Two party immediate response disputes: Properties and efficiency

Paul E. Dunne*, T.J.M. Bench-Capon

Department of Computer Science, University of Liverpool, Liverpool L69 7ZF, UK
Received 28 June 2002

Abstract

Two Party Immediate Response Disputes (TPI-disputes) are one class of dialogue or argument game in which the protagonists take turns producing counter arguments to the ‘most recent’ argument advanced by their opponent. Argument games have been found useful as a means of modelling dialectical discourse and in providing semantic bases for proof theoretic aspects of reasoning. In this article we consider a formalisation of TPI-disputes in the context of finite Argument Systems. Our principal concern may, informally, be phrased as follows: given a specific argument system, \mathcal{H}, and argument x within \mathcal{H}, what can be stated concerning the number of moves a dispute might take for one of its protagonists to accept that x has some defence respectively cannot be defended?

Keywords: Argument systems; Dialogue game; Gentzen system; Proof complexity

1. Introduction

In this paper we are concerned with two important formalisms that have been the subject of much interest with respect to their application in modelling dialectical process: Argument Systems [17], and Argument Games [22,29]. Our principal concern is with the length of disputes when they are conducted in accordance with the etiquette prescribed by a particular formal protocol. The protocol of interest—TPI-dispute—was outlined in the work of [38] and in Section 1.2 we present a rigorous formalisation of this with examples of its operation being described in Section 2. The main technical concerns are dealt with in Section 3, wherein two questions are examined. Informally, these may be viewed as...
follows: suppose we are presented with an argument system and an argument within this. If it is required to observe the dispute rules prescribed in some dispute protocol,

(a) when the given argument can be defended, how many moves could it take to prove to a challenging party that the argument may be defended against any attack?
(b) when the given argument cannot be defended against all possible attacks, how many moves must it take to convince putative defenders that their position is untenable?

We obtain a precise characterisation answering (a) (Theorem 4, below). In the case of (b), by developing a construction similar to that used in [16], the question is related to the widely studied issue of Proof Complexity. Specifically, we demonstrate that by representing an unsatisfiable CNF-formula, \(\varphi \), as an argument system the dispute protocol defines a proof calculus that may be employed to show \(\neg \varphi \) is a propositional tautology. Thus, we obtain a partial answer to (b) (in Theorem 5) by establishing that when interpreted as a calculus for Propositional Logic, the TPI-dispute protocol is ‘not very powerful’: formally we show that it may be efficiently simulated by a Gentzen system in which the CUT inference rule is not available.

In the remainder of this section we review the Argument System formalism from [17] and formally develop the argument game TPI-dispute, originally outlined in [38]. In Section 2 some illustrative examples of how disputes evolve in this protocol are presented. As we have already noted, Section 3 presents the core technical contribution, while Section 4 discusses some issues arising from our results and presents some directions for further work. Conclusions are given in Section 5.

1.1. Argument systems

Argument systems as a mechanism for studying formalisations of reasoning, acceptability, and defeasibility were introduced by Dung [17] and have since received considerable attention with respect to their use in non-classical logics, e.g., [8,13–15]. The basic definition of finite argument system below is derived from that given in [17].

Definition 1. An argument system is a pair \(\mathcal{H} = (\mathcal{X}, \mathcal{A}) \), in which \(\mathcal{X} \) is a set of arguments and \(\mathcal{A} \subseteq \mathcal{X} \times \mathcal{X} \) is the attack relationship for \(\mathcal{H} \). A pair \(\langle x, y \rangle \in \mathcal{A} \) is referred to as ‘\(y \) is attacked by \(x \)’ or ‘\(x \) attacks (or is an attacker of) \(y \)’. The range of an argument \(x \)—denoted \(\text{range}(x) \)—is the set of arguments that are attacked by \(x \); the range of a set of arguments \(S \), is the union over all \(x \) in \(S \) of \(\text{range}(x) \).

For \(R, S \) subsets of \(\mathcal{X} \) in \(\mathcal{H}((\mathcal{X}, \mathcal{A})) \), we say that

(a) \(s \in S \) is attacked by \(R \) if there is some \(r \in R \) such that \(\langle r, s \rangle \in \mathcal{A} \).
(b) \(x \in \mathcal{X} \) is acceptable with respect to \(S \) if for every \(y \in \mathcal{X} \) that attacks \(x \) there is some \(z \in S \) that attacks \(y \).
(c) \(S \) is conflict-free if no argument in \(S \) is attacked by any other argument in \(S \).
(d) A conflict-free set \(S \) is admissible if every argument in \(S \) is acceptable with respect to \(S \).
(e) \(S \) is a preferred extension if it is a maximal (with respect to \(\subseteq \)) admissible set.
(f) \(S \) is a stable extension if \(S \) is conflict free and every argument \(y \notin S \) is attacked by \(S \).
While some argument systems may not have any stable extension, it is always the case that some preferred extension is present: the reason being that the empty set is always admissible.

Definition 2. The decision problem *Credulous Acceptance* (CA) takes as an instance: an argument system \(\mathcal{H} = \langle \mathcal{X}, A \rangle \) and an argument \(x \in \mathcal{X} \). The result true is returned if and only if at least one preferred extension \(S \) of \(\mathcal{X} \) contains \(x \). If \(\text{CA}(\langle \mathcal{H}, x \rangle) \) holds then \(x \) is said to be credulously accepted in \(\mathcal{H} \).

The decision problem *Sceptical Acceptance* (SA) takes as an instance: an argument system \(\mathcal{H} = \langle \mathcal{X}, A \rangle \) and an argument \(x \in \mathcal{X} \). The result true is returned if and only if every preferred extension \(S \) in \(\mathcal{X} \) contains \(x \). If \(\text{SA}(\langle \mathcal{H}, x \rangle) \) holds \(x \) is said to be sceptically accepted in \(\mathcal{H} \).

1.2. Argument games and TPI-disputes

A widely studied concept that has received some attention in the context of argument systems is that of employing argument games both as models of dialectical discourse and as a basis for a formal proof theory. The form of such games involves a sequence of interactions between two protagonists—hereafter referred to as the Defender (D) and Challenger (C)—wherein the Defender attempts to establish a particular argument in the face of counterarguments advanced by the Challenger, see, e.g., [10,24,26,29,37]. In [38] descriptions of games—Two Party Immediate Response Disputes (TPI-disputes)—are presented for Credulous and Sceptical Argument within the framework considered in the present article. We consider a rather more tightly specified definition of TPI-disputes: the form presented in [38] defines notions of move, attack, winning and losing within a dispute. These, however, are illustrated through a series of examples rather than presenting a precise semantics for the game as a whole. Our main point of interest concerns the fact that whilst such games always terminate for finitely specified systems we wish to address how many steps (as a function of \(|\mathcal{X}|\)) some disputes may take.

We begin by developing the idea of TPI-disputes, using as a basis the informal schema of [38]. In informal terms, a TPI-dispute starts from a named argument, \(x \) in a given argument system \(\mathcal{H} \). For the Credulous Game, a defender attempts to construct an admissible set containing \(x \). For a select class of Argument Systems,\(^1\) Sceptical Acceptance can be established by the Defender proving that no attacker of \(x \) is credulously accepted. The Challenger’s aim is to prevent successful construction. The game proceeds by the players alternately presenting arguments within \(\mathcal{H} \) that attack the previous arguments proposed by the other player. The concept of immediate response concerns the requirement in the game for both players to identify arguments that attack the most recent argument put forward by the opponent. A number of examples given in [38] indicate that both players must have the capability of ‘back-tracking’, e.g., if the line of attack followed by the Challenger fails, it must be possible to adopt a different attack on some previous argument.

We can view the progress of such disputes as a sequence of directed trees each of which is constructed by a depth-first expansion, the root of each tree being the argument \(x \) at the

\(^{1}\) But not *all*, cf. Theorem 3, and Fig. 1 subsequently.
heart of the dispute. In this way the game is characterised by the moves through which a tree is expanded and the rules which force back-tracking by either party.

1.2.1. A model of TPI-disputes

Definition 3. Let $H((\mathcal{X}, \mathcal{A}))$ be an argument system and x an argument in \mathcal{X}. A dispute tree for x in H, T^H_x, is a tree whose vertices are a subset of \mathcal{X} and whose root is x. The edges of a dispute tree are directed from vertices to their parent vertex. If t is a leaf vertex in T^H_x, the path $t = v_k \rightarrow v_{k-1} \rightarrow \cdots \rightarrow v_2 \rightarrow v_1 \rightarrow v_0 = x$ is called a dispute line.

A dispute line (of v) is a failing attack on x if the number of vertices on the path from v up to (and including) x is odd. A dispute line is a failing defence of x if this number is even.

A vertex, v, is open in T^H_x if there is an argument, w in \mathcal{X}, which attacks v and is ‘available’ (in a sense which is made precise below). If no such argument exists, v is closed. A dispute line is closed or open according to whether its leaf vertex is closed or open.

Given a system $H((\mathcal{X}, \mathcal{A}))$ and $x \in \mathcal{X}$ a TPI-dispute consists of a sequence of moves $M = (\mu_1, \mu_2, \ldots, \mu_i, \ldots)$. Moves, μ, are chosen from a finite repertoire of move types, some (or all) of which may not be available (depending on the current ‘state’ of a dispute). This state is represented after the kth move ($k \geq 0$), by a tuple $\sigma_k = \langle T_k, v_k, \Delta_k, \Gamma_k, P_k, Q_k \rangle$. Here

- T_k: the dispute tree after k moves;
- v_k: the ‘current’ argument (vertex of) T_k;
- Δ_k: arguments available to D;
- Γ_k: arguments available to C;
- P_k: arguments proposed as a (subset) of some admissible set by D;
- Q_k: the set of subsets of arguments that C has shown not to be a subset of an admissible set.

The initial state (σ_0) is $\langle \langle x \rangle, x, \Delta_0, \Gamma_0, P_0, Q_0 \rangle$ where

$$\Delta_0 = \mathcal{X}/(\{x\} \cup \{y: \langle x, y \rangle \in \mathcal{A} \text{ or } \langle y, x \rangle \in \mathcal{A}\}),$$

$$\Gamma_0 = \mathcal{X}/(\{x\} \cup \text{range}(x)),$$

$$P_0 = \{x\},$$

$$Q_0 = \emptyset.$$

A dispute, $M = (\mu_1, \mu_2, \ldots, \mu_k)$, is active if there is a legal move μ_{k+1} available to the current player, i.e., C if $k+1$ is odd, D otherwise. A dispute, M, is terminated if M is not active. For a terminated dispute, we use $|M|$ to denote the number of moves in M.

In informal terms the ‘state’ describes the progress so far of a dispute over the argument x. The defender is attempting to construct in the subset P_k an admissible set
containing x. In order to achieve this, D, has to respond to attacks put forward by C so that (if k is odd), the argument v_k requires D to employ an ‘available’ argument in Δ_k to attack v_k: the chosen argument will form the component v_{k+1} of the next state. The Challenger in attempting to show that x is not credulously accepted maintains a set of subsets of X (the set Q_k) comprising subsets that cannot form part of an admissible set with x.

Before defining the move repertoire we outline the notions of ‘availability’ that are used. Suppose D must find an argument z with which to attack v_k proposed by C, i.e., with $(z, v_k) \in A$. Since D aims to construct an admissible set, certainly any z that conflicts with any argument in P_k cannot be used—P_k must be conflict-free. In addition, should z be such that $P_k \cup \{z\}$ has already been shown not to be an admissible set, i.e., for some $S \in Q_k$ it holds that $S \subseteq P_k \cup \{z\}$, then z cannot be used to counter-attack v_k. Thus, in summary, an argument is ‘available’ to D if it attacks the most recent argument put forward by C, does not conflict with any argument that D is currently defending and can be added to this set without forming a ‘known’ inadmissible set. Similarly, C, in finding a counterattack to v_k needs to identify some z that attacks v_k and is not attacked by any argument in P_k. Thus the ‘available’ arguments for C at any point are simply those that are not attacked by any argument in P_k.

A detailed description of how the sets of available arguments develop between moves is given when we describe the move repertoire.

1.2.2. The move repertoire

It remains to describe the move repertoire, conditions determining applicability, and consequent changes to σ_{i-1} after performing a move μ_i.

The various implementations of argument games allow a variety of different moves. Some, such as [25], provide a small number of basic moves, intended to model disputes in a generic manner, while others allow a larger number in order to attempt to reflect the moves made by the participants in particular kinds of dispute, e.g., [22] or to reflect particular notions of what constitutes an argument. For example Bench-Capon [6] models arguments as described by Toulmin [34]. Since our framework uses Dung’s very abstract notion of argument [17], we do not need moves to reflect particular procedures or forms of argument, and so can use a rather small set of moves.

The repertoire of moves\footnote{The terminology we use is not employed in [38] which is given simply in terms of attacking moves and back-tracking.} we allow comprises just,

\{COUNTER, BACKUP, RETRACT\}.

The first move can be made by either player, whereas BACKUP is only employed by C, and RETRACT only by D. These two moves arise from the need to allow back-tracking. In the description that follows it should be remembered that odd indexed moves are made by the Challenger and even indexed moves by the Defender.

$\mu_k = \text{COUNTER}(y)$; Let $\sigma_{k-1} = (T_k-1, v_k-1, \Delta_k-1, \Gamma_k-1, P_k-1, Q_k-1)$. If k is odd, μ_k is made by C, and COUNTER(y) can be applied only if $(y, v_k-1) \in A$ and $y \in \Gamma_k-1$, i.e., y attacks the current argument (v_{k-1}) and is available. The new state, σ_k, is now
\[T_k := T_{k-1} + \langle y, v_{k-1} \rangle, \]
\[v_k := y, \]
\[\Delta_k := \Delta_{k-1}, \]
\[\Gamma_k := \Gamma_{k-1}/\{y\}, \]
\[P_k := P_{k-1}, \]
\[Q_k := Q_{k-1}. \]

If \(k \) is even, so that \(\mu_k \) is made by \(D \), then \(\text{COUNTER}(y) \) can be applied only if: \(y \in \Delta_{k-1}; \langle y, v_{k-1} \rangle \in A; \) and for each set \(R \) in \(Q_{k-1} \), \(R \) is not contained in \(P_{k-1} \cup \{y\} \), i.e., \(D \) has available an argument \(y \) with which to attack \(v_{k-1} \) and, if \(y \) is added to the set of arguments that \(D \) is (currently) committed to then the resulting set has not been ruled inadmissible earlier.

The new state, \(\sigma_k \) is now
\[T_k := T_{k-1} + \langle y, v_{k-1} \rangle, \]
\[v_k := y, \]
\[\Delta_k := \Delta_{k-1}/\{y\} \cup \{z \in \Delta_{k-1}: \langle y, z \rangle \in A \text{ or } \langle z, y \rangle \in A\}, \]
\[\Gamma_k := \Gamma_{k-1}/\{y\} \cup \text{range}(y), \]
\[P_k := P_{k-1} \cup \{y\}, \]
\[Q_k := Q_{k-1}. \]

The definition of \(\Delta_k \) from \(\Delta_{k-1} \) and \(y \) captures the fact that \(D \) (in attempting to form an admissible set) may not violate the requirement to be conflict free. The form taken by \(\Gamma_k \) indicates that in adding \(y \) to its (currently) accepted arguments, \(D \) now has a defence to all arguments in \(\Gamma_{k-1} \) that \(y \) attacks. It follows that there is no gain in these being available to \(C \).

\[\mu_k = \text{BACKUP}(j, y) \] (where \(j \) is even and \(0 \leq j \leq k - 3 \)). The BACKUP move is only invoked by \(C \) and corresponds to the situation where \(C \) has no available attack with which to continue the current dispute line. The BACKUP move returns the dispute to the most recent point \(\sigma_j \) from which \(C \) can mount a fresh attack. Thus, if the (currently open) dispute line is,
\[L_{k-1} = \langle v_{k-1} \rightarrow v_{k-2} \rightarrow \ldots \rightarrow v_{j+1} \rightarrow v_j \rightarrow \ldots \rightarrow v_2 \rightarrow v_1 \rightarrow v_0 \rangle \]
then

BC1. \(L_{k-1} \) is a closed failing attack, i.e., there are no arguments \(z \in \Gamma_{k-1} \) for which \(\langle z, v_{k-1} \rangle \in A \).

BC2. For each \(r \) in the set \(\{j + 2, j + 4, j + 6, \ldots, k - 3\} \) there are no arguments
\[z \in \Gamma_r/\{v_r, v_{r+1}, v_{r+2}, \ldots, v_{k-2}\} \cup \text{range}(\{v_r, v_{r+2}, \ldots, v_{k-3}\}) \]
for which \(\langle z, v_r \rangle \in A \).
The parameters \(j \) and \(y \) specified in the move \(\text{BACKUP}(j, y) \) are such that

\[
y \in \Gamma_j /\left(\{v_j, v_{j+1}, v_{j+2}, \ldots, v_{k-2}\} \cup \text{range}(\{v_j, v_{j+2}, \ldots, v_{k-3}\}) \right)
\]

and \(\langle y, v_j \rangle \in \mathcal{A} \).

In summary, the conditions for the move \(\text{BACKUP}(j, y) \) to be applicable are: \(C \) cannot continue the current dispute line since there is no argument in \(C \)'s arsenal that can be used to attack the last argument proposed by \(D \) (BC1); \(C \) cannot mount a new line of attack on any argument put forward by \(D \) in the set \(\{v_{j+2}, v_{j+4}, \ldots, v_{k-3}\} \) (BC2); \(C \), by using \(y \), can launch a different attack on \(v_j \) (BC3).

The new state \(\sigma_k \) effected by the move \(\text{BACKUP}(j, y) \) is given by:

\[
T_k := T_{k-1} + \langle y, v_j \rangle,
\]
\[
v_k := y,
\]
\[
\Delta_k := \Delta_{k-1},
\]
\[
\Gamma_k := \Gamma_j /\left(\{y, v_{j+1}, v_{j+2}, \ldots, v_{k-1}\} \cup \text{range}(\{v_{j+2}, v_{j+4}, \ldots, v_{k-1}\}) \right),
\]
\[
P_k := P_{k-1},
\]
\[
Q_k := Q_{k-1}.
\]

Note that \(\Delta_k \) does not revert to its content at the ‘backup’ position \(\Delta_j \): \(D \) has ‘committed’ to defending these in order to force \(C \) to adopt a new line of dispute. Secondly, the set, \(\Gamma_k \), of available arguments for \(C \), has all of the arguments advanced in progressing from \(v_{j+1} \) to \(v_{k-3} \) removed (rather than simply the ‘old’ attack \(v_{j+1} \) and the ‘new’ attack \(y \) on \(v_j \)) since \(D \) has already established a suitable line of defence to each of these, their only utility to the challenger would be in prolonging a dispute, rather than winning it.

\(\mu_k = \text{RETRACT} \). The RETRACT move is only made by \(D \). Suppose

\[
\sigma_{k-1} = (T_{k-1}, v_{k-1}, \Delta_{k-1}, \Gamma_{k-1}, P_{k-1}, Q_{k-1})
\]

is the current state (so that \(k-1 \) is odd). For RETRACT to be applicable \(D \) must have no available attack on \(v_{k-1} \) and \(P_{k-1} \neq \{x\} \). In this case, the Challenger has succeeded in showing that the set \(P_{k-1} \) cannot be extended to form an admissible set. Thus the only option available to the Defender is to try constructing a new admissible set containing \(x \). Formally, the next state \(\sigma_k \) is given as

\[
T_k := \langle x \rangle,
\]
\[
v_k := x,
\]
\[
\Delta_k := \Delta_0,
\]
\[
\Gamma_k := \Gamma_0,
\]
\[
P_k := P_0,
\]
\[
Q_k := Q_{k-1} \cup \{P_{k-1}\}.
\]
1.2.3. Discussion

The main point that should be noted is the asymmetry concerning BACKUP and RETRACT. Firstly, BACKUP may be seen as the Challenger invoking a new line of attack within the same dispute tree. On the other hand, RETRACT represents the dispute over x being started again, this time, however, with the knowledge that some lines of defence are not available, i.e., those that would result in a ‘known’ inadmissible set being constructed. Of course, as will be shown later, if x is credulously accepted then D, employing ‘best play’ will never need to make a retraction. In defining the game rules, however, we cannot assume that D will play ‘intelligently’ and thus may, inadvertently, call upon arguments that are eventually exposed as collectively indefensible. It may be observed that the position from which the dispute is resumed (following a retraction) is the opening dispute tree: while, in principle, one could define the next dispute tree to result from some variant of the current one, such an approach affords no significant gain.

1.2.4. Credulous and sceptical games

Definition 4. Let $M_{⟨H,x⟩} = ⟨µ_1, µ_2, . . . , µ_k⟩$ be a terminated TPI-dispute over an argument x in the argument system H. $M_{⟨H,x⟩}$ is a successful (credulous) defence of x if k is even, and a successful rebuttal of x if k is odd.

The following result reformulates Proposition 1 of [38] in terms of the formal framework introduced above.

Theorem 1. $CA(H, x) ⇔ (∃M(⟨H,x⟩): M_{⟨H,x⟩}$ is a successful defence of $x)$.

Proof. First suppose that $CA(H(⟨X, A⟩, x)$ holds, i.e., that x is credulously accepted in H. Consider any admissible set, S_x, of H containing x. It is certainly the case that using only the arguments in S_x, D can always COUNTER attacks available to C (recall that in replying to COUNTER(y) from C the response COUNTER(z) will remove from C’s arsenal of attacks any argument attacked by z). Furthermore, D never has to invoke the RETRACT move. It follows that such a dispute will eventually terminate with C having no further move, i.e., as a successful defence of x.

Conversely, suppose that $M_{⟨H,x⟩}$ is a successful defence of x. Consider the set P_k pertaining after $µ_k$ the final move of the dispute. It is certainly the case that $x ∈ P_k$ (since this holds throughout the dispute). In addition, P_k is conflict-free (since $Δ_j$ never makes available to D, arguments that conflict with those in P_j). Finally, since C has no move available, every attack on arguments $y ∈ P_k$ must have been countered, i.e., is defended by some $p ∈ P_k$. The three properties just identified establish that P_k is an admissible set containing x, hence x is credulously accepted. □

Theorem 2. For all TPI-dispute instances, $⟨H,x⟩$ either all terminated $M_{⟨H,x⟩}$ are successful defences of x or all are successful rebuttals.

Proof. Suppose the contrary and
\(M^{(1)} = \{ \mu_1^1, \mu_2^1, \ldots, \mu_m^1 \} \) with \(\sigma_m^1 = \{ t_m^1, v_m^1, \Delta_m^1, \Gamma_m^1, P_m^1, Q_m^1 \} \),
\(M^{(2)} = \{ \mu_1^2, \mu_2^2, \ldots, \mu_n^2 \} \) with \(\sigma_n^2 = \{ t_n^2, v_n^2, \Delta_n^2, \Gamma_n^2, P_n^2, Q_n^2 \} \)
are different TPT-disputes with \(M^{(1)} \) a successful defence of \(x \) and \(M^{(2)} \) a successful rebuttal of \(x \) within \(\mathcal{H} \). Since \(M^{(1)} \) is a successful defence, the subset \(P_m^1 \) is a stable conflict-free set (containing \(x \)). If \(M^{(2)} \) is a successful rebuttal of \(x \), then \(D \) must reach the point where no RETRACT move is applicable. Consider the admissible set, \(P_m^1 \), found by \(M^{(1)} \) and the first move \(t \) at which some \(Q \subseteq P_m^1 \) is added to \(Q_{t-1}^2 \). It must be the case that \(\mu_2^2 = \text{RETRACT} \) (or \(t = n + 1 \)) and that \(D \) has no available defence with which to counter \(v_{t-1}^2 \). Now we derive a contradiction: \(v_{t-1}^2 \) attacks \(y \in P_{t-2}^2 = Q \subseteq P_m^1 \) and the progress of \(M^{(2)} \) has left no counter attack on \(v_{t-1}^2 \) available to \(D \). On the other hand, such a defence (\(z \), say) is present in \(P_m^1 \) since it is an admissible set and \(z \) would only be unavailable if it attacked or was attacked by \(Q \), contradicting the fact that \(P_m^1 \) (of which \(Q \) is a subset) must be conflict-free. \(\square \)

Definition 5. For an argument system \(\mathcal{H}(\langle \mathcal{X}, \mathcal{A} \rangle) \) and \(x \in \mathcal{X} \), the \(x \)-augmented system, \(\mathcal{H}_x \), is the system formed by adding a new argument \(\{ x_a \} \) to \(\mathcal{X} \) together with attack \(\{ x, x_a \} \).

The following reformulates Proposition 2 of [38].

Theorem 3. Let \(\mathcal{H} \) be an argument system in which every preferred extension is also a stable extension and let \(x \) be an argument in \(\mathcal{H} \).\(^3\) The argument \(x \) is sceptically accepted in \(\mathcal{H} \) if and only if, there is a dispute, \(M \), providing a successful rebuttal of \(x_a \) in the \(x \)-augmented system \(\mathcal{H}_x \).

Proof. Let \(\mathcal{H} \) be an argument system in which every preferred extension is stable. First suppose that \(x \) is sceptically accepted in \(\mathcal{H} \), the first part of the theorem will follow (via Theorem 1) by showing that \(x_a \) is not credulously accepted in the \(x \)-augmented system. Suppose the contrary and that \(S_x \subseteq \mathcal{X} \cup \{ x_a \} \) is a preferred extension in \(\mathcal{H}_x \) that contains \(x_a \). The set \(S_x \) cannot contain \(x \), and must contain at least one attacker of \(x \). The set, \(S_x/\{ x_a \} \), however, is an admissible set in \(\mathcal{H} \) and cannot be developed to a preferred extension containing \(x \). This contradicts the premise that \(x \) is sceptically accepted in \(\mathcal{H} \).

Conversely, suppose that \(x_a \) is not credulously accepted in the \(x \)-augmented system \(\mathcal{H}_x \). Consider any preferred extension \(S \) of \(\mathcal{H} \). Suppose \(x \notin S \). Since \(S \) is a stable extension, there is some attacker, \(y \), of \(x \), in \(S \) and since \(y \) attacks \(x \) which is the only attack on \(x_a \) in the \(x \)-augmented system, we deduce that \(S \cup \{ x_a \} \) would form a preferred extension in \(\mathcal{H}_x \) contradicting the premise that \(x_a \) is not sceptically accepted. \(\square \)

The example in Fig. 1 is adapted from [38], and shows that the stability condition is needed. In this example of an \(x \)-augmented system, \(x_a \) is not in any preferred extension since there is no defence to the attack by \(x \) (\(y \) is inadmissible since it is effectively self-attacking). Within the original system, however, \(x \) is not sceptically accepted: there are

\(^3\) Argument systems satisfying this condition are termed coherent in [17, Definition 31(1), p. 332].
two preferred extensions—\{x, z\} and \{u\}—the latter containing neither x nor its attacker y. We note that testing if an argument system is coherent, i.e., every preferred extension is also stable, is likely to be difficult: Dunne and Bench-Capon [19] having demonstrated this to be \(\Pi^2_P\)-complete, although there is an efficiently decidable property that guarantees coherence.

2. Examples

In order to clarify how particular disputes develop we give two examples based on the argument systems, shown in Fig. 2. It may be observed that the system in Fig. 2(b) can be interpreted as a representation of the tautology,

\[\neg F(y, z) = \neg((y \lor z) \land (y \lor \neg z) \land (y \lor z) \land (\neg y \lor \neg z)) \]

and so serves to illustrate dispute progression for proving credulous acceptance of the argument \(\neg F\) and sceptical acceptance of the same argument, i.e., that the argument \(F\) in this system is not credulously accepted. A general translation from CNF formulae to argument systems will be given in Definition 7.

For Fig. 2(a) one possible TPI-dispute over x (in which we abbreviate COUNTER, BACKUP, and RETRACT to C, B, R) is,

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
k & \mu_k & v_k & \Delta_k & \Gamma_k & P_k & Q_k \\
\hline
0 & - & x & \{u, v, w\} & \{y, z, u, v, w\} & \{x\} & \emptyset \\
1 & C(y) & y & \{u, v, w\} & \{z, u, v, w\} & \{x\} & \emptyset \\
2 & C(v) & v & \{u\} & \{z, u\} & \{x, v\} & \emptyset \\
3 & B(0, z) & z & \{u\} & \{u\} & \{x, v\} & \emptyset \\
4 & R & x & \{u, v, w\} & \{y, z, u, v, w\} & \{x\} & \{x, v\} \\
5 & C(y) & y & \{u, v, w\} & \{z, u, v, w\} & \{x\} & \{x, v\} \\
6 & C(u) & u & \{v, w\} & \{z, v, w\} & \{x, u\} & \{x, v\} \\
7 & B(4, z) & z & \{v, w\} & \{v, w\} & \{x, u\} & \{x, v\} \\
8 & C(w) & w & \emptyset & \emptyset & \{x, u, w\} & \{x, v\} \\
\hline
\end{array}
\]
It may be observed that D, at μ_2, makes an ‘incorrect’ move in attacking y using v (instead of u) thus removing w from the set of available arguments and allowing C to force a retraction by attacking x with z. Of course, D could have shortened the length of the dispute by playing $\text{COUNTER}(u)$ as the second move. As we noted earlier, the intention is to define the protocol for disputes in such a way that even if D advances what turn out to be ill-advised counter-attacks, this does not result in the game being lost since there are opportunities to correct. For Fig. 2(a) there are exactly three possible TPI-disputes over x: two in which C first counter-attacks with y, and one in which the initial counter-attack is using z.

As a final illustration we give an example of a dispute establishing sceptical acceptance of $\neg F$ in the system of Fig. 2(b). It is not difficult to see that this follows by showing that F is not credulously accepted, so the description is given in terms of a successful rebuttal of F:

\[
\begin{array}{cccccc}
 k & \mu_k & v_k & P_k & Q_k \\
 0 & - & F & \{F\} & \emptyset \\
 1 & \text{C}(C1) & C1 & \{F\} & \emptyset \\
 2 & \text{C}(y) & y & \{F, y\} & \emptyset \\
 3 & \text{B}(0, C3) & C3 & \{F, y\} & \emptyset \\
 4 & \text{C}(z) & z & \{F, y, z\} & \emptyset \\
 5 & \text{B}(0, C4) & C4 & \{F, y, z\} & \emptyset \\
 6 & \text{R} & F & \{F\} & \{\{F, y, z\}\} \\
 7 & \text{C}(C1) & C1 & \{F\} & \{\{F, y, z\}\} \\
 8 & \text{C}(z) & z & \{F, z\} & \{\{F, y, z\}\} \\
 9 & \text{B}(6, C2) & C2 & \{F, z\} & \{\{F, y, z\}\} \\
 10 & \text{R} & F & \{F\} & \{\{F, y, z\}, \{F, z\}\} \\
 11 & \text{C}(C1) & C1 & \{F\} & \{\{F, y, z\}, \{F, z\}\} \\
\end{array}
\]
and now, D cannot counter-attack C_1 without constructing an already shown to be inadmissible set nor RETRACT since $P_{15} = \{F\}$.

3. **Complexity of argument games**

The preceding sections have largely been concerned with a rigorous formulation of the concept of TPI-dispute as first outlined in [38]. The principal aim of the present paper, however, is to consider the following questions.

Question 1. Given a TPI-dispute instance—(\mathcal{H}, x)—such that x is credulously accepted in \mathcal{H}, how many moves are required (in the worst case) in a dispute M defining a successful defence of x?

Question 2. Given a TPI-dispute instance—(\mathcal{H}, x)—such that x is not credulously accepted in \mathcal{H}, how many moves are necessary (in the best case) for a dispute M establishing a successful rebuttal of x?

In view of Theorem 3, Question 2, is of interest with respect to the number of moves required to establish sceptical acceptance of an argument.

In order to make these precise, we introduce the idea of *Dispute Complexity*. Given an instance of a TPI-dispute, (\mathcal{H}, x), its *dispute complexity*, denoted $\delta(\mathcal{H}, x)$ is,

$$\delta(\mathcal{H}, x) = \min_{M: M \text{ is a terminated dispute over } x \text{ in } \mathcal{H}} |M|.$$

Definition 6. Let $\mathcal{H}((\mathcal{X}, \mathcal{A}))$ be an argument system and $x \in \mathcal{X}$ an argument that is credulously accepted in \mathcal{H}. The *rank* of x in \mathcal{H}, denoted $\rho(\mathcal{H}, x)$, is defined by

$$\rho(\mathcal{H}, x) = \min_{S \subseteq X/x: S \cup \{x\} \text{ is admissible in } \mathcal{H}} |S|.$$

Theorem 4. For any TPI-dispute instance—(\mathcal{H}, x)—in which x is credulously accepted in \mathcal{H},

$$\delta(\mathcal{H}, x) = 2 \rho(\mathcal{H}, x).$$

Proof. To see that $\delta(\mathcal{H}, x) \leq 2 \rho(\mathcal{H}, x)$, consider the subset S of \mathcal{X} that attains the value $\rho(\mathcal{H}, x)$. By an argument similar to that in the proof of Theorem 1, x can be defended
in a TPI-dispute, with \(D \) employing only arguments in \(S \). Adopting such a strategy, \(D \) never needs to invoke the RETRACT move. The size of the set, \(P \), to which \(D \) is committed increases by one with each move made by \(D \) as more members of \(S \) are added. It follows that, since \(S \) is admissible, the Challenger will have no further moves open once \(D \) has committed to every argument in \(S \). Adopting such a strategy, \(D \) never needs to invoke the RETRACT move. The size of the set, \(P \), to which \(D \) is committed increases by one with each move made by \(D \) as more members of \(S \) are added. It follows that, since \(S \) is admissible, the Challenger will have no further moves open once \(D \) has committed to every argument in \(S \).

To complete the proof we show that \(\delta(H, x) \geq 2\rho(H, x) \). Consider a TPI-dispute, \(M \), that attains \(\delta(H, x) \) and the dispute tree, \(T_{|M|} \), that is active when the Challenger admits defeat. Certainly, \(|M| \) must be at least twice the number of arguments in \(T_{|M|} \) (excluding \(x \)). The arguments to which \(D \) is committed after the \(|M| \)th move must define an admissible set (otherwise \(C \) could continue the dispute by finding an appropriate \(y \) attacking some member of \(P_{|M|} \)). It follows that \(|P_{|M|}/\{x\}| \geq \rho(H, x) \) and thence \(\delta(H, x) \geq 2\rho(H, x) \) as required. ✷

Theorem 4, in its characterisation of the answer to our first question, can be interpreted in the following way: if an argument \(x \) is credulously accepted in the system \(H \) then there is a ‘short proof’ of this, i.e., using the TPI-dispute that achieves \(\delta(H, x) \) moves. It is important to note that this does not imply that deciding if such a proof exists can be accomplished efficiently: given the results of [16]4 (from which it may be deduced that \(CA \) is NP-complete) it seems unlikely that such a decision method could be found.

For the remainder of this paper we are concerned with the second question raised. As with the view proposed in the preceding paragraph, we can interpret results concerning this question in terms of properties of the ‘size’ of ‘proofs’ that an argument is not credulously accepted. The decision problem \(CA \) being NP-complete, indicates that such proofs are concerned with a CO-NP-complete problem. While all NP-complete problems are such that positive instances of these have concise proofs that they are positive instances (this being one of the defining characteristics of the class NP as a whole) it is suspected that no CO-NP-complete problem has this property. In other words, we have the following (long-standing) conjecture: if \(L \) is a CO-NP-complete problem, then there are (infinitely many) instances, \(x \) of \(L \), for which \(L(x) \) is true but the ‘shortest proof’ of this is of length superpolynomial in the number of bits needed to encode \(x \).

The discussion above suggests that (assuming \(NP \neq CO-NP \)) there must be infinitely many instances \(\langle H, x \rangle \) for which \(x \) is not credulously accepted in \(H \) and for which \(\delta(H, x) \)—the dispute complexity of the instance—is superpolynomial in \(|X| \), the number of arguments in the system.

Our goal in the remainder of this paper is to establish the existence of a sequence of TPI-dispute instances—\(\langle H_N, x \rangle \)—having \(N \) arguments, \(x \) not credulously accepted in \(H_N \), and with the number of moves in any terminated TPI-dispute being exponential in \(N \). Of course, since these bounds apply only to our specific formalisation, this raises the question of defining ‘more powerful’ dispute protocols.

4 Dimopoulos and Torres [16] employ rather different terminology from that introduced by Dung [17], however, it is not difficult to relate the two: a brief discussion interpreting the contribution of [16] in terms of Dung’s argument systems is presented in [19].

5 In complexity-theoretic terms, this is the assertion that \(NP \neq CO-NP \). It is worth noting that if true, it implies \(P \neq NP \). The converse, however, is not (necessarily) true: in principle one might have \(NP = CO-NP \) and \(P \neq NP \).
3.1. Propositional tautologies and argument systems

The proof that CA is NP-complete obtained in [16] is effected through a reduction from 3-SAT, this construction extending easily to CNF-SAT, i.e., without the restriction of three literals per clause. The class of argument systems that result via this translation of CNF formulae turn out to be central to the analysis of dispute complexity, we therefore review the details of this in,

Definition 7. Given,

\[\phi(Z_n) = \bigwedge_{i=1}^{m} C_i = \bigwedge_{i=1}^{m} \left(\bigvee_{j=1}^{k_i} y_{i,j} \right) \]

a propositional formula in CNF comprising \(m \) clauses—\(C_i \)—the \(i \)th containing exactly \(k_i \geq 1 \) distinct literals over the propositional variables \(Z_n = \langle z_1, z_2, \ldots, z_n \rangle \), the argument system \(H_{\phi}(\langle X_{\phi}, A_{\phi} \rangle) \) has \(2^n + m + 1 \) arguments

\[X_{\phi} = \{ \phi \} \cup \{ C_1, C_2, \ldots, C_m \} \cup \{ z_1, \neg z_1, z_2, \neg z_2, \ldots, z_n, \neg z_n \} \]

and attack relationship \(A_{\phi} \) in which,

1. \(\forall C_i \langle C_i, \phi \rangle \in A_{\phi} \).
2. \(\forall z_j \langle z_j, \neg z_j \rangle \in A_{\phi} \) and \(\langle \neg z_j, z_j \rangle \in A_{\phi} \).
3. \(\langle z_j, C_i \rangle \in A_{\phi} \) if \(z_j \) is a literal in the clause \(C_i \).
4. \(\langle \neg z_j, C_i \rangle \in A_{\phi} \) if \(\neg z_j \) is a literal in the clause \(C_i \).

For convenience we will subsequently write \(y \in C \) rather than ‘\(y \) is a literal in the clause \(C \)’.

This system is similar (although not identical) to the mechanism defined in [16, Theorem 5.1, p. 227]. It is straightforward to show as a consequence,

Fact 1. The CNF formula \(\phi(Z_n) \) is satisfiable if and only if the argument \(\phi \) is credulously accepted in the system \(H_{\phi}(\langle X_{\phi}, A_{\phi} \rangle) \).

Thus in attempting to derive lower bounds on dispute complexity for cases in which \(x \) is not credulously accepted in \(H \), we could focus on bounding \(\delta(H_{\phi}, \phi) \) for appropriate instances in which \(\neg \phi(Z_n) \) is a tautology, i.e., \(\phi(Z_n) \) is not satisfiable.

Our approach to establishing such lower bounds will be rather less direct than that of examining \(\delta(H_{\phi}, \phi) \) for a specific propositional tautology \(\neg \phi \). Instead, we shall show that the progression of a TPI-dispute over \(\phi \) can be ‘efficiently simulated’ within a specific Proof Calculus for Propositional Logic: since the calculus we employ is known to require exponentially long proofs to validate certain tautologies, it will then follow that \(\delta(H_{\phi}, \phi) \) for such \(\phi \) must also be exponential (in the number of arguments defining \(H_{\phi} \)).

It is worth noting, at this point, that there is a rich corpus of research concerning the length of proofs in various proof systems. Results on the complexity of General Resolution date back to the seminal paper of Haken [23] in which this approach was shown to require
exponential length proofs for tautologies corresponding to the combinatorial Pigeon-Hole Principle, with important subsequent work in, e.g., [1,3,4,30], etc. Excellent introductory surveys discussing progress involving proof complexity may be found in the articles by Pudlák [31] and Beame and Pitassi [5].

3.2. The Gentzen Calculus for Propositional Logic

The Proof Calculus around which our simulation is built is the Gentzen (or Sequent) Calculus, [21], with, however, one of its standard inference rules being unavailable.

In its most general (propositional) form, the Gentzen Calculus, prescribes rules for deriving sequents—\(\Gamma \Rightarrow \Delta \)—where \(\Gamma, \Delta \) are sets of propositional formulae (over a set of atomic propositional variables \(\{x_1, x_2, x_3, \ldots \} \)) built using some finite (complete) logical basis. A proof of the sequent \(\Gamma \Rightarrow \Delta \), consists of a sequence of derivation steps each of which is either an axiom or follows by applying one of the rules to (at most) two previously derived sequents. In what follows we observe the convention of employing upper case Roman letters—\(\{A, B, C, \ldots \} \)—to denote propositional formulae, and upper case Greek letters—\(\{\Gamma, \Delta, \ldots \} \)—to denote sets of such formulae. We use \(\Gamma, A \) to denote the set \(\Gamma \cup \{A\} \).

Definition 8 (Gentzen Calculus for Propositional Formulae). Let \(L \) be the language of well-formed formulae using the basis \(\{\land, \lor, \neg\} \) and propositional variables drawn from \(\{z_1, z_2, z_3, \ldots \} \).

A sequent is an expression the form \(\Gamma \Rightarrow \Delta \) where \(\Gamma, \Delta \) are (finite) subsets of \(L \), i.e., sets of well-formed formulae. For a sequent \(S = \Gamma \Rightarrow \Delta \) we use \(\text{LHS}(S) \) to denote \(\Gamma \) and, similarly, \(\text{RHS}(S) \) to denote \(\Delta \). A Gentzen System is defined by a set \(GS \) of axioms and inference rules. A sequent \(\Gamma \Rightarrow \Delta \) is provable in the Gentzen System \(GS \) (written \(\vdash_{GS} \Gamma \Rightarrow \Delta \)), if there is a finite sequence of sequents, \(S_1, S_2, \ldots, S_{k-1}, S_k, S_{k+1}, \ldots, S_t \) for which \(S_k \) is the sequent \(\Gamma \Rightarrow \Delta \) and for all \(k (1 \leq k \leq t) \), the sequent \(S_k \) is either an axiom of \(GS \) or there are sequents \(S_i, S_j \) (with \(i, j < k \)) and an inference rule \(r \) of \(GS \) such that \(S_k \) may be inferred from \(S_i \) and \(S_j \) as a consequence of the rule \(r \). The Proof Complexity of a sequent \(S \) in the Gentzen System \(GS \) (denoted \(\pi(S, GS) \)) is defined for provable sequents, to be the least \(t \) such that \(S \) is derived by a sequence of \(t \) sequents.\(^6\)

We shall use a modification of the Gentzen system, \(G \) shown in Table 1, wherein \(A \) and \(B \) are members of \(L \), and \(\Gamma, \Delta, \ldots \) subsets of \(L \).

It may be observed that the Resolution Rule is, in fact, a special case of the \(\text{CUT} \) rule: if we consider clauses

\[
P = x \lor \bigvee_{i=1}^{r} y_i; \quad Q = \neg x \lor \bigvee_{i=1}^{s} z_i
\]

\(^6\) We note that some authors choose to define proof complexity in terms of the total number of symbol occurrences over the derivation. For the class of propositional formulae we will be considering, the two measures are polynomially equivalent.
Table 1

The Gentzen system \(\mathcal{G} \)

<table>
<thead>
<tr>
<th>Axioms</th>
<th>Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A} \Rightarrow {A}</td>
<td>(\Gamma \Rightarrow \Delta) \quad \delta \Rightarrow \langle \delta \rangle \Gamma \Rightarrow \Delta, \delta)</td>
</tr>
<tr>
<td>(\Gamma, A \Rightarrow \Delta)</td>
<td>(\Gamma \cup \Gamma' \Rightarrow \Delta \cup \Delta')</td>
</tr>
</tbody>
</table>
| \(\Gamma, \neg A \Rightarrow \Delta \) | \(\Gamma' \Rightarrow \Delta, A \) \quad \Gamma

these are resolved (on \(x \)) to the clause

\[
\bigvee_{i=1}^{r} y_i \lor \bigvee_{j=1}^{s} z_j.
\]

The clause \(P \) may be expressed as the sequent, \(\{y_1, \ldots, y_r\} \Rightarrow \{\neg x\} \) and \(Q \) as \(\{\neg x\} \Rightarrow \{\neg z_1, \ldots, \neg z_s\} \) whence the sequent \(\{y_1, \ldots, y_r\} \Rightarrow \{\neg z_1, \ldots, \neg z_s\} \) follows from the \(\text{CUT} \) rule. For a more detailed comparison of General Resolution and Gentzen calculi the reader is referred to [2].

The Gentzen system that we will be considering is \(\mathcal{G}/\text{CUT} \), i.e., that which allows all of the rules of the system \(\mathcal{G} \) except for the \(\text{CUT} \) rule. We recall some standard results concerning the systems \(\mathcal{G} \) and \(\mathcal{G}/\text{CUT} \).

Fact 2 (Gentzen [21]). The propositional formula \(\mathcal{F} \in \mathcal{L} \) is a tautology if and only if \(\vdash_{\mathcal{G}} \emptyset \Rightarrow \{\mathcal{F}\} \).

Fact 3 (The Gentzen Cut-Elimination Theorem [21]).

\(\vdash_{\mathcal{G}} \emptyset \Rightarrow \{\mathcal{F}\} \) if and only if \(\vdash_{\mathcal{G}/\text{CUT}} \emptyset \Rightarrow \{\mathcal{F}\} \).

Fact 3 establishes that the \(\text{CUT} \) rule is not needed in order to derive any provable sequent. Nonetheless, \(\text{CUT} \) turns out to be an extremely powerful operation:

Fact 4 (Urquhart [35,36]). There are (infinite) sequences of formulae \(\langle \mathcal{F}_n \rangle \) in \(\mathcal{L} \) for which:

(a) \(\mathcal{F}_n \) is a propositional tautology of \(n \) propositional variables.
(b) \(\pi (\emptyset \Rightarrow [\mathcal{F}_n], \mathcal{G}) = \mathcal{O}(n^k) \) (for \(k \in \mathbb{N} \)).
(c) \(\pi (\emptyset \Rightarrow [\mathcal{F}_n], \mathcal{G}/\text{CUT}) = \Omega(2^{n^\varepsilon}) \) (where \(\varepsilon > 0 \)).
These constructions by Urquhart are explicit, i.e., a specific sequence \(\langle F_n \rangle \) is proved to have the properties stated in Fact 4.

We now state and prove the main theorem of this paper.

Theorem 5. Let

\[
\varphi(Z_n) = \bigwedge_{i=1}^{m} C_i = \bigwedge_{i=1}^{m} \left(\bigvee_{j=1}^{k_i} y_{i,j} \right)
\]

be any unsatisfiable CNF-formula, \(\mathcal{H}_\varphi \) be the argument system defined from \(\varphi(Z_n) \) as given in Definition 7, and \(S_\varphi \) the (provable) sequent,

\[
\emptyset \Rightarrow \bigcup_{i=1}^{m} \left(\neg \left(\bigvee_{j=1}^{k_i} y_{i,j} \right) \right).
\]

Then,

\[
\pi \left(S_\varphi, \mathcal{G}/\text{CUT} \right) \leq \delta(\mathcal{H}_\varphi, \varphi) + 2n + m.
\]

Less formally, Theorem 5 states that the length of the shortest proof of \(\neg \varphi \) (\(\varphi \) being in CNF) being a tautology within the \text{CUT}-free Gentzen system cannot be ‘much greater than’ the number of moves needed to form a successful rebuttal of \(\varphi \) in the argument system \(\mathcal{H}_\varphi \).

Proof of Theorem 5. Let, \(\varphi, \mathcal{H}_\varphi, \) and \(S_\varphi \) be as described in the Theorem statement. Given any terminated TPI-dispute, \(M \) over \(\varphi \) in \(\mathcal{H}_\varphi \) we describe how its progress may simulated in the Gentzen system \(\mathcal{G}/\text{CUT} \). We first observe two important properties of the dispute \(M \).

Firstly, \(M \) may be encoded as a sequence of ordered sets, \(R_i \), (for which the term retraction round will subsequently be employed). Each of these takes the form

\[
R_i = \langle D_1, y_1, D_2, y_2, \ldots, D_j, y_j, \ldots, D_q, y_q, F_i \rangle.
\]

where

\[
\{D_1, D_2, \ldots, D_q, F_i\} \subseteq \{C_1, C_2, \ldots, C_m\}, \quad y_j \in D_j, \quad y_j \notin F_i \quad \forall 1 \leq j \leq q.
\]

In other words, \(R_i \) describes the alternation between clauses (\(D \)) used to attack \(\varphi \) and counterattacks (\(y \)) used to repel these attacks. The final attack by the clause \(F_i \) is the position at which the retraction of \(\{\varphi, y_1, y_2, \ldots, y_q\} \) is forced. We observe that \(|R_1| \) is the number of moves made in \(M \) prior to the first RETRACT move; and in general, \(|R_i| \) is the number of moves between the retraction arising from \(R_{i-1} \) and the next such in \(M \).

In the final move of \(M \), the corresponding set \(R \), contains just a single clause: i.e., that clause of \(\varphi \) upon which the Defender, by reason of the totality of earlier retractions, can mount no attack.

The second property of interest concerns the relationship between the literals defining a retraction forcing clause, \(F \), and those used to defend against attacks on \(\varphi \) within the
The current dispute tree, i.e., the literals \(\{ y_1, y_2, \ldots, y_q \} \). The literals in \(F \) may be partitioned into two sets,

\[
W = \{ w_1, w_2, \ldots, w_r \}; \quad U = \{ u_1, u_2, \ldots, u_s \}
\]

wherein the literals in \(W \) cannot be used to attack \(F \) since for each \(w \in W \), \(\neg w \in \{ y_1, y_2, \ldots, y_q \} \) and those in \(U \) are unavailable since for each \(u \in U \), there is some subset \(V \) of \(\{ y_1, y_2, \ldots, y_q \} \) such that the Defender has retracted \(\{ \varphi, V, u \} \) in an earlier move.

With the two observations above, the idea underlying the proof may be described, informally, as efficiently deriving sequents that simulate the reasoning through which rejections are forced. More precisely, given

\[
\langle R_1, R_2, \ldots, R_t, \ldots, R_i, \ldots \rangle
\]

the sequence of rejection rounds describing the dispute \(M \), we construct a mapping \(\beta : \{1, 2, \ldots, t\} \rightarrow \mathbb{N} \) and sequents

\[
\langle S_1, S_2, S_3, \ldots, S_p \rangle
\]

for which

\[
\beta(i + 1) \geq \beta(i) \geq 1 \quad (1 \leq i < t)
\]

\[
\beta(t) \leq p \leq \beta(t) + m
\]

and

\[
S_p = S_\varphi = \emptyset \Rightarrow \bigcup_{i=1}^{m} \neg \left(\bigvee_{j=1}^{k_i} y_{i,j} \right).
\]

In general, the sequent \(S_{\beta(i)} \) will express the fact that the Defender must retract the set \(\{ \varphi, y_1, y_2, \ldots, y_q \} \) in the \(i \)th round, since this leaves no defense available to an attack by the clause \(F_i \) on \(\varphi \).

To avoid a surfeit of subscripts, we use \(Y_i \) to denote the set \(\{ y_1, y_2, \ldots, y_q \} \) of literals defining \(R_i \), with \(W_i \) and \(U_i \) being the partition of the retraction forcing clause, \(F_i \), as described in (6) (obviously the exact number of literals in each of these will be dependent on which retraction round \(R_i \) is relevant).

When \(U_i \neq \emptyset \), for each \(u \in U_i \), \(\text{ret}(u, Y_i) \) is a minimal (with respect to \(\subseteq \)) subset of \(Y_i \) for which the set of arguments \(\{ \varphi, u, \text{ret}(u, Y_i) \} \) has been the subject of an earlier retraction. Finally, \(\text{index}(u, Y_i) \) is,

\[
\text{index}(u, Y_i) = \max \{ k \leq \beta(i - 1) : \text{LHS}(S_k) = \text{ret}(u, Y_i) \cup \{ u \} \}.
\]

Note. That \(\text{index}(u, Y_i) \) is well-defined will be clear from the remainder of the proof.

The theorem will follow from the claim below.

7 An indefinite article is required here, since there may be more than one such subset, e.g., \(\{ \varphi, y_1, u \} \) and \(\{ \varphi, y_2, u \} \) could both have been retracted: the subsequent argument will show that in such cases, \(\text{ret}(u, Y) \) can be chosen to be either \(\{ y_1 \} \) or \(\{ y_2 \} \).
Claim 1. Given \((R_1, \ldots, R_t) \) the sequence of retraction rounds defined by \(M \), there is a mapping \(\beta : \{1, 2, \ldots, t\} \to \mathbb{N} \), with the following properties: \(\beta(i + 1) > \beta(i) > 1 \); and, if the sequent, \(S_{\beta(i)} \) is defined to be

\[
S_{\beta(i)} = \{Y_1\} \Rightarrow \neg F_1 \cup \bigcup_{u \in U_i} \text{RHS}(S_{\text{index}(u, Y_1)}),
\]

then

(a) \(S_{\beta(i)} \) is well-defined, i.e., \(\text{index}(u, Y_i) \) is defined for each \(u \in U_i \).

(b) \(S_{\beta(i)} \) is provable in \(G/\text{CUT} \) with \(\pi(S_{\beta(i)}, G/\text{CUT}) \leq \beta(i) \).

Proof. First note that we may use the following derivations as the first \(2n \) lines, prior to establishing \(S_{\beta(1)} \). In consequence, \(\beta(1) > 2n \).

Sequent via Line
\[
\{z_j\} \Rightarrow \{z_j\} \quad \text{Axiom 2} \quad j - 1 \\
\{z_j, \neg z_j\} \Rightarrow \emptyset \quad (\neg \Rightarrow) \quad \text{and} \quad 2j - 1 \quad 2j
\]

We complete the proof of the claim by induction on \(i \geq 1 \). The inductive base, \(i = 1 \), deals with the retraction enforced by \(R_1 \), i.e., we need to show that the sequent

\[
S_{\beta(1)} = \{Y_1\} \Rightarrow \neg F_1
\]

is derivable. Noting that \(R_1 \) represents the first occurrence of a RETRACT move by the Defender, the set \(U_1 \) must be empty, i.e., the retraction is forced because each literal that could be used to attack \(F_1 \) is unavailable by reason of \(Y_1 \) containing its negation. It follows that,

\[
F_1 = W_1 = \{w_1, w_2, \ldots, w_r\}, \\
Y_1 = \{\neg w_1, \neg w_2, \ldots, \neg w_r, y_{r+1}, y_{r+2}, \ldots, y_q\}.
\]

Let \(T_k \) (for \(1 \leq k \leq r \)) be the sequent,

\[
\{\neg w_1, \neg w_2, \ldots, \neg w_k\}, A_k \Rightarrow \emptyset \quad \text{where} \quad A_k = \bigvee_{j=1}^{k} w_j.
\]

For \(k = 1 \), the sequent \(T_1 = \{w_1, \neg w_1\} \Rightarrow \emptyset \) has already been derived. For \(k > 1 \), \(T_k \) is derived in one step from the sequent \(\{w_k, \neg w_k\} \Rightarrow \emptyset \) and \(T_{k-1} \) by a single application of the rule \((\lor \Rightarrow) \). We deduce that,

\[
\{\neg w_1, \neg w_2, \ldots, \neg w_k\}, F_1 \Rightarrow \emptyset
\]

is derived in \(k - 1 \) steps, and the required sequent—\(S_{\beta(1)} \)—by a single application of \((\Rightarrow \neg) \) to \(T_r \) followed by \(q - r \) applications of \((\theta \Rightarrow) \) in order to construct

\[
\{\neg w_1, \ldots, \neg w_r, y_{r+1}, \ldots, y_q\} \Rightarrow \neg F_1.
\]

This gives the value of \(\beta(1) \) as \(2n + q \), where we note that \(\mu_{2q+2} \) is the first RETRACT move occurring in \(M \).

For the Inductive Step, we assume for all retraction rounds \(R_j \) with \(1 \leq j < i \) that the following hold:
(IH1) The value of $\beta(j)$ has been defined.

(IH2) The sequent,

$$S_{\beta(j)} = \{Y_j\} \Rightarrow \{\neg F_j\} \cup \bigcup_{u \in U_j} \text{RHS}(S(\text{index}(u,Y_j)))$$

has been derived in G/CUT after $\beta(j)$ steps.

To complete the inductive proof of Claim 1, we ‘simulate’ the retraction round R_i and to this end it is necessary to,

(C1) define a value of $\beta(i)$ which is greater than $\beta(i-1)$, and

(C2) show that the sequent,

$$\{Y_i\} \Rightarrow \{\neg F_i\} \cup \bigcup_{u \in U_i} \text{RHS}(S(\text{index}(u,Y_i)))$$

is well-defined and derivable in a further $\beta(i) - \beta(i-1)$ steps.

Consider the retraction forcing clause, $F_i = \{W_i, U_i\}$, so that

$$Y_i = \{\neg w_1, \neg w_2, \ldots, \neg w_r, y_{r+1}, y_{r+2}, \ldots, y_q\}.$$

If $U_i = \emptyset$, then with $\beta(i) = \beta(i-1) + q$, the sequent,

$$S_{\beta(i)} = \{Y_i\} \Rightarrow \{\neg F_i\}$$

is derivable in a further q steps using exactly the same approach as employed in the Inductive Base. Thus we may assume that U_i is non-empty with

$$U_i = \{u_1, u_2, \ldots, u_s\}.$$

Recalling that $\langle W_i, U_i \rangle$ is a partition of F_i it is certainly the case that neither $\neg u \in Y_i$ nor $u \in Y_i$ (the latter holding since F_i was available to the Challenger with which to attack ϕ). This being so and u being unavailable to the Defender to attack F_i it follows that there has been a retraction round in which some subset of Y_i together with u and ϕ have been retracted. Therefore, some such subset of Y_i must satisfy the criteria defining $\text{ret}(u,Y_i)$ with respect to u. Suppose R_j is the round at which a committment to $\{\phi, u, \text{ret}(u,Y_i)\}$ was retracted by the Defender. Clearly, $j < i$ and hence from the Inductive Hypothesis, the sequent, $S_{\beta(j)}$, with

$$S_{\beta(j)} = \{u, \text{ret}(u,Y_i)\} \Rightarrow \Delta \quad \text{where } \emptyset \subset \Delta \subseteq \{\neg C_1, \ldots, \neg C_m\}$$

has been derived. As a result we deduce that for each $u \in U_i$, the value $\text{index}(u,Y_i)$ is defined and does not exceed $\beta(i-1)$. In summary, we have proven (via the Inductive Hypothesis) the existence of $s = |U_i|$ sequents,

$$\langle S_{i,1}, S_{i,2}, \ldots, S_{i,s} \rangle$$

for which

$$\text{LHS}(S_{i,k}) = \text{ret}(u_k,Y_i) \cup \{u_k\} \quad \text{and} \quad \text{RHS}(S_{i,k}) \subseteq \{\neg C_1, \neg C_2, \ldots, \neg C_m\}.$$
We can now complete the derivation of the required sequent $S_{β(i)}$.

From $s - 1$ applications of $(∨⇒)$ using $S_{i,1}, S_{i,2}, \ldots, S_{i,s}$ we obtain

$$S_{β(i−1)+s−1} = \left\{ \bigcup_{k=1}^{s} \text{ret}(u_k, Y_i) \right\} \supset \bigvee_{k=1}^{s} u_k \Rightarrow \left\{ \bigcup_{k=1}^{s} \text{RHS}(S_{i,k}) \right\}.$$

A further r applications of $(∨⇒)$ involving $S_{β(i−1)+s−1}$ and the sequents

$$\{w_k, \neg w_k\} \Rightarrow \emptyset$$

yields $S_{β(i−1)+s−1}$ as

$$\left\{ \bigcup_{k=1}^{s} \text{ret}(u_k, Y_i) \right\} \cup \left\{ \bigcup_{k=1}^{r} \neg w_k \right\}, \bigvee_{k=1}^{s} u_k \vee \bigvee_{k=1}^{r} w_k \Rightarrow \left\{ \bigcup_{k=1}^{s} \text{RHS}(S_{i,k}) \right\}.$$

Recalling that,

$$F_i = \left(\bigvee_{k=1}^{s} u_k \vee \bigvee_{k=1}^{r} w_k \right)$$

a single application of $(⇒¬)$ to $S_{β(i−1)+s−1}$ gives $S_{β(i−1)+s−1}$ as,

$$\left\{ \bigcup_{k=1}^{s} \text{ret}(u_k, Y_i) \right\} \cup \left\{ \bigcup_{k=1}^{r} \neg w_k \right\} \Rightarrow \left\{ \bigcup_{k=1}^{s} \text{RHS}(S_{i,k}) \right\}, \neg F_i.$$

Finally, since it may be the case that

$$\left\{ \bigcup_{k=1}^{s} \text{ret}(u_k, Y_i) \right\} \cup \left\{ \bigcup_{k=1}^{r} \neg w_k \right\} \subset Y_i$$

(i.e., a strict subset of Y_i) a total of,

$$\left| Y_i / \left\{ \bigcup_{k=1}^{s} \text{ret}(u_k, Y_i) \cup \bigcup_{k=1}^{r} \neg w_k \right\} \right|$$

applications of $(θ⇒)$ will give $S_{β(i)}$ as,

$$S_{β(i)} = \{F_i\} \cup \bigcup_{u \in U_i} \text{RHS}(S_{\text{index}(u,Y_i)}),$$

where

$$β(i−1) + r + s ≤ β(i) ≤ β(i−1) + r + s + q ≤ β(i−1) + 2q.$$

Note that $2q = |R_i| − 1$ is the total number of moves occurring in M between the retraction round $R_{i−1}$ and R_i. This completes the inductive proof of the claim.

To complete the proof of the theorem we need only observe that the total number of steps required to derive S_p is bounded above by $β(t) + m$.

The additional \(m \) arises from the possibility that \(S_{\beta(t)} \) may be of the form \(\emptyset \Rightarrow \Delta \) with \(\Delta \) a (non-empty) strict subset of

\[\{ \neg C_1, \neg C_2, \ldots, \neg C_m \}. \]

This could occur if some subset \(\psi \) of \(\phi \)'s clauses defined an unsatisfiable CNF-formula. In such cases \(S_{\beta(t)} \) would not be identical to the sequent \(S_\phi \) of the theorem statement, however, at most \(m \) applications of \((\Rightarrow \theta)\) (adding the 'missing' \(\neg C_i \) clauses) will suffice to derive \(S_\phi \) from \(S_{\beta(t)} \).

From the analysis in the proof of the claim it is clear that the values \(\beta(i) \) satisfy:

\[
\beta(i) \leq \beta(i - 1) + |R_i| \quad \text{when } 1 < i \leq t,
\]

\[
\beta(1) \leq 2n + |R_1|,
\]

hence \(\beta(t) \leq 2n + \sum_{i=1}^{t} |R_i| \leq 2n + |M| \).

Thus from any terminated TPI-dispute, \(M \), over the unsatisfiable CNF-formula \(\phi \) in the argument system \(\mathcal{H}_\phi \) we may construct a proof in \(G/\text{CUT} \) that \(\neg \phi \) is a tautology, i.e., of the sequent \(S_\phi \). Since this proof involves at most \(|M| + 2n + m \) steps we conclude that

\[\pi(S_\phi, G/\text{CUT}) \leq \delta(\mathcal{H}_\phi, \phi) + 2n + m \]

as required. \(\square \)

From Theorem 5 we get,

Corollary 1. There are (infinite) sequences of argument systems with arguments \(x \in X \) not credulously accepted but with the number of moves in any TPI-dispute establishing such exponential in \(|X| \).

To conclude this section, we illustrate how the example of Fig. 2(b) that resulted in the dispute given in (3) translates into a derivation of the required sequent following the proof in Theorem 5.

3.3. Example

Recall that Fig. 2(b) could be interpreted as the tautology

\[\neg F(y, z) = \neg((y \lor z) \land (y \lor \neg z) \land (\neg y \lor z) \land (\neg y \lor \neg z)). \] (8)

From (3) using the encoding of retraction rounds described in the proof of Theorem 5

\[
R_1 = \{(y \lor z), y, (\neg y \lor z), z, (\neg y \lor \neg z)\},
\]

\[
R_2 = \{(y \lor z), (\neg y \lor z), z, (\neg y \lor \neg z)\},
\]

\[
R_3 = \{(y \lor z), y, (\neg y \lor z)\},
\]

\[
R_4 = \{(y \lor z)\}.
\]

The sequent we wish to derive is

\[\emptyset \Rightarrow \{ \neg(y \lor z), \neg(y \lor \neg z), \neg(\neg y \lor z), \neg(\neg y \lor \neg z) \}. \] (10)
Following the mechanism in the theorem, for \(R_1 \) we wish to derive
\[
S_{\beta(1)} = \{y, z\} \Rightarrow \{\neg(y \lor \neg z)\}
\]
This is obtained by
\[
\begin{array}{ccc}
\text{Sequent} & \text{via} & \text{Line} \\
\{y\} \Rightarrow \{y\} & \text{Axiom} & 1 \\
\{y, \neg y\} \Rightarrow \emptyset & 1, (\neg \Rightarrow) & 2 \\
\{z\} \Rightarrow \{z\} & \text{Axiom} & 3 \\
\{z, \neg z\} \Rightarrow \emptyset & 3, (\neg \Rightarrow) & 4 \\
\{y, z\}, (\neg y \lor \neg z) \Rightarrow \emptyset & 2, 4, (\lor \Rightarrow) & 5 \\
\{y, z\} \Rightarrow \{(\neg y \lor \neg z)\} & 5, (\Rightarrow \neg) & 6 \\
\end{array}
\]
Hence \(\beta(1) = 6 \).

For \(R_2 \) the sequent required is
\[
S_{\beta(2)} = \{z\} \Rightarrow \{(\neg(y \lor \neg z), \neg(y \lor \neg z)\}
\]
where we use the fact that \(\text{ret}(y, \{z\}) = \{z\} \), so that \(\text{index}(y, \{z\}) = 6 \).
\[
\begin{array}{ccc}
\text{Sequent} & \text{via} & \text{Line} \\
\{z\}, (y \lor \neg z) \Rightarrow \{(\neg(y \lor \neg z)\} & 4, 6, (\lor \Rightarrow) & 7 \\
\{z\} \Rightarrow \{(\neg(y \lor \neg z), \neg(y \lor \neg z)\} & 7, (\Rightarrow \neg) & 8 \\
\end{array}
\]
whence \(\beta(2) = 8 \). Notice that in deriving \(S_7 \), \(\text{LHS}(S_4) \) is viewed as \(\{z\}, \neg z \) and \(\text{LHS}(S_6) \) as \(\{z\}, y \), i.e., with \(\Gamma = \Gamma'' = \{z\}, A = \neg z \), and \(B = y \) when the inference rule \((\lor \Rightarrow)\) of Table 1 is used.

For \(R_3 \) the sequent required is
\[
S_{\beta(3)} = \{y\} \Rightarrow \{(\neg(y \lor \neg z), \neg(y \lor \neg z)\}
\]
where we use the fact that \(\text{ret}(z, \{y\}) = \emptyset \), so that \(\text{index}(z, \{y\}) = 8 \).
\[
\begin{array}{ccc}
\text{Sequent} & \text{via} & \text{Line} \\
\{y\}, (\neg y \lor z) \Rightarrow \{(\neg(y \lor \neg z), \neg(y \lor \neg z)\} & 2, 8, (\lor \Rightarrow) & 9 \\
\{y\} \Rightarrow \{(\neg(y \lor \neg z), \neg(y \lor \neg z), \neg(y \lor \neg z)\} & 9, (\Rightarrow \neg) & 10 \\
\end{array}
\]
giving \(\beta(3) = 10 \).

Finally for \(R_4 \) we have
\[
\begin{array}{c}
\text{ret}(y, \emptyset) = \emptyset \quad \text{with} \quad \text{index}(y, \emptyset) = 10, \\
\text{ret}(z, \emptyset) = \emptyset \quad \text{with} \quad \text{index}(z, \emptyset) = 8, \\
\end{array}
\]

\[8\] Were \(\text{ret}(z, \{y\}) \) not subject to a minimality condition, it could also be chosen as \(\{y\} \), giving \(\text{index}(z, \{y\}) = 6 \). This choice would, in fact, still lead to a proof of the required final sequent. We also note the need for \(\text{index}(z, \{y\}) \) to be maximal since \(\text{LHS}(S_3) = \{z\} \).
so that using S_8, S_{10} and $(\lor \Rightarrow)$ gives

$$S_{11} = \left\{ (y \lor z) \Rightarrow \neg(y \lor z), \neg(y \lor z), \neg(y \lor z) \right\}$$

and with a single application of $(\Rightarrow \neg)$ to S_{11}, we derive the required sequent

$$S_{12} = \emptyset \Rightarrow \neg(y \lor z), \neg(y \lor z), \neg(y \lor z) \right\}.$$

The results above show that TPI-disputes can be interpreted as a proof calculus with which to establish unsatisfiability of propositional formula presented in CNF, and that viewed thus, the number of ‘moves’ taken to resolve a dispute—i.e., prove that Φ is unsatisfiable—is bounded below by the number of lines in the shortest derivation of $\Rightarrow \neg \Phi$ in a CUTF-free Gentzen System.

It may be shown that for any unsatisfiable CNF-formula Φ, the number of moves required in a TPI-dispute over $\langle H_\Phi, \Phi \rangle$ cannot be ‘much larger’ than the size of the smallest clausal tableau refutation of Φ. An immediate consequence of this result being that the propositional proof system afforded by TPI-disputes is polynomially equivalent—in sense of [12]—to CUTF-free Gentzen Systems and Clausal Tableaux, i.e., if $\langle I_1, I_2 \rangle$ are any two proof systems from

[Gentzen/CUT, Clausal Tableaux, TPI-dispute]

then the length of the shortest validity proofs of $\neg \Phi$ for CNF-formulæ Φ in I_1 is at worst polynomially larger than the length of the shortest proof in the system I_2. This follows from the equivalence of Clausal Tableaux and CUTF-free Gentzen Systems, details of which may be found in [33, Chapter XI].

Definition 9. Let $\Phi(Z_n) = \bigwedge_{i=1}^{m} C_i$ be an unsatisfiable CNF-formula with clause set $\{C_1, C_2, \ldots, C_m\}$. A clausal tableau for Φ is a tree $T(V,E)$ in which the non-leaf vertices, v, are associated with a clause $C(v)$ of Φ, in accordance with the following rules.

On any path $\rho = v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_t$ from the root (ρ) to a leaf v_t, each clause C_i of Φ labels at most one of $\{v_0, v_1, \ldots, v_{t-1}\}$. If $\rho \in V$ is the root of T and $C(\rho) = \biglor_{i=1}^{k} y_{\rho,i}$ the clause associated with ρ, then ρ has exactly k children—(v_1, v_2, \ldots, v_k) with the edge (ρ, v_j) labelled $y_{\rho,i}$. If $v \in V$ is a non-leaf vertex (other than the root) let U be the set of literals labelling edges on the (unique) path from ρ to v and $C(v) = \biglor_{i=1}^{k} y_{v,i}$, be the clause associated with v. Again, v has exactly s children (w_1, w_2, \ldots, w_s) with the edges (v, w_i) labelled $y_{v,i}$. In this case, however, the vertex w_i is a leaf labelled \bot if the literal $\neg y_{v,i} \in U$. A vertex is closed if every path from it leads to a leaf (labelled \bot). A clausal tableau is a refutation for Φ if its root is closed.

The size of a clausal tableau $T(V,E)$—denoted $\tau(T)$—is the total number of internal vertices contained in it. The clausal tableau complexity of an unsatisfiable CNF-formula $\Phi(Z_n)$, is

$$\tau(\Phi(Z_n)) = \min_{\det} \{ \tau(T): T \text{ is a clausal tableau refutation of } \Phi(Z_n) \}.$$

Theorem 6. Let $\Phi(Z_n) = \bigwedge_{i=1}^{m} C_i$ be an unsatisfiable CNF-formula and $T(V,E)$ any clausal tableau refutation of $\Phi(Z_n)$, then $\delta(H_\Phi, \Phi) \leq (2n + 1)\tau(T)$.

Proof. See [18]. □
4. Discussion and further work

In this paper our primary goal has been to formalise the argument game (TPI-dispute) introduced in [38] and to analyse this in terms of one particular computational measure—dispute complexity. For what is technically the most interesting case—the length of dispute required to convince Defenders of an argument that their position is untenable—we have shown in Theorem 5 that applying this dispute regime to simple argument system representations of propositional tautologies occasions a form of proof calculus. This calculus is in one sense, however, extremely limited: any proof within it being capable of description by a comparable length proof in a CUT-free Gentzen System. Since examples are known of tautologies where allowing CUT admits exponentially shorter proofs\(^9\) the protocol enforced by TPI-disputes when applied to certain propositional argument systems may take significantly longer to reach a conclusion than ‘more powerful’ deductive systems. We noted earlier, in describing the semantics of the RETRACT move that the position reverted to is the initial argument, rather than some ‘intermediate’ state of the dispute tree being developed. Among the reasons for favouring returning to the initial position, is that the length of disputes (as indicated by our simulation using CUT-free Gentzen Systems) does not, primarily, result from potentially repeating chains of defence which will ultimately fail: if the retraction mechanism were to revert to a ‘sub-tree’ of the dispute tree, cf. in a similar manner to that of the Challenger’s BACKUP move, then this could be simulated from the initial argument just by repeating the relevant COUNTER and BACKUP moves. Since the size of any dispute tree can be at most the number of arguments within the system itself, a more sophisticated RETRACT semantics could only shorten the length of a dispute by a polynomial factor—not reduce it exponentially.

Before dealing with some questions that are raised by the main result of this paper, it may be useful to place our concerns in the general context of argument systems, dialogue games, reasoning systems, etc. While the view of dialogue process as a 2-player game has been long established, e.g., MacKenzie’s DC [27], interpretations of Toulmin’s Argument Schema [34] as a game-based method [6], etc., the direction towards which such work has tended is in attempting formally to capture different types of dialogue process: e.g., [22] is, primarily, concerned with argument in a legal reasoning context. As a result there is a wealth of differing models of dialogue ranging from taxonomies of dialogue types as in Reed [32] and Walton and Krabbe [39] to frameworks modelling diverse concepts of what ‘winning’ a dialogue game might mean, e.g., [24]. Despite this variety of approaches, one unifying trend is that the central concern is primarily semantic, i.e., in defining the form(s) that games take, the rules and processes by which games evolve, the conditions under which games terminate, and in establishing degrees of soundness and completeness of the game capabilities. The question of how ‘efficient’ such processes might be, however, seems to have been largely neglected, with the exception of general complexity-theoretic classifications of Argumentation Frameworks within specific non-classical logics, e.g., [13–15] or analyses of termination properties. Thus, little work is evident concerning more general contexts for the two questions which this paper has considered, i.e., with different

\(^9\) In fact, Urquhart [36], shows G/CUT can be weaker than simple truth-tables proving worst-case lower bounds of $\Omega(n!)$ for the former as opposed to upper bounds of n^{2n} for the latter.
protocols for the conduct of dialogues, different attack semantics, concepts of ‘winning’ other than credulous acceptance. If practical applications of dialectic and reasoning games are to be realised—as has become widely posited with the advent of autonomous agent systems—then measures analogous to our concept of dispute complexity may be of importance in evaluating implemented systems.

A rather different situation to that outlined in the preceding paragraph, pertains with respect to concepts of Proof Complexity, that we have used as the basis of our analysis of dispute complexity: Cook and Reckhow [12] introduced a formal mechanism for comparing the complexity of different proof calculi so that two ‘different’ systems are regarded as equipotent if a formal proof in one can be ‘simulated’ in the other with only a small increase in size. An important feature of this approach is that it can be developed to address questions concerning proof strategies for acceptance of instances in CO-NP-problems other than UNSAT, e.g., the Graph Stability Number calculus of Chvátal [11], or the Hajós Calculus for proving a graph has chromatic number greater than 3, [7,28]. It is the case, however, that these analyses are effectively only dealing with Classical (Propositional) Logic, and such results as extend to non-classical Logics do so only by virtue of propositional logic being treatable as a sub-case, e.g., Haken [23] trivially applies to the Resolution Calculus for Temporal Logic of [20] simply by expressing the relevant tautology without the use of any temporal operators, i.e., exactly as its propositional form.

We conclude by reviewing some directions for further research, that encompass both argument and dialogue game developments as well as extensions to the concept of dispute complexity.

Within the framework of [12] while it is known that the Gentzen System \(\mathcal{G}/\text{CUT} \) is weaker than both the system \(\mathcal{G} \) and Propositional Proof systems employing General Resolution only, it is an open problem as to whether \(\mathcal{G} \) and Resolution are equivalent, i.e., it has yet to be shown that, e.g., the Pigeon-Hole Principle tautologies require exponential length proofs in \(\mathcal{G} \), however no (efficient) simulation of \(\mathcal{G} \) by Resolution has been constructed. Theorems 5 and 6 establish that using the TPI-dispute protocol as a vehicle for constructing proofs of propositional tautologies, \(\neg \phi \langle H \rangle \), affords a system which is equivalent to \(\mathcal{G}/\text{CUT} \) and Clausal Tableaux, thus we might represent the respective power of various proof calculi for propositional tautologies informally as,

\[
\mathcal{G} \geq \text{Resolution} > (\mathcal{G}/\text{CUT} \equiv \text{TPI} \equiv \text{Clausal Tableaux}).
\] (11)

The situation depicted in (11) raises some interesting questions. Firstly, it may be noted that Theorem 5 operates in only ‘one direction’, that is we express the problem of proving a propositional formula to be a tautology as a problem of showing an argument is not credulously accepted in an argument system, thence relating a calculus for the latter to a calculus for the former. We have not considered, however, translations of argument systems into propositional formulae. For example, given \(\langle \mathcal{H}(\mathcal{X}, \mathcal{A}), x \rangle \), the CNF-formula \(\varphi_{\langle H, x \rangle} \) over variables \(\mathcal{X} \) is,

\[
x \land \bigwedge_{(y,z) \in \mathcal{A}} (\neg y \lor \neg z) \land \bigwedge_{y \in \mathcal{X}} \left(y \lor \bigvee_{z: (z,y) \in \mathcal{A}} z \right).
\] (12)
It is easy to show that there is a stable extension of \(\mathcal{H} \) containing \(x \) if and only if \(\varphi_{\langle \mathcal{H}, x \rangle}(X) \) is satisfiable.\(^\text{10}\)

Translations such as (12) also allow us to give a more precise interpretation of what might be meant by ‘more powerful’ dispute protocol. Thus, let \(\Pi \) be a (2-player) dispute protocol for argument systems (i.e., prescribing the repertoire of moves, state changes, move applicability, termination conditions, etc.) with the properties that: given an instance \(\langle \mathcal{H}, x \rangle \) of CA

(a) \(\Pi \) can produce a successful defence of \(x \) if and only if \(x \) is credulously accepted in \(\mathcal{H} \).
(b) \(\Pi \) either always produces a successful defence or always results in a successful rebuttal of \(x \).

We can define analogous notions of dispute complexity with respect to arbitrary protocols—say, \(\delta(\langle \mathcal{H}, x \rangle, \Pi) \)—and hence regard protocol \(\Pi_1 \) as ‘at least as powerful’ as protocol \(\Pi_2 \) (denoted \(\Pi_1 \geq \Pi_2 \)) if there is a constant \(k \) with which: for all dispute instances \(\langle \mathcal{H}, x \rangle \)

\[
\delta(\langle \mathcal{H}, x \rangle, \Pi_1) = O(\delta(\langle \mathcal{H}, x \rangle, \Pi_2)^k).
\]

Problem 1. What features must be incorporated in a dispute protocol, \(\Pi \), in order for it to be more powerful than TPI? That is, for the dispute complexity of infinitely many TPI-disputes to be superpolynomial in the dispute complexity of \(\Pi \) on the same instances.

Problem 2. Similarly, what features must be incorporated in \(\Pi \) for it to be at least as powerful as General Resolution, Gentzen Systems, etc.? It should be noted that there are subtle differences between Problems 1 and 2. The former could be examined directly without recourse to phrasing in terms of propositional proofs, the latter however is specifically concerned with the use of dispute protocols as a propositional proof mechanism.

With respect to Problem 1 it has been observed earlier that something other than ‘local’ modifications to the state following a RETRACT move is needed.

A rather more general concern is that of what criteria must a ‘reasonable’ dispute protocol satisfy. From complexity-theoretic considerations, the move repertoire and its implementation cannot be permitted to be ‘too powerful’, e.g., treating as single operations moves which are predicated on identifying structures in an argument graph whose construction is \(\text{NP} \)-hard. While the TPI-dispute protocol is ‘realistic’ in the sense that the applicability of a proposed move can be validated efficiently (this, of course, is not the same as identifying a ‘best’ move), in addressing the issues raised by Problem 1 one may wish

\(^{10}\) Although it is possible to construct a (‘short’) CNF encoding ‘preferred extension containing \(x \)’ rather than stable, this has a rather more opaque form. In any event since the absence of a preferred extension of \(x \) implies the absence of a stable extension of \(x \), for the constructions of interest (i.e., negative instances) the TPI-dispute protocol defined still applies. Furthermore, Dimopoulou and Torres [16] show that deciding if \(\mathcal{H} \) has a stable extension containing a given argument \(x \) is also \(\text{NP} \)-complete.
to restrict consideration to ‘reasonable’ protocols. It is, of course, unlikely (given the conjecture \(\text{NP} \neq \text{CO-NP} \)) that there is a ‘reasonable’ dispute protocol capable of resolving any dispute within a number of moves polynomial in the size of the argument system concerned. Nevertheless, just as the fact that existing lower bounds on Proof Complexity in failing to encompass all possible systems—as would be needed to prove \(\text{NP} \neq \text{CO-NP} \)—motivates consideration of more powerful proof systems, so it is reasonable to examine and precisely formulate ‘increasingly powerful’ dispute protocols.

Finally, even for ‘weak’ systems such as TPI-disputes in the case of instances which lead to successful rebuttals of an argument, there is the issue of the Challenger constructing the ‘best’ line of attack, i.e., of finding the dispute that minimises dispute complexity. An analogous situation in Proof Complexity was formulated in Bonet et al. [9]: suppose \(\varphi \) is an unsatisfiable CNF with \(m \) clauses and \(n \) variables. Letting \(\pi(\varphi, S) \) denote the size of the shortest proof of \(\neg \varphi \) in some Propositional Proof System \(S \), then for a function, \(q : \mathbb{N}^3 \rightarrow \mathbb{N} \), \(S \) is said to be \(q \)-automatizable if there exists a (deterministic) algorithm that produces a proof (in the system \(S \)) of \(\neg \varphi \) in time \(q(\pi(\varphi, S), n, m) \). The cases of interest are where \(q \) is polynomially bounded in \(\pi(\varphi, S) \). Informally, if a proof system is polynomially-bounded automatizable, then this gives an algorithm that can ‘efficiently’ construct a proof that is ‘not much larger’ than the optimal proof. The concept of \(q \)-automatizability can be reformulated in the obvious way to refer to dispute complexity (or indeed verification calculi for other \(\text{CO-NP} \)-complete problems). This motivates,

Problem 3. Let \(\langle \mathcal{H}, x \rangle \) be any TPI-dispute instance in which there are \(n \) arguments and for which \(x \) is not credulously accepted in \(\mathcal{H} \). Is there a deterministic algorithm that in \(q(\delta(\mathcal{H}, x), n) \) steps returns a terminated TPI-dispute \(M \) establishing a successful rebuttal of \(x \) and with \(q \) bounded by a polynomial in \(\delta(\mathcal{H}, x) \)? In other words, is the TPI-dispute protocol \(q \)-automatizable for some polynomial \(q \)?

To conclude our discussion of possible directions for further research, we note that our model of dispute assumes both protagonists have complete knowledge of the argument system (i.e., the finite directed graph structure). Thus the Defender may choose counterattacks which are known to eliminate particular (subsequent) attacks by the Challenger; similarly, as may be evinced by the development of the disputes from unsatisfiable CNF-formulae, the Challenger may invoke attacks, potential defences to which have been ruled out, e.g., when the Defender uses a literal \(y \) to attack a clause \(C \), the Challenger may continue using an available clause containing \(\neg y \), knowing that \(\neg y \) cannot be used as a defence. In many situations it may not be the case that such complete knowledge is held \textit{ab initio}. The modelling of disputes where the protagonists’ views of the system evolve over several moves would provide a significant development of the preliminary formalism described in this paper. Such an extension would have considerable practical interest, since many of the implementations require such evolution. For example, Gordon’s [22] game is intended to induce the participants to present the arguments that

11 Similar considerations arise in Proof Complexity and an accepted formalism has evolved to distinguish ‘reasonable’ from ‘unreasonable’ proof calculi. For the complexity-theoretic aspects affecting dispute protocols such a formalism seems a plausible basis.
they wish to deploy, essentially establishing the argumentation framework which will be subsequently used when the question comes to trial. In [6] it is assumed that each participant has only a partial view on the argumentation framework which is extended by elements recognised by their opponents as the dialogue proceeds. If we consider disputes between autonomous agents, it is perhaps unrealistic to expect them to begin with a shared understanding of the overall argumentation framework.

5. Conclusion

In this paper we have introduced a formal concept of dispute complexity with which to consider questions regarding the number of moves required in a dialogue over a given argument before one player accepts that the argument is/is not defensible. Building on the Argument System formalism of [17] and the argument game—TP1-dispute—discussed in [38], a precise formulation of the latter has been presented. With this formulation at hand, we are able to prove that there are instances representing a win for the Challenger but for which exponentially many moves must be played before the Defender is convinced of this. Our techniques exploit the close relationship between such dispute protocols and the concept of formal proof calculi for propositional tautologies by showing that the TP1-dispute protocol applied to representations of these can be used to build a proof of validity in a CUT-free Gentzen System whose length is comparable to the number of moves needed in a TP1-dispute. The ideas and techniques put forward in this paper represent just a preliminary foundation: an extensive range of open questions and further directions for research arise from this, only a selection of which have been discussed.

References