limited or misleading information. MIF of 
mercury has been observed during dark abiotic reduction experimental studies [36] which can be a possible in situ 
process in the sediments and such processes can be identified from the distinctive 199Hg/ 201Hg slopes. For our 
study we use the interpretations from experimental results, 199Hg/ 201Hg slopes and Hg isotopic signature of varied 
natural samples to understand the observed Hg isotopic signature of the sediments.    
Table 1. Hg isotopic ratios and Hg concentrations (wet weight) of sediment samples.  
 

HgT (ppb) Hg‰ Hg‰ Hg‰ Hg‰

Madison Blue 1 -0.21 -0.22 -0.04 -0.26 
Mill Pond 1 -1.75 -0.22 0.05 -0.28 

Bigspring-1 6 -0.78 -0.14 0.04 -0.15 
Bigspring- 2 7 -0.49 -0.19 0.03 -0.16 
Bigspring- 3 6 -0.63 -0.16 0.03 -0.16 

Bluehole Spring 6 -1.14 -0.19 0.03 -0.23 
Manatee Spring-1 3 -1.52 -0.16 0.05 -0.21 
Manatee Spring-2 3 -1.16 -0.24 0.02 -0.20 
Wacissa Spring 6 -0.54 -0.16 -0.01 -0.14 

Marquis 0-1 11 -1.18 -0.28 0.05 -0.17 
Marquis 2-3 13 -0.67 -0.29 0.07 -0.18 

Marquis 12-13 10 -1.08 -0.34 0.02 -0.22 
Marquis 22-24 3 -0.93 -0.40 0.04 -0.46 
Cypress leaves 2 -1.52 -0.17 0.02 -0.25 

Snag 1-2 50 -1.21 -0.24 0.07 -0.19 
Snag 2-3 50 -0.40 -0.24 0.02 -0.26 
Snag 3-4 45 -1.02 -0.18 0.08 -0.17 
Snag 5-6 47 -0.69 -0.24 0.08 -0.20 

Snag 12-14 45 -0.60 -0.26 0.06 -0.21 
Snag 18-20 39 -0.51 -0.33 0.03 -0.31 
Snag 20-22 45 -0.46 -0.45 0.02 -0.41 
Snag 22-24 18 -0.98 -0.34 0.06 -0.37 
Snag 24-26 22 -1.79 -0.37 0.00 -0.44 
Snag 26-28 20 -0.48 -0.31 0.03 -0.35 

Cypress  leaves 2 -1.73 -0.58 0.07 -0.49 

Yucatan 1-2 3 -1.16 0.42 0.00 0.35 
Yucatan 2-4 3 -1.17 0.33 -0.01 0.30 
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Yucatan 10-12 2 -2.52 0.51 0.04 0.46 
Yucatan 20-22 1 -2.91 0.51 0.01 0.49 
Yucatan 32-34 3 -1.74 0.52 0.05 0.42 

Erie 2-3 46 0.14 0.06 -0.01 0.10 
Erie 6-7 48 0.14 0.07 0.00 0.08 
Erie 8-9 46 0.34 0.15 0.00 0.10 

Erie 9-10 46 0.50 0.11 0.03 0.11 
Erie 15-20 58 0.50 0.09 0.05 0.10 
Erie 25-30 12 -0.12 0.29 -0.06 0.19 
Erie 30-35 9 -0.40 0.20 0.05 0.16 
Erie 35-40 6 -1.06 0.17 0.00 0.12 

 

 

Fig. 1.  Hg isotope MIF  (Δ201Hg‰ vs. Δ199Hg‰, 2SD = 0.1‰) of sediment samples compared with (A) atmospheric Hg species [Hg(0), Hg(II) 
and Hg(p)] [17], rain[16] and aqueous Hg(II) from photoreduction experiment with a Hg/DOC mass ratio of 34.6 [33]; and (B) natural samples 

like coal [9], peat [7], ore, and mine waste calcine [42] and hydrothermal systems [14]. 

Snag Lake near Pensacola in Santa Rosa County, Florida is an open basin off the Big Simpson River. Marsh plants 
and cypress trees surround the basin. The water depth is shallow (~ 1 meter) with very soft sediments rich in 
organics. The lake sediments are potentially impacted by anthropogenic mercury from the nearby Gulf Power 
Company’s Crist Plant, a coal-fired power plant. The 202Hg ranges from -0.40 to -1.79 and 199Hg and 201Hg 
values range from -0.18 ‰ and -0.17 ‰ to -0.45‰ to -0.41 ‰ respectively with more negative MIF values in the 
deeper part of the core. Lake Marquis is an isolated basin off the Blackwater River, in Santa Rosa county of Florida. 
The water depth in Marquis is approximately 0.6 meters. The sediments are hard, and peaty. Saw grass is abundant 
in the area. Cypress domes are well developed around the lake. Lake Marquis shows a similar trend to Snag Lake, 
with mercury concentrations decreasing with depth, although the total Hg concentrations are much lower. The 

202Hg ranges from -0.67 to -1.52, 199Hg range from -0.28 ‰ to -0.40 ‰ and 201Hg from -0.17 ‰ to -0.46 ‰, 
once again with the most negative MIF values in the deeper part of the core. Cypress leaves collected from cypress 
domes in and around the two lakes shows 202Hg values of -1.52 and -1.73 and depleted in the two odd Hg isotopes 
(Table 1). The bedload sediment samples collected from the sediment-water interface of the Florida Springs are 
slightly depleted (-0.14 to -0.28 ‰) in 199Hg and 201Hg and 202Hg ranging between -0.21 and -1.75, similar to the 
lake sediments. Replicate samples are collected from different locations (approximately 50 m apart) in Big Spring 
and Manatee Spring to ensure absence of any local inhomogeneity in the observed MIF. The triplicate analyses are 
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within 0.1‰ demonstrating the excellent precision of these measurements.  
 
The EPA's REMSAD model suggests that in Pensacola area only 7.2% of the total Hg deposition comes from the 
Crist Plant coal combustion whereas 78% comes from the “global background”. Hence in the absence of a dominant 
anthropogenic point source for the lake and spring sediments of Florida, we assume that the observed Hg isotopic 
signature is a combination of atmospheric deposit of “global background Hg”, Hg scavenged from the water 
column, bacterial methylation-demethylation, dark abiotic in situ reductions and Hg associated with litter fall. Both 
HgII

(g) (Reactive Gaseous Mercury/RGM) and Hgp (Particle Bound Mercury/PBM) are readily washed out of the 
atmosphere by rainfall and are the forms that contribute to wet deposition. Because it is generally associated with 
fine particles, Hgp has a relatively low apparent dry deposition velocity, on the order of 0.1 cm/sec. RGM is thought 
to behave like nitric acid vapor, has an apparent dry deposition velocity of 2 cm/sec, and will adsorb especially well 
to wet surfaces such as surface waters and dew-covered vegetation. Because of the slow oxidation rate of Hg0

(g) 
(Gaseous Elemental Mercury/GEM), and the rapid deposition rates for RGM and Hgp, only the emission of these 
latter two forms is expected to contribute to atmospheric Hg deposition around point sources.  Isotopic composition 
of Hg0

(g), HgII
(g) and Hgp measured in the coastal environment of Grand Bay, Mississippi, USA, showed positive 

MIF for  Hgp and negative MIF for  Hg0
(g), HgII

(g) [17]. The RGM was enriched in the heavy isotopes ( 202Hg 0.51 to 
1.57) whereas GEM and PBM were depleted in the heavy isotopes ( 202Hg -0.12 to -3.88). Rain samples from near 
the Great Lakes showed positive MIF and negative 202Hg [16] (Figure 1A). Modelled data for Hg isotopes in 
emissions from coal-fired power plants show modern-day mean 202Hg and Δ199Hg values of -1.2 ± 0.5‰ and 0.05 ± 
0.06‰ respectively [10]. Dark abiotic reduction of Hg can produce MIF with a distinctive 199Hg/ 201Hg slope of 
1.61.  199Hg/ 201Hg slope of our Florida lake and spring samples is 0.94 (R2=0.67) similar to photochemical 
reduction reactions ( 199Hg/ 201Hg ranges from ~1.0-1.3) at different Hg/DOC ratios [37]. Hence we rule out dark 
abiotic reduction as a primary ongoing process in the sediments to explain observed isotopic signature. Bacterial 
methylation-demethylation does not cause any MIF however it leaves the reactor, sediment in this case enriched in 
the heavy isotopes. Laboratory experiments on photoreduction of Hg(II) and MeHg showed that the water column 
gets progressively enriched in 199Hg and 201Hg, hence sediments scavenging Hg from the water column should have 
positive MIF [1]. Previous research reported the accumulation of atmospheric Hg on leaves of the Brazilian Pepper 
(Schinus teribinthifolius) in the Everglades National Park, and estimated that the annual average Hg flux associated 
with litterfall was approximately 70% of the wet deposition flux [38]. This suggests that litterfall may be a 
significant vector for deposition of atmospheric Hg to the sediments in water bodies, and may be especially 
important in Marquis Lake and Snag Lake where the sediments are high in organic matter derived from the 
vegetation surrounding the lakes. The negative MIF in the lake and spring sediment samples could be due to a more 
negative source (plants in these cases) mixing with scavenged Hg(II) from water column with positive MIF. The 
observed MDF can be caused my more complex interactions including in situ processes like bacterial reductions.  

The Celestun Lagoon is located on the west coast of the Yucatan Peninsula, Mexico. The lagoon is relatively 
pristine and undisturbed by pollution originating from the port of Celestun situated on the barrier peninsula [24]. The 
local geology is that of a karst terrain and hence surface run off is nearly absent; rivers are not the primary source of 
the mercury. The mercury concentrations in the sediments (>98% calcium carbonate) do not show much variability 
and range from 1 to 3 ppb.  The concentrations do not show any obvious correlation with depth. The enrichment in 
the odd isotopes of Hg also show little variability with depth and ranged from 0.30 to 0.52 ‰. 202Hg ranges from -
1.16 to -2.91 ‰. We do not know the exact incorporation site or the actual species of mercury in carbonate rock; it 
could be mercury carbonate (HgCO3) or any other compounds of Hg(II) that co-precipitate with the calcium 
carbonate or are bound to the organic matter. In this case, since the percent of OM in the sediments is low, we make 
the assumption that the mercury in the carbonate material has been scavenged from the water column.  In a plot of 
Δ199Hg vs. Δ201Hg, the carbonate samples have a linear relationship with a slope of 1.2. This value is similar to that 
observed in Hg(II) photoreduction experiment conducted with a Hg(II)/DOC mass ratio of 34.6 (Figure 1A) [37]. 
Hence we conclude that the Hg MIF signature of the carbonates is representative of the water column composition, 
consistent with previous Hg isotopic measurements in natural water [39].  

Lake Erie sediments were contaminated by mercury released from the Dow Chemical Chlor-Alkali Plant in Sarnia, 
Ontario (operating since 1949). The plant released very large amounts of mercury to the atmosphere as well as St. 
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Clair River, which flowed downstream to contaminate Lake St. Clair, the Detroit River and Lakes Erie and Ontario. 
Hg concentrations in the top 3 cm of the sediments measured in 1971 ranged from 8 to 2929 ppb (dry weight) with 
the highest levels recorded in the Western basin adjacent to the Detroit River [40,41]. In the present study the top 20 
cm of Lake Erie sediment shows high Hg concentrations, is characterized by slight enrichment of 202Hg ( 202Hg 
from 0.14 to 0.5 ‰) and up to 0.15 ‰ enrichment of the odd isotopes. The bottom “unpolluted” horizons are have 
low Hg concentrations, 199Hg up to 0.29 ‰ and depleted in the heavy isotopes ( 202Hg -0.12 to -1.06‰) similar to 
other sediments reported in this study. A logical approach of understanding source attribution is to investigate 
isotope signatures of Hg of the point source(s). However in the absence of mercury samples used in the chlor alkali 
plant we use Hg ore data from literature to understand the observed isotope ratio of the contaminated sediments. 
MDF and MIF was observed in Hg bearing minerals [14,42]. While the MDF showed a huge range ( 202Hg from 
2‰ to -2‰) MIF signatures were more distinctive. Hypogene cinnabar, Hg-bearing ore minerals, and mine waste 
calcine from Texas showed MIF, with Δ199Hg ranging from −0.09 to 0.36‰ [42]. Fluid and sinter samples collected 
from Ojo Caliente hot spring in the Yellowstone National Park showed a small yet consistent enrichment of the odd 
isotopes (Δ199Hg=0.13‰± 0.06‰ 2SD) possibly inherited from the photoreduction of Hg(II) in the water column 
[14]. In a plot of 199Hg vs. 201Hg, Lake Erie sediments fall in the same field as the fluid and sinter samples from 
Ojo Caliente and Cinnabar, Hg ore minerals, mine waste calcine and leachates from Terlingua district and 
McDermitt mine (Figure 1B). We do not know the exact isotopic composition of the anthropogenic discharge to 
Lake Erie. The ore samples have a MIF range from slightly negative to zero to positive. We infer the Hg isotopic 
signature at the top polluted part of the sediment resulted from combination of discharge from chlor alkali plant 
(probably with a MIF signature close to zero), atmospheric fall out (Δ199Hg  close to zero) and adsorbtion from 
water column (positive MIF).  The bottom, relatively pristine part of the sediment possibly sourced Hg from 
background atmospheric deposition and adsorption from water column.   
Hg isotope signatures are potentially useful tools for tracing environmental Hg sources of contamination. But major 
limitation lies in the fact that 1. the original isotopic signatures are altered by natural processes 2. mixing of variable 
quantities of Hg from different sources may obscure individual signatures. In this study we qualitatively evaluate the 
potential sources of Hg of a variety of sediments by using MIF signatures. Overall, we surmise that sediments will 
reflect the Hg isotopic composition of the primary source, whether that be from local anthropogenic pollution, local 
vegetation, or uptake from the water column. 
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