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Epigenetic responses to stress:
 triple defense?
Ruben Gutzat and Ortrun Mittelsten Scheid
Stressful conditions for plants can originate from numerous

physical, chemical and biological factors, and plants have

developed a plethora of survival strategies including

developmental and morphological adaptations, specific

signaling and defense pathways as well as innate and acquired

immunity. While it has become clear in recent years that many

stress responses involve epigenetic components, we are far

from understanding the mechanisms and molecular

interactions. Extending our knowledge is fundamental, not

least for plant breeding and conservation biology. This review

will highlight recent insights into epigenetic stress responses at

the level of signaling, chromatin modification, and potentially

heritable consequences.
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Introduction
Plants in the field are permanently exposed to stress.

Limitations originate from many different factors: too

high or too low temperatures/water supply/light intensity,

non-optimal mineral composition or soil contamination,

mechanic inhibition, pathogen infestation, lack of sym-

biotic partners, interactions with other plants, parasites or

herbivores. These conditions can activate defense

responses by which plants can minimize detrimental

consequences of stressful conditions for their survival,

growth, or propagation. These mechanisms allow plants

to occupy even extreme habitats, despite their sedentari-

ness. Under field conditions, different stress types usually

occur concomitantly, like heat and drought, and the

molecular responses can be difficult to separate. Response

to one stress type can be also antagonistic to another,

as adaptation to nutrient-poor substrates might reduce

stress by competition. Therefore, mechanistic studies of

stress effects are mostly performed under controlled
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laboratory conditions, applying one stress type and dis-

tinguishing biotic from abiotic stress. While this resulted

in information about signaling cascades, transcription

factors, and defense compounds, interference of stress

with epigenetic factors became evident only recently.

Stress effects on the epigenetic level are expected to

allow more permanent changes of gene expression and

potentially long-term adaptation that could have evol-

utionary impact, as chromatin modifications can be mito-

tically or meiotically heritable. This review will focus on

the connection of stress with epigenetic regulation, sep-

arated in three levels.

Level 1: epigenetic components of stress
signaling
Investment into stress defense, alongside constitutive

morphological and metabolic survival equipment and

seasonal adaptations, expends plants’ general resources

and therefore should be restricted to the actual occur-

rence of stressful situations. Plants use a range of different

sensing and signaling mechanisms to induce dynamic

stress responses only when challenged. Signaling includes

mainly the hormones salicylic acid (SA), jasmonic acid

(JA) and ethylene upon biotic stress, and abscisic acid

(ABA) in case of abiotic stress (reviewed in [1]). Never-

theless, there is growing evidence that noncoding and

siRNAs and the proteins generating or binding them are

involved in stress-signaling and can subsequently induce

transcriptional or posttranscriptional gene silencing (TGS

or PTGS, respectively). These principles are described in

the review by Wierzbicki (this issue).

There are many examples of differential siRNA, miRNA

or ncRNA expression upon stress [2]. The recent identi-

fication of a mutated NRPD2 gene responsible for con-

stitutive overexpression of a SA-inducible gene provided

a mechanistic link between stress signaling and elements

of the RNA directed DNA methylation (RdDM) path-

way, excluding only PolIV [3�]. Some RdDM mutants had

a compromised immune response to pathogenic fungi

correlated with a lack of gene induction by JA. In contrast,

resistance to a bacterial pathogen was increased, corre-

sponding with elevated levels of salicylic acid-related

defense genes and enriched activating chromatin marks

H3K4me3 and H3K9ac at the promoter of the SA-indu-

cible gene PR-1. This argues for the overlap between

targets of RdDM and SA-signaling and a role of RdDM to

relay stress signals to the nucleus.

Stress can certainly induce the production of siRNAs,

either via antisense transcription of protein-coding or

non-protein-coding sequences, or from inverted repeats.
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An early example of naturally occurring antisense was the

discovery that induction of the Arabidopsis SRO5 expres-

sion under salt stress creates a transcript partially comp-

lementary to that of the constitutively expressed P5CDH,

resulting in dsRNA as a substrate for Dicer-like proteins

and siRNAs that are only present and effective under

stress [4]. Among 76 long non-protein-coding RNAs

(npcRNA) in the Arabidopsis genome, 26 had altered

expression levels upon low phosphate, salt or drought

stress [5]. Some of them gave rise to 24 bp siRNAs, and

npc536 conferred improved root growth under salt stress.

By now, many pairs of potential antisense transcripts are

identified [6], and natural cis-antisense siRNAs (nat-siR-

NAs) are defined as a separate class of the small RNA

family. Many of them are found exclusively or enriched

upon specific stress conditions [7]. One example role of

siRNAs in extreme stress tolerance is a dehydration- and

ABA-inducible retroelement-derived siRNA that

regulates an adaptive response in the resurrection plant

Craterostigma plantagineum [8].

Applying tailor-made transcripts of inverted repeats (IRs)

is a routine technique to interfere with transcription of

target genes with homology to the resulting siRNAs, but

similar siRNA can also originate from transcripts of

endogenous IRs. Two Arabidopsis repeats, IR71 and

IR2039 [9��], produce siRNA of different size classes,

of which some can silence a GFP-reporter in trans.
Endogenous IRs are highly variable in the genome of

different ecotypes of Arabidopsis, indicating fast evol-

ution and rapid adaptive changes [9��]. However, the

actual response of IR-derived siRNA to environmental

factors and contribution to stress-adaptation is yet to be

demonstrated.

Responses of transposable elements (TE) to stress are the

topic of reviews by Lisch (this issue) and Bucher et al.

(this issue), but TE activation raises the interesting

potential of TE-derived small RNAs that target stress-

related protein-coding genes [10] and thereby represent

an indirect stress signaling pathway.

Level 2: stress etching on chromatin
Stress signaling leads to stress-adapted gene expression

and also affects chromatin structure at responsive genes,

directly or indirectly [11–14]. The changes can affect

DNA methylation, histone tail modifications, exchange

of histone variants, or nucleosome occupancy and larger

chromatin configuration, as documented in the following

examples (Figure 1).

DNA methylation is an important defense strategy against

infections by DNA-viruses. Double-stranded viral tran-

scripts can induce methylation at homologous sequences,

which led to the discovery of the RdDM phenomenon [15].

Arabidopsis RdDM mutants are hypersensitive to gemini

viruses infection [16]. Some siRNAs associated with virus
www.sciencedirect.com
infection can be complementary to regions of the host

genome, especially to regulatory sequences containing

retro-elements evolved from ancient integration events,

and can exert stable gene silencing on such ‘off-targets’.

The same principle could apply to other endogenous

siRNAs that match with promoter regions and could affect

stress-related genes [17]. For example, repeat elements in

the promoter of a sodium transporter gene are methylation

targets and determine salt stress tolerance [18]. A plausible

correlation is also the DNA methylation of two genes

controlling stomata development, their transcriptional

repression, and a reduced number of stomata in Arabidop-

sis plants grown under low humidity [19��]. Methylation

changes that appear non-targeted or not yet associated with

stress gene targets are induced by salt stress in Arabidopsis

[20], or in roots of rice plants, to different degree depending

on the salt sensitivity of the cultivars [21]. These could be

secondary effects due to stress-induced activity changes of

epigenetic regulators. Multiple methylation changes were

also observed associated with herbivore and pathogen

attack in dandelions [22], and between mangroves or

rubber trees growing in different habitats [23,24]. Higher

resistance to pathogens of Arabidopsis mutants with

defects in DNA methyltransferases inspired a genome-

wide analysis after infection with a bacterial pathogen,

revealing methylation changes in all sequence contexts

and at multiple loci, including defense-related genes,

transposons and repeats [25�].

There are several reports of stress-induced histone tail

modifications and altered stress resistance in mutants

lacking histone-modifying enzymes. Installation of acti-

vating marks can result in increased transcription levels of

stress genes but may also simply poise target genes for

faster or stronger response upon a more serious attack

later [26,27]. ABA and salt change H3 phosphorylation

and H4 acetylation in cell cultures of tobacco and Arabi-

dopsis [28]. Activation of a gene for an immune receptor

protein (R) gene in Arabidopsis depends on a histone

methyltransferase installing H3K36me3 [29�]. A promi-

nent target is also the PR-1 (Pathogen-Related 1) gene

involved in initiating defense or stress adaptation where

H3K4me2, H3K4me3 and H3ac levels increase upon SA

treatment or pathogens [30,31]. PR1 expression is nega-

tively regulated by two WRKY transcription factors,

which both interact with histone deacetylase 19

(HDA19) [32]. Deacetylation reduces active marks, and

the induction of HDA19 upon bacterial infection could be

a chromatin-based way to weaken the plant defense

system, among many other strategies [13]. Another

histone deacetylase, HDA6, is required for freezing tol-

erance in Arabidopsis, although the link to histone acety-

lation at a specific target gene is missing [33,34]. A histone

ubiquitin ligase determines the resistance to necrotrophic

fungi [35], and the growing number of identified modi-

fication types makes it likely that more of them will also

be connected with stress regulation.
Current Opinion in Plant Biology 2012, 15:568–573
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Figure 1
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Abiotic and biotic stress conditions (a) can change gene expression with and without involving plant stress hormones (b). Transcription changes, or stress

factors directly, can affect chromatin via DNA methylation, histone tail modifications, histone variant replacements, or nucleosome loss and chromatin

de-condensation (c, d). These changes are largely reversible but can modify metabolic or morphologic plant features under stress conditions. Usually, the

new phenotypes are not transmitted to progeny. However, chromatin-associated changes have the potential to be heritable and might result in uniform

maintenance of new features or new combination and epigenetic diversity (e).
The histone methylation at H3K27 under control of the

Polycomb/Trithorax complexes and its response to

environmental signals are described in detail elsewhere

[36]. MSI1, a member of the PRC2 as well as the CAF1

complex, contributes to drought stress resistance by con-

trolling the expression of ABA-responsive genes and

proline synthesis [37]. Lower H3K27me3 levels at absci-

sic acid-responsive genes upon downregulation of the cell

cycle regulator RETINOBLASTOMA-RELATED

(RBR), and induction of several stress-related genes

before deregulation of the cell cycle machinery [38,39]

indicate a tight and complex connection between stress

factors that modify chromatin features and developmen-

tal regulation. Three other histone variants are so far also
Current Opinion in Plant Biology 2012, 15:568–573
connected with stress responses. Histone variant H2A.Z

associated with the 50end of many genes is relevant for

repression of pathogen response, as mutants lacking sub-

units of the SWR1 complex that installs H2A.Z show

increased resistance to bacterial infections [40]. A clear

connection of this variant also with abiotic stress is

evident from its eviction by heat exposure [41��]. Lack

of ARP6, one SWR1 subunit, mimics the transcriptional

changes even at ambient temperatures. Further, a plant-

specific linker histone H1 variant is expressed under

drought stress in Arabidopsis, and its downregulation in

tomato revealed its importance in water stress response

[42]. DNA damaging stress is followed by incorporation of

H2A.X, which becomes phosphorylated and attracts
www.sciencedirect.com



Epigenetic responses to stress Gutzat and Mittelsten Scheid 571
DNA repair complexes and transcriptional activators [43].

However, many more chromatin components might be

involved in enabling DNA repair and recombination.

Lastly, the association of nucleosomes with DNA can be

modified in response to stress. Indirect evidence came

from analyzing mutants with defects in putative or proven

chromatin remodeling factors in response to stress (e.g.

[44]). A protein phosphatase 2C and ABA co-receptor,

HYPERSENSITIVE TO ABA1 (HAB1) can interact

with a subunit of the ATP-dependent chromatin remo-

deling complex SWI3B, and swi3b mutants show reduced

ABA responses [45]. The deregulation of epigenetically

controlled genes and repetitive sequences upon heat

stress [46–48] is associated with transient loss of DNA-

bound nucleosomes at transcribed and non-transcribed

genomic regions, and with substantial heterochromatin

de-condensation [47]. A role for nucleosome occupancy

is further suggested by delayed re-silencing of heat

stress-activated repeats in mutants with impaired

CHROMATIN ASSEMBLY FACTOR 1 (CAF-1) sub-

units [47]. Nucleosome eviction, together with histone

tail modifications were also observed at target genes of

stress-induced transcription factors in the green alga

Chlamydomonas [49�].

Level 3: potential for lasting adaptation
Extreme stress can result in a complete growth arrest, but,

after limited damage, plants can recover and resume

growth and development. This is in part exerted by

activation of replication- and cell cycle checkpoints that

prohibit amplification and transmission of damaged DNA

[50]. It is tempting to propose the existence of a similar

epigenetic checkpoint control that senses detrimental

alterations in the epigenome and halts growth until these

alterations are repaired. However, plants tolerate loss of

DNA damage checkpoint components much better than

animals [50]. Similarly, epigenetic mutations with lethal

consequences in animals are often less severe in plants,

which could indicate a less stringent ‘quality’ control of

epigenetic integrity. Many plants proliferate partially or

even exclusively by vegetative propagation, circumvent-

ing epigenetic reprogramming during gamete formation

and sexual reproduction as observed in mammals. How-

ever, if such ‘resetting’ occurs in plants, it seems to be at

least not as extensive [51], and mitotic and meiotic

transmission of stress-induced epigenetic disruptions is

therefore conceivable. Indeed, there is growing interest in

‘memory’ effects in stressed plants. These could even be

beneficial if they make exposed plants and/or their pro-

geny more resistant upon recapitulated challenges. The

concept of priming plants with a certain stress, resulting in

a faster and more pronounced response later, is exempli-

fied by Systemic Acquired Resistance (SAR), in which

soluble and/or volatile signaling molecules can spread

within an individual or be transmitted between plants.

Several stress types were reported to induce a priming
www.sciencedirect.com
effect that can be assayed also in subsequent generations

[52–57]. In some cases, the lack of epigenetic com-

ponents, mainly in the RdDM pathway, was shown to

reduce or eliminate the transmission to the progeny

[52,54] or mimic the primed state [53]. However, the

effects did not last more than one or two generations, and

concomitant chromatin changes were connected only in

one case with the primed state of stress-specific genes

[53]. Seemingly transgenerational responses can also

originate from parental stress affecting embryo develop-

ment, seed germination or early growth of the progeny,

independent or dependent from chromatin-regulated

components.

Although a role of chromatin in priming is widely

assumed [58–60], proof of strong causal epigenetic

changes affecting traits with adaptive values, without

concomitant genetic changes or long-living signaling

components transmitted through the cytoplasm of

gametes, would be desirable [51,61]. This is not meant

to discourage further studies: on the contrary, the wealth

of interesting phenomena that could indicate transge-

nerational epigenetic inheritance [62,63], together with

the growing toolbox for thorough genome-wide genetic

and epigenetic analysis, make it a very interesting field of

research. Analysis of DNA methylation in individuals,

between generations or populations from different

habitats indicates a range of epigenetic diversity that

might by far exceed genetic diversity, as described in

the contribution of Becker and Weigel (this issue). But it

is also clear that many epigenetic changes are triggered by

genetic mutations, especially transposon movements, in

the vicinity. So far, these genetically triggered epigenetic

changes are those with the most relevant and drastic

consequences, as exemplified by the development of

genetic incompatibility [64�]. On the other hand, many

transposons are under epigenetic control, as reviewed by

Bucher et al. (this issue), which makes the question of a

direct or indirect epigenetic stress memory an interesting,

but difficult-to-investigate chicken-and-egg problem.

Conclusions
Stress and epigenetic regulation meet at many different

levels from which only a few aspects are documented so

far. Current information about the connection resembles

a few fragments of a jigsaw puzzle for which neither the

number of parts nor the dimensions of the picture are

known. It is very likely that epigenetic variation contrib-

utes to the adaptation potential of plants and, like genetic

diversity, is under selection by environmental conditions.

Whether epigenetic responses to stress can serve as

adaptive traits remains a matter of debate. Surprisingly

few primary publications have addressed the issue, while

many reviews discuss this possibility. Adding another

one will not shift this imbalance but we hope to stimulate

more work in the field.
Current Opinion in Plant Biology 2012, 15:568–573
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