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1. INTRODUCTION 

In a very wide spectrum of applications, the problem of stability plays a 
central role. There is a vast literature available in the field, but still the 
problem is solved only in special cases. The incompleteness of the literature 
is especially noticeable when the governing equations are partial differential 
equations. The normal procedure in a stability research for such equations is 
to linearize the equations of perturbation and confine the study to the 
simpler linear equations without any mathematical justification. Even though 
the linearization has been mathematically justified only in a few very special 
cases, it is a fact that usually the linear stability criteria are in excellent 
agreement with experimental observations. 

In this paper we shall also confine our study to linear partial differential 
equations. The conventional approach to the problem of stability for such 
equations is the so-called normal mode method, which under certain 
restrictions transfers the problem to an eigenvalue problem for a partial 
differential operator with boundary conditions. In general this eigenvalue 
problem is very complicated. It is therefore customary to restrict the study to 
the special cases where the problem essentially is transferred to an eigenvalue 
problem for an ordinary differential operator. Even in these special cases the 
eigenvalue problem is not completely resolved. An alternative approach 
which has been given some attention in recent years is Liapunov’s direct 
method, which in principle can be applied to all kinds of stability problems, 
including nonlinear problems. The results obtained by this method so far, 
however, are rather limited. The difficulties in applying the method consist of 
constructing functionals with specific properties. 

A new approach to the problem of stability for linear hyperbolic equations 
was given by Eckhoff [I] on a somewhat speculative and conjectural basis. 
The approach is based on the generalized progressing wave expansion 
method described by Friedlander [2] and Ludwig [3], and it has been 
applied to problems of stability in fluid mechanics by Eckhoff and 
Storesletten [4, 51. The purpose of this paper is to give a rigorous 
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mathematical justification of this new approach to the problem of stability. 
The presentation we shall give will to a large extent be self-contained. 

2. ASSUMPTIONS AND FORMULATION OF THE PROBLEM 

We shall consider a linear symmetric hyperbolic system of the form 

LU dzfut + i A"uxr+ Bu = 0, (2.1) 
P= 1 

where u = {u,,..., urn) are the dependent variables (i.e., the unknown 
functions), while B and A” (V = l,..., n) are given m x m matrices with rear 
coefficients which may depend on the real independent variables x = 

(X 1,-*~, xn} (space) and t (time). The matrices A” are assumed to be 
symmetric. 

We are primarily interested in real-valued solutions of (2.1 je For our 
purpose, however, it is equivalent and more convenient to consider complex- 
valued solutions; we shall therefore do that in the following. We are 
particularily interested in solutions of the initial value problem for (2.1) with 
initial data 

in a given metric space M, of m-dimensional vector-functions g(x) defined 
for x E S, where S is some fixed open set in R" which may be bounded or 
unbounded. 

We shall assume that the initial value problem (2.I), (2.2) for an 
arbitrarily given g(x) E M, has a unique solution u(x, t; to) in some metric 
space M for every t > t, > 0, where M also is a fixed space of vector- 
functions defined for x E S. More specifically we shall assume that the initial 
value problem (2.1), (2.2) is well posed in the sense that the family of 
mappings 

f,:M,xR+M 

is continuous for every t > t,, where f, is defined by 

cw 

f,(g(x), to) = 4x3 t; to>. (2.4) 

When R"\S # 0, it follows from the well-established theory in the 
literature (see Courant ‘and Hilbert [6] and the references quoted there) that 
the assumptions above usually imply that some boundary conditions must be 
built into the structure of M and M,. In this case (2.1), (2.2) is therefore a 
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mixed initial-boundary value problem. When S = R”, (2.1), (2.2) is a global 
Cauchy problem. 

In any case we let p0 and p denote the metrics in the spaces 1M, and M, 
respectively. We may then define the concept of stability in the following 
way. 

DEFINITION 1. The trivial solution u = 0 of (2.1) is said to be stable if 
for every E > 0 and every t, > 0 it is possible to find a number 
6 = S(E, f,) > 0 with the following property: If g(x) EM, is such that 
p,,{g(x), 0) < 6, then p(u(x, t; to), 0) < E for every t > t,. The trivial solution 
of (2.1) is said to be unstable if it is not stable. 

This is essentially Liapunov’s definition of stability as generalized by 
Movchan [7]. Most of the definitions of stability used in the literature can 
easily be shown to be equivalent to special cases of this definition. 

The problem of stability for (2.1) is to determine the coefficient matrices B 
and A” (V = l,..., n) for which the trivial solution of (2.1) is stable and 
unstable, respectively. In order to be able to study the problem of stability 
for (2.1), we have to introduce further assumptions. In particular, we have to 
be more specific about the metric spaces M, and ikl, since Definition 1 shows 
that the stability properties may depend strongly at least on the choice of 
metrics in these spaces. Several choices of these metrics pO, p may a priori 
seem relevant for Definition 1 to be in agreement with the intuitive concept 
of stability appearing in applications. However, the speculations given in 
Eckhoff [I ] seem to indicate that the most suitable metrics are those 
generated by the norms in the Sobolev spaces H,, For simplicity, we shall 
therefore in this paper assume that the metrics pO, p are both generated by 
the L* (= H,) norm in the straightforward way. Thus we shall assume that 

POMX)~ 01 = I,, g(x) * g”(x) dx1 . *. 4l[ 1/Z 
(2.5) 

p{u(x, t; to), 0) = 
I 
I, u(x, c; to) - uX(x, t; to) dx, * *. dx, 1 I’*, 

where the asterisk means complex conjugation. Furthermore, we assume that 
M is the subset of L*(S) which satisfies the boundary conditions imposed, 
and that these boundary conditions are of the type considered by Courant 
and Hilbert [6, p. 6571 when R”\S # 0. For simplicity we shall assume that 
M, consists of all smooth functions which have compact support in S (M, is 
then obviously a subset of L*(S) which satisfies the boundary conditions). 

In order to keep the ideas as simple as possible, we shall assume that all 
the coefficients in (2.1) are smooth and bounded in S x R: . Furthermore, 
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we shall assume that all the first-order partial derivatives of the coefficients 
in the matrices A” (v = l,..., n) are bounded there. It is then well known that 
the Cauchy problem (2.1), (2.2) is ZocaZfy well posed in L2 (see Courant and 
Hilbert [6] or Mizohata [8]). If S = R” it is not diffi.cult to show that the 
global Cauchy problem formulated above is well posed also, and that the 
solutions are smooth functions which have compact support in R” for each 
1> I,. If on the other hand R”\S # 0, there seems to be no theory available 
in the literature which guarantees the assumed existence of solutions of (2.1 j, 
(2.2) unless additional assumptions are introduced (see, for instance, Rauch 
[9]>. It is not necessary for us to introduce such further assumptions, since 
we have already assumed that the initial value problem (2.1), (2.2) is well 
posed. 

The problem of stability is now defined in a very specific way. We should 
like to point out that the method we are going to describe in the following, 
essentially also works with considerably less restrictive hypotheses an.d for a 
number of other choices of the metric spaces MO, &f. This is partially 
discussed in Eckhoff [I]. Some remarks will also be given in Section 8. 

3. AN ENERGY INEQUALITY 

We shall in this section consider the inhomogeneous system 

Lw=f, (3.lj 

where f is a smooth complex-valued vector-function which for each t > 0 has 
compact support in 5’. In view of Duhamel’s principle (see Courant and 
Hilbert [6]) it is easy to show that the assumptions introduced in the 
preceding section imply that the initial value problem for (3.1) is well posed 
in the same sense as for the homogeneous system (2.1). 

We introduce a new dependent variable W in (3.1) by 

w = e$W, (3.2) 

where y is a real constant which we shall choose later. Equation (3.1 j then 
becomes 

W, + i A”W,= + (B + 71) W = e-;‘f. 
u=l 

(3.3) 

From this equation it easily follows that 

$ (w. w*) + v$, $- (W - A”W*) + W +-(H + 2~1) W” 
” 

=e -“(w - r: + f . w*), (3.4) 



98 

where 

KNUT S. ECKHOFF 

H=B+B=-- \“- A” - .T” (3.5) 
o=l 

is seen to be a symmetric matrix with smooth and bounded coefficients in 
S x R :. Since we assume that the initial value of W has compact support in 
S, the support of W will be compact for every t > 0. Keeping t > 0 fixed, we 
may therefore integrate (3.4) over the domain S. Gauss’ theorem (supplied 
by the boundary conditions when R”\S# 0) then shows that the second 
term in (3.4) drops out. Thus we are left with 

$j. W.W*dx, . ..dx.+ W.(H+2yI)W*dx,...dx, 
s I s 

=e -F 
I 

(W.f”+f. W*)dxl...dx,. (3.6) 
s 

From this equation we may deduce several useful results. First, by 
choosing y sufficiently large we can always achieve that the matrix H + 2~1 
is positive definite at every point in S X R: , i.e., that 

W. (H+2yI)W*>O (3.7) 

everywhere for any W. For solutions u(x, t) of the homogeneous system 
(2.1), it then follows from (3.6) that 

d 
2, I 

u . u*e-‘@ dx, .a. dx, < 0, 

which implies that for every t > t, we have 

I u(x, t) . u*(x, t) d.u, . . . dx, 
S 

P-9) 
< e2Y(t-to) 

I 
u(x, to) . u*(x, to) dx, --a dx,. 

s 

Thus we have obtained an upper bound on the growth rate for the solutions 
of (2.1). In particular we see that the trivial solution of (2.1) is stable if (3.7) 
holds for y = 0, or equivalently if the eigenvalues of the matrix H are all 
nonnegative at every point in S x R \. Thus the stability problem is solved 
for the hyperbolic systems (2.1) satisfying this condition. Unfortunately these 
so-called dissipative systems are very special, most of the hyperbolic systems 
appearing in applications do not belong to this class. 
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For any vectors V, W, we have 

v.w*+w.v*~v.v*+w.w”. 

If we take V = e-y’f, we obtain from (3.6) and (3.10) that 

(3. IO) 

-$* W‘W*dx, 
J 

. ..dx.+ W.{H+(2y-l)I}W*dx,...dx, 
s I -S 

<,-v J f.fYFdxi...dx,,. 
S 

(3.11) 

We now choose y so large .that 

W. {H+(2y- l)I}W*>O (3.12) 

everywhere in S x R!+ for any W. For solutions w(x, t) of the 
inhomogeneous system (3. l), it then follows from (3. B 1) that 

d 
dt, J 

w . w*e-*@ dx, . . - dx n 
(3.13) 

< e-‘yt \ J 
f - r” dx, ..- dx, 

s 

which implies that for every t > t, > 0 we have 

J w(x, t) . w*(x, t) dx, a.- dx, 
s 

<e 2yct-lo) . 
J 

w(x, to) . w*(x, to) dx, -.- dx, (3. 
s 

14) 

f(x, 7) . f*(x, 7) a%, m.0 dx,l 1 
I 

dz. 

This inequality, which gives an upper bound for the solution of (3.11, is 
similar to the energy inequalities obtained, for instance, in Courant and 
Hilbert [6 1. 

4. SPECIAL FAMILIES OF SOLUTIONS 

We shall now construct families of solutions of (2.1) depending on a real 
frequency parameter w in the following way (with i = fi) 

u,(x, t) = a,(x, t) exp{ioy,(x, t)} + $v(x, 1; 0). (4.1) 
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Here we want to determine the phase function v, and the amplitude a, such 
that the remainder v can be shown to be bounded as cc) -+ 00. By substituting 
(4.1) into (2.1) we get 

Lu,= ]im (q,I+ $, pxsA”)a,+La,~ exp(iw)+iLv 

= 0. (4.2) 

In order that (4.1) shall have the required properties, it is natural to assume 
that a, and a, satisfy 

c&I + + 
“Yl 

IJI,,A” a, = 0. (4.3) 

Since we assume that a, # 0, this equation can only be satisfied when the 
phase function a, satisfies the characteristic equation 

I 
= 0, 

which is a partial differential equation of order 1 and degree m. On 
introducing the notation 

A=-yl,, 5” = fpX” (v = I,..., n), E= i r”A”, (4.5) 
“=, 

(4.4) shows that 1 must be an eigenvalue of the symmetric matrix E. If 

1 = Lyx, I, <I)...) r”) (4.6) 

is an eigenvalue of E, we see that (4.4) is satisfied when 

v)I + Q(x, t, P,, 7.“) ul,,) = 0, (4.7) 

which is a partial differential equation of order 1 and degree 1. The eigen- 
values of the matrix E are called the characteristic roots associated with the 
symmetric hyperbolic system (2.1). To the different characteristic roots there 
correspond different families of phase functions which again will correspond 
to different families of solutions of the form (4.1). 

Now let o(x, t) be a real-valued solution of (4.7) which is such that Va, = 

ia, x, ,..., q,,} # 0. Suppose that Q for this solution ~7 is an eigenvalue of fixed 
multiplicity ,u, say, in the considered domain. Equation (4.3) then shows that 
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where r t ,..., r, are orthonormal eigenvectors associated with the eigenvalue 
f2, and o1 ,..., r~, are scalar functions to be determined. In order to do that, we 
shall write the remainder in the following way 

v(x, t; co) = a,(x, t) exp{iwp(x, t)} + w(x, t; wj= 

In view of (4.3), (4.2) then becomes 

which is satisfied if the following equations hold 

La, + p,I + + 
“Yl 

px,.A” a, = 0, (4.11) 

(La,) exp(iop) + Lw = 0. (4.12j 

Equation (4.11) may be considered as a system of linear algebraic equations 
for a,. When p has the assumed properties, (4.1 I j therefore has a solution if 
and only if 

rI - La, = 0 (I = l,..., p). (4.13) 

Substituting (4.8) into (4.13) yields the following system of partial 
differential equations for the functions oI (I = I,..., ,u): 

@Jr + 2 2 (rl a A”rk)(o& t -? (rI - Lr,) ok = 0. 
r=l k=l k:l 

(4.14) 

This obviously is a symmetric hyperbolic system. As we shall see in the next 
section, (4.14) is often considerably simpler to study than the original system 
(2‘ 1). 

Let us now assume that we have found a phase function 41 and an 
amplitude a,, satisfying (4.7), (4.8) and (4.14) such that a, exp(iwp) is 
smooth in S x R : and has compact support in S for each t>/ 0. The 
remainder can then be determined from (4.9) and (4.11 j, (4.12 j. As for a1 C 
we pick any smooth solution of (4.11) which for each r > 0 has support 
contained in the support of a,. The final term w is then determined from the 
inhomogeneous hyperbolic system (4.12) together with the initial value of w 
at t = t, and the same boundary conditions as were imposed for (2.1). Thus 
(4.12) satisfies the conditions assumed for (3.1) in the preceding section, w 
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therefore exists and satisfies inequality (3.14) with f = -(La,) exp(imq). If 
we take t, = 0 and w(x, 0; w) = 0 this inequality becomes for t > 0 

1 
w(x, t; co) . w*(x, t; LO) dx, .a. dx, 

s 

La,(x, t) . Laf(x, z) dx, --- dx, dz. 
I 

(4.15) 

For the remainder (4.9), the triangle inequality gives 

I 
l/2 

v. v”dx, .-. dx, 

< \jsa,,a:dx ,-. dx,tl”+jjsW.w~dn ,-- dxJ’*. (4.16) 

Since a, is smooth and has compact support in S for each t > 0, it follows 
from (4.15), (4.16) that for any T > 0 there exists a finite number M(r> 
which is independent of w and such that 

I 
w 

v(x, t; w) - v*(x, t; w) dx, a- - dx, GWT) (4.17) 

for every t E [0, T] and for every w > 0. This is the desired boundedness of 
the remainder. 

By comparing with Friedlander [2], Ludwig (31 or Eckhoff [ll, we see 
that (4.1) consists of the leading term in a generalized progressing wave 
solution of (2.1) and the remainder. With the imposed assumptions, (4.17) 
shows that on any finite time interval the leading term in (4.1) is an approx- 
imation of a family of exact solutions of (2.1) where the error can be made 
arbitrarily small by choosing w sufficiently large. As a first step towards the 
significance of this in the study of the problem of stability for (2.11, we now 
establish the following result: 

PROPOSITION. The trivial solution u = 0 of (2.1) is unstable if there 
exists a number co > 0 with the following property: For any 6 > 0 it is 
possible to fmd a family of solutions (4.1) which satisfies the assumptions 
imposed above and which is such that for some numbers t, > to > 0 we have 

Po{ao(x3 to), 01 < 6 and da,(x, tJ. 01 > ea. (4.18) 

ProoJ: Suppose that such a number e. > 0 exists. If we choose 

Wto) M(tJ 
Co > 6 --Po{ao(x, to), 0) + p{ao(x7 tl>, 0) -co’ 

(4.19) 
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the triangle inequality and (2.5), (4. l), (4.17) implies that 

Poi%h to). 01 < 6 and P{U,k t,), 01 > co. (4.20) 

Since e0 > 0 is fixed while 6 > 0 is arbitrary, this shows that the trivial 
solution of (2.1) is unstable. QED. 

The essence of the above proposition is that the trikiai soiution u = 0 of 
(2.1) is unstable if the trivial solution o = {cl,..., oU} = 0 of (4.14) is 
unstable (when the imposed assumptions are satisfied). This could also be 
expressed in the following way: In order that the trivial solution of (2.1) 
shall be stable, it is necessary that the trivial solution of (4.14) is stable. In 
the following sections we shall exploit this further. 

5. THE TRANSPORT EQUATIONS 

In order that the considerations in the preceding section shall be of any 
value in the study of the stability problem for (2.1), it is necessary that there 
exist families of solutions (4.1) satisfying all the assumptions imposed: The 
real-valued phase function q satisfies (4.7) and is such that L? is an eigea- 
value of fixed multiplicity in the considered domain, the amplitude a, 
satisfies (4.8) and (4.14) such that the leading term a, exp(imp) is smooth in 
S X R: and has compact support in S for each 12 0. In this section we shall 
study how these assumptions can be satisfied. 

In addition to the assumption that Q is an eigenvalue of fixed multiplicity 
in the considered domain, we shall also assume that LJ as well as the 
associated eigenvectors ri ,..., rp are smooth with respect to all the variables 
x, t and 5 = it’,..., 5”) in the considered domain. These assumptions are 
satisfied if the hyperbolic system (2.1) has characteristics with constant 
multiplicity (see Courant and Hilbert [6, p. 6261). If (2.1) has characteristics 
with nonuniform multiplicity, the assumptions imply that we have to limit 
the considered class of initial data for (4.7) 

dx, 0) = %(X). (5.1) 

In some cases only minor restrictions on p,-, are necessary, while in others it 
may be impossible to find suitable restrictions. Thus if the hyperbolic system 
(2.1) has characteristics with nonuniform multiplicity, the assumptions 
imposed on R and r i ,..., r, may in some cases put serious limitations on the 
applicability of the theory in this paper. On this basis, we shali refer to these 
assumptions as the multiplicity assumptions. 

The Cauchy problem (4.7), (5.1) may at least locally be uniquely solved 
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by the method of characteristics, i.e., by solving the following system of 
ordinary differential equations (see Courant and Hilbert [6, Chap. 21) 

(v = l,..., n) (5.2a, b) 

called the ray (or bicharacteristic) equations associated with (2.1), together 
with the initial data 

e(o)‘= t-0” (v = l,..., n), (5.3a, b) 

where x,, = {xl,, ,..., x,,,} E S and c,, = {{h,..., &} = VoO(xO). Unfortunately, 
the solution o(x, t) of (4.7), (5.1) thus obtained, will not in general exist as a 
smooth function in the whole region S x R: . First, the existence of so-called 
caustics may have this implication. Second, the boundaries may cause 
diffkulties when R”\S # 0. We shall consider these problems below. 

From the definition of 52 and rr ,..., re we have for k, I = l,..., ,L 

{-L?+E} .rk=rle {--RI+E}=O. (5.4) 

Differentiation with respect to rj leads to 

I -$l+Aj 
t 

ark -r,+ {-QI+E) .-g=O. 

Using (5.4), this implies that 

r, . Ajr, = 0 when I # k, 

a2 =--: 
X’ 

when I = k. 

(5.5) 

(5.6) 

The system of equations (4.14) for the amplitude o may therefore be inter- 
preted as ‘a system of ordinary differential equations 

(I = l,...,,B) (5.7) 

along the rays determined by (5.2). Equations (5.7) are the so-called 
transport equations for the hyperbolic system (2.1). 

The above considerations show that the leading term a, exp(ioo) may be 
calculated by solving ordinary differential equations only, i.e., (5.2) and 
(5.7). From (5.7) it follows that a,, exp(icco) is different from 0 only along 
the family of rays which starts at the points in the support of a, at t = 0. The 
support of a,, exp(ioo) will therefore remain in S for each t > 0 if and only if 
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no member of this family of rays hits the boundary of S within a finite 
interval of time. Furthermore, we see that a, exp(ioq) will be smooth in 
S x R\ if the x-components of this family of rays do not cross each other or 
have envelopes for t > 0 (this is the nonexistence of caustics). Finally, we see 
that the support of a, exp(@) is compact for every t > 0 since we assume 
that the support of a, at t = 0 is compact. 

In conclusion, we may say that the assumptions imposed for the leading 
term a, exp(io9) in (4.1), lead to very restrictive assumptions for the family 
of rays starting at the points in the support of a, at t = 0. It is very fortunate, 
however, that these assumptions may be shown to holds in important 
applications. The easiest case to handle in this context, is that where the 
characteristic root in question is a linear function with respect to g, i.e.: 

Q = 9 e,(x, t) c, 
v=l 

(5.8j 

where e, ,..., e, are smooth and bounded in S X R: I In this case the ray 
equations (5.2) decouple and (5.2a) becomes 

dx 
-2 = e,(x, t) 
dt 

(V = l,..., n.j. (5.9) 

The standard theory for such systems of ordinary differential equations 
immediately implies that caustics cannot exist. Thus the leading term 
a, exp(icq) in (4.1) will in this case always satisfy the assumptions imposed 
if no ray (i.e? no solution of (5.9)) which starts at a point in S hits the 
boundary of S within a finite interval of time. It is very fortunate that this 
attractive case seems to be the most important one in a stability research in 
fluid mechanics, for instance (see Eckhoff and Storesletten [4, 51). 

When the considered characteristic root R is a r;o&ineer function with 
respect to g, the x-components of the family of rays starting at the points in 
the support of a, at t = 0 will no longer be independent of the initial function 
(p. given in (5.1) and (5.3). In this case caustics will necessarily appear for a 
large variety of smooth functions p,, (some considerations on this are given 
in Eckhoff [ 11). At least in special cases, however, it may be possible to 
overcome this difficulty by a careful restriction of the considered functions 
p,,. It is obvious, for instance, that caustics cannot appear if it is possible to 
restrict CJ+, such that any pair of rays are either parallel or diverging for every 
t > 0. It is probably not possible in general to satisfy this condition, but in a 
large number of special cases it is at least in principle possible to design 
restrictions on p0 which imply that this condition is satisfied. The easiest 
case to handle in this context, is that where the matrices A” (v = l,..., 81) in 
(2.1) are independent of x, t since the rays are then straight lines. If the 
considered functions q0 are restricted to be linear with respect to x, any pair 
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of rays will be parallel in this case. The considerably larger class of initial 
functions p0 for which any pair of associated rays are either parallel or 
diverging for every t > 0, may of course also be used in this case. As a 
conclusion we may say that when the considered characteristic root J2 is 
nonlinear with respect to 5, it seems possible in many cases to show that our 
assumptions hold if we put suitable restrictions on p,, and if S = R”. When 
R”\S + 0, on the other hand, the prospects seem very limited. Usually it will 
not be possible to restrict 50~ such that no ray reaches the boundary of 5’ 
within a finite interval of time. Some further remarks on the case where J2 is 
nonlinear with respect to 5 will be given in Section 8. 

We shall close this section by elaborating the right-hand side in the 
transport equations (5.7). 

We record that 

Differentiation with respect to xj in (4.7) leads to 

If we differentiate (5.5) with respect to c?‘, we obtain 

, 

(5.10) 

(5.11) 

(5.12) 

By combining (5.4), (5.10), (5.1 I), (5.12), we may write the transport 
equations (5.7) in the following way 
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In the attractive case where 9 is linear with respect to c, i.e., given by 
(5.8), we see that the last sum of terms in (5.13) drops out. In this case 
therefore, (5.2) and (5.13) constitute a closed system of ordinary differential 
equations which in principle can be solved without explicit knowledge of 

9(x- 0. 
When the considered characteristic root R is nonlinear with respect to Es 

(5.2) and (5.13) do not by themselves constitute a closed system since (5.13) 
depends on the quantities 9FiXC along the rays. It is not difficult to close the 
system (5.2), (5.13) by adding transport equations for these quantities 9.YjY, 
along the rays (this is done in Eckhoff [I]), but this will enlarge the number 
of equations by $n(?r + 1). Again it is clear that it is considerably more 
difficult in general to study families of solutions (4.1) which correspond to a 
nonlinear characteristic root an, than those corresponding to a linear one. 

6. THE STABILITY EQUATIONS 

Now let 9(x, t) denote a real-valued solution of (4.7), and let x(t; x0) 
denote the corresponding rays, i.e., the solutions of (5.2a), (5.3a) when 
5 = V9 has been substituted. Suppose that the family of these rays which 
start in some bounded open set Q c S at t = 0, remains in S for every t > 0, 
is not in conflict with the multiplicity assumptions, and is free from caustics, 
For families of solutions (4.1) of (2.1) with supp a,(x, 0) c e:. the 
proposition of Section 4 is then concerned with the evolution of the quantity 

dao(x7t),0}= 
I 
j 2 IQ~(x,~)~~~x, .-. d~~l”~ 

s I=1 

= 2 

1 j 

(P,(t; x0)1’ dx,, -*’ dx,, 1’2, 

I=1 Q I 

where 

P,(t; x0) = /J(“* a,(x(t; x0), t) (I = l,..., II), (6.2) 

For fixed x0 E Q, we obtain from (5.7) and (6.2) 

k=l 

(6.4’) 

(1 = l,..., p). 
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This system of ordinary differential equations (6.4), which determines 
P = (P, )...) P,} along the rays, we shall call the stability equations for the 
hyperbolic system (2.1). 

DEFINITION 2. The trivial solution P = 0 of the stability equations (6.4) 
is said to be uniformly unstable in the compact set R c S if there exist a 
number E > 0 and a bounded open set Q c S with the following properties: 

(a> RcQ; 
(b) There exists a real-valued solution 9(x, t) of (4.7) which is such 

that the corresponding family of rays starting in Q at t = 0 remains in S for 
every t > 0, is not in conflict with the multiplicity assumptions, and is free 
from caustics; 

(c) For any 6, > 0 it is possible to find a smooth solution P(t; x0) of 
(6.4) along these ra! 
are such that 

I 
+ 
/zi 

I 2 
I=1 

; with supp P(0; x,,) c Q, and numbers t, > t, > 0 which 

I 

l/2 
P,(t,; %)I” < 4 for every x,, E Q, (6.5) 

I 

Y2 
Pt(t,; x0)1’ > E for every xt, E R. (f-5-6) 

THEOREM. The trivial solution u = 0 of (2.1) is unstable if the trivial 
solution P = 0 of the stability equations (6.4) is uniformly unstable in some 
compact set R c S of positive measure. 

ProoJ Suppose that the assumptions in the theorem are fulfilled and let 
6 > 0 be arbitrarily given. Choose 6, = {Volume of Q} - y2 6 and let P(t; x0) 
be the corresponding solution of (6.4) specified in Definition 2(c). From 
(6.1) and (6.5), (6.6) it then follows that the corresponding leading term in 
the family of solutions (4.1) is such that 

Po{a,(x, to), O] < G,{Volume of Q)“’ = 6, (6.7) 

p(a,(x, tl), O} > s{Volume of R}“‘. (f-w 

Thus all the requirements in the proposition of, Section 4 are fulfilled if we 
choose s0 = E { Volume of R } 4’2. Q.E.D. 

If we have been able to fulfill the requirements in Definition 2(b) (the 
problems in this connection were discussed in .the preceding section), the 
essence of the above theorem is that we may obtain results on the problem of 
stability for the hyperbolic system (2.1) by a study of the stability problem 
for the linear system of ordinary differential equations (6.4). In fact, the 
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requirements in Definition 2(c) is that for every x,, E .R, the trivial solution 
P = 0 of (6.4) is unstable in the usual sense for a linear system of ordinary 
differential equations (see for instance Cesari [IO]). In Definition 2(c) it is 
also required that this instability must be uniform with respect to x0 E R, but 
this uniformity may usually be shown to hold by simple arguments since 
(6.4) is a iinear system with smooth coefficients. 

In order to elaborate the right-hand side in (6.3), we note that the 
difference between the stability equations (6.4) and the transport equations 
(5.7) is due to the last term in (6.4). In order to elaborate that term, we 
record that (5.2a) implies 

x,(t + dt; x0) = x,(t; x0) + dr + O(dt2) (q = I,..., n), (&9) 
0 

where (. . .>. means that x = x(t; x0) and 5 = Vqo(x(t; x0), r) are substituted. 
From the chain rule it follows that 

J(r + dt, x0) = det( j, ,..., j,,} J(t. x0). (6‘ 10) 

where jp, p = I,..., n are the n-dimensional column vectors with elements 

If we disregard O(&) terms, (6.9) gives that 

. . . 

i,-jltqg$i)o+ jII (-&),(%“%i”j 

(6.11) 

(6.12) 

Equation (6.12) shows that all the off-diagonal elements in the matrix 
(j I,...,jnJ are O(dt) terms. If we disregard O(dt*) terms, it therefore suffices 
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to consider the product of the main diagonal elements in det{j,...,j,}. Thus 
we obtain from (6.10) and (6.12) 

which implies that in (6.4) we may set 

(6.14) 

By combining (5.13) and (6. I4), we may write the stability equations (6.4) 
in the following way 

(I= l,..., ,u). (6.15) 

The most striking difference between the transport equations (5.13) and 
the stability equations (6.15) is that the latter together with the ray equations 
(5.2) always constitute a closed system of ordinary differential equations. 
The terms which prevented that for (5.13) were 

(6.16) 

It is well known that the leading term in (4.1) will blow up at a caustic. In 
(5.13) this blowing up is caused by the terms (6.16) which we therefore shall 
call the focussing terms in the transport equations (5.13) (see Eckhoff [ 1 I). 
Since (5.2) and (6.15), on the other hand, constitute a closed system, (6.15) 
may be solved along each ray without any knowledge of neighbouring rays. 
Thus the presence of caustics will have no effect at all on the solutions of the 
stability equations (6.15). 

As we recorded in the preceding section, the focussing terms (6.16) drop 
out of (5.13) when the characteristic root D is linear with respect to g, i.e., 
when Q is given by (5.8). The difference between the transport equations 
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(5.13) and the stability equations (6.15) is in this case due to the following 
terms in (6.15) 

(6.17) 

When 0 is given by (5.8), we see that 

(6.18) 

where e = {e,,..., e,} is the bicharacteristic vector field which by (5.9) 
determines the rays (or bicharacteristics). From the analogy in fluid 
mechanics, it is clear that the quantity V . e may be interpreted as an 
expression for the “compressibility” of the rays. We shall therefore call 
(6.17) the compression terms in (6.15). 

The compression terms can be shown to vanish in several cases of interest. 
The most obvious such cases are those where the matrices A” (v = i,..., n) in 
(2.1) are independent of x. Also the cases considered in Eckhoff and 
Storesletten (4, 51 as well as cases in magnetohydrodynamics belong to this 
category. In these cases with vanishing compression terms, the transport 
equations (5.13) and the stability equations (6.15) are therefore identical 
when 0 is a linear function with respect to 5. 

7. APPLICATIONS IN THE MOST ATTRACTIVE CASES 

Let us first consider a hyperbolic system (2.1) which has characteristics 
with constant multiplicity. Suppose that associated with (2.1) there is a 
characteristic root a which is a linear function with respect to c, i.e., a is 
given by (5.8). If no ray starting at a point in S hits the boundary of S 
within a finite interval of time, the requirements in Definition 2(b) are then 
always satisfied. Thus we may consider any bounded open set Q c S and. 
any initial function q,, in (5.1). In particular, we may for instance take %(x) 
as a linear function, which in view of (5.3b) may be written as 

P;(x) = 50 . x7 (7.1) 

where co # 0 is an arbitrarily given real n-dimensional vector. At least in 
principle we may then solve the initial value problem (5.2), (5.3) for every 
x0 E S and every t > 0. By substituting the solutions of (5.2), (5.3) 

x = x(t; x0), 5 = ttt; x03 Co) (7.2) 

505/30.‘1 8 
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into the stability equations (6.15), we obtain a closed linear system of 
ordinary differential equations 

-$P = A@; q,, Co)P- (7.3) 

According to the theorem in the preceding section, the trivial solution 
u = 0 of (2.1) is unstable if we are able to find a vector 5, # 0 which is such 
that the trivial solution P = 0 of (7.3) is unstable for every x0 E Q, where 
Q c S is some bounded open set. In fact, it is then easy to show that there 
exists a compact set R c Q of positiv measure in which P = 0 is uniformly 
unstable. So, in order that the trivial solution u = 0 of (2.1) shall be stable, it 
is necessary that no vector &, with the above properties exists. By using the 
well-established theory of stability for linear ordinary differential equations 
(see Cesari [lo]), we may in this way obtain stability criteria on the coef- 
ficients in the hyperbolic system (2.1). For certain models in fluid 
mechanics, this has been done by Eckhoff and Storesletten [4, 51. 

The above procedure may also be applied in many cases where the hyper- 
bolic system (2.1) has characteristics with nonuniform multiplicity. The 
modification of the procedure to these cases will consist of a restriction of 
the considered values of the vector co and possibly also a restriction of the 
considered set Q. These restrictions must be designed such that the 
multiplicity assumptions are satisfied along the rays (7.2) for the considered 
vectors co and for x0 E Q. The easiest case to handle in this context is that 
where the matrices A” (v = I,..., n) in (2.1) are independent of x, t. Since D is 
independent of x, t in this case, and t = go along the rays by (5.2b), it 
sufftces to restrict co in such a way that we keep off the branch points for all 
the characteristic roots associated with the hyperbolic system (2.1). It is not 
necessary to restrict the set Q in this case. 

In the case where the matrices A” (V = I,..., n) in (2.1) are independent of 
x, t and S = R”, the above procedure also works when the considered charac- 
teristic root J2 is a nonlinear function with respect to 5. If p. is given by 
(7.1), the solution of (4.7), (5.1) is in this case 

$4x, t> = 50 * x - tQ(to) 

and the rays are parallel straight lines 

(7.4) 

X”@> = x,0 + f g (5,) (v = l,..., n). 

The stability equations (6.15) simplify in this case to 
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where (7.5) is substituted if B depends on x. We note that the focussing 
terms vanish for the phase function (7.4), the stability equations (7.6) and 
the transport equations (5.13) are therefore identical. According to the 
theorem in the preceding section, the trivial solution II = 0 of (2.1) is 
unstable if we are able to find a vector &, which is not in conflict with the 
multiplicity assumptions and which is such that the trivial solution P = 0 oft 
(7.6j is unstable for every x0 E Q, where Q c R” is some bounded open set. 

If the matrix B as well as the matrices A” (V = l,..., n) in (2.1) are 
independent of x, t, (7.6) will for each &, which is not in conflict with the 
multiplicity assumptions be an autonomous linear system of ordinary 
differential equations. The stability properties for the trivial solution P = 0 of 
(7.6) are therefore determined by calculating the eigenvalues of the ,u X $ 
matrix 

@I * Br,\ (I, k = l,..., /J) (7.7) 

(see, for instance, Cesari tlO]>. Thus stability criteria for the hyperbolic 
system (2.1) may in this case be obtained by solving algebraic equations 
only. In view of (7.4), these criteria must necessarily be special cases of the 
criteria which can be obtained by the normal mode method (-plane waves). It 
should be noted, however, that the normal mode method leads to an 
algebraic equation which often is considerably more difftcult to solve than 
the algebraic equations appearing in our approach. 

8. SOME REMARKS 

The most striking advantage of our approach to the stability problem for 
the hyperbolic system (2.1), is probably that it essentially is a local analysis 
involving ordinary differential equations and algebraic equations only. Thus 
the geometry of the problem may in many cases represent a considerably less 
serious obstacle in our approach than in the normal mode approach, since 
the latter leads to a global eigenvalue problem for a partial differential 
operator. Furthermore, our approach leads to regular problems of stability 
for linear systems of ordinary differential equations (usually 
nonautonomous); the singularities which lead to the continuous spectrum 
and similar problems in the normal mode approach, will therefore not cause 
any special difficulties in our approach. 

The assumptions necessary for applying our approach to the problem of 
stability are of a completely different nature than the assumptions necessary 
for applying the conventional approaches. Dependence on t in the coef- 
ficients of (2.1), for instance, does not cause any special difficulties in our 
approach. So far we have not studied the stability of nonstationary 
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phenomena, however, but this seems to be a promising area for future 
research. As we recorded in the preceding sections, the assumptions 
necessary for applying our approach seem very restrictive, but they are 
satisfied in important applications. Furthermore, the assumptions may in 
many cases be considerably less restrictive than their appearance at first 
glance might indicate. Caustics, for instance, which initially seemed to be a 
serious obstacle in our approach, probably do not represent any obstacle at 
all. In fact, since the presence of caustics has no effect at all on the solutions 
of the stability equations, it is reasonable to conjecture that the conclusions 
drawn in Section 7 hold also in the cases where caustics appear in the 
solution of (4.7), (5.1), (7.1). The discussion in Ludwig [ 11, 121 support this 
conjecture very nicely. When R”\S # 0, the boundaries also seemed to be a 
serious obstacle especially in connection with characteristic roots which are 
nonlinear functions with respect to 5. At least in special cases, however, it 
seems possible to overcome the difficulties by a careful study of what 
happens when the rays hit the boundary. In the simplest cases only a 
t-eflection will occur, and it may be possible to take this reflection into 
account in the family of solutions (4.1). In general, however, problems with 
creeping waves and the like may appear (see Ludwig [ 121). Finally, it may 
be worth mentioning that the multiplicity assumptions also may be relaxed 
substantially in special cases (some remarks on this is given in Eckhoff [ 11). 

As we noted in Section 2, our approach to the problem of stability for 
(2.1) will essentially also work for a number of other choices of the metrics 
p,, and p. It is not difficult to see that the instabilities detected by application 
of the theorem in Section 6 are genuine instabilities in the sense that they 
will appear in instabilities for almost anyreasonable choice of the metrics po, 
p. For other choices of po, p, however, there may be additional instabilities. 
In many cases it will be possible to detect such additional instabilities by 
suitable modifications of our approach (some remarks on this is given in 
Eckhoff [ 11). 

Summarizing, we may say that neither the assumptions necessary for 
applying our approach, nor our choice of metric spaces M,, M do usually 
represent obstacles which seriously limit the applicability of our approach to 
the problem of stability for (2.1). The value of our approach is therefore 
essentially limited only by the fact that it leads to conditions for stability in 
(2.1) which only are necessary (i.e., sufficient conditions for instability). It is 
easy to construct examples where the trivia1 solution of (2.1) is unstable, but 
where the instability cannot be detected by our approach (consider for 
instance systems (2.1) with constant coefficients and compare with the 
results obtained by the normal mode method). On the other hand, the 
necessary conditions for stability obtained by our approach can in many 
cases be shown to be fairly close to sufficient conditions for stability 
obtained by other means (see for instance Eckhoff and Storesletten [4, 51). 
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In a subsequent paper we shall improve our approach such that further 
necessary conditions for stability may be obtained. This will be done by 
considering not only the leading-order terms in the family of solutions (4.1& 
but also taking into account higher order terms. 
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