
A gain-control model relating nulling results to the duration
of dynamic motion aftereffects

W.A. van de Grind *, M.J.M. Lankheet, R. Tao 1

Department of Biology, Functional Neurobiology, Helmholtz Institute, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands

Received 7 June 2002; received in revised form 18 September 2002

Abstract

Strength of the motion aftereffect (MAE) is most often quantified by its duration, a high-variance and rather �subjective�measure.
With the help of an automatic gain-control model we quantitatively relate nulling-thresholds, adaptation strength, direction dis-

crimination threshold, and duration of the dynamic MAE (dMAE). This shows how the nulling threshold, a more objective two-

alternative forced-choice measure, relates to the same system property as MAE-durations. Two psychophysical experiments to test

the model use moving random-pixel-arrays with an adjustable luminance signal-to-noise ratio. We measure MAE-duration as a

function of adaptation strength and compare the results to the model prediction. We then do the same for nulling-thresholds. Model

predictions are strongly supported by the psychophysical findings. In a third experiment we test formulae coupling nulling threshold,

MAE-duration, and direction-discrimination thresholds, by measuring these quantities as a function of speed. For the medium-to-

high speed range of these experiments we found that nulling thresholds increase and dMAE-durations decrease about linearly,

whereas direction discrimination thresholds increase exponentially with speed. The model description then suggests that the motion-

gain decreases, while the noise-gain and model�s threshold increase with speed.
� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A classical, or �static� motion aftereffect (sMAE) is

experienced if we look at a static test pattern after suf-

ficiently prolonged adaptation to relatively slow motion

(below about 12–20 deg/s). The effect has at least been

known since Aristotle�s time, but was first placed solidly
on the map of vision research in the 19th and 20th

century (reviews by Verstraten, 1996; Wade, 1994,
1998). From the start a major problem of MAE-research

has been how one can best quantify the effect. Pantle

(1998) summarises the various approaches and points

out that the MAE-duration has been used most. Nulling

(cancellation, compensation) of the sMAE has been

recognised as an interesting alternative at least since the
work of Cords and von Br€uucke (1907). However, it has
been criticised on the grounds that it uses real motion to

cancel paradoxical motion of the sMAE (Wade, 1994).

This criticism does not hold for the dynamic MAE, or

dMAE, an aftereffect experienced for medium to high

adaptation speeds if a dynamic noise test pattern is used.

The dMAE is perceptually indistinguishable from real

motion (Blake & Hiris, 1993; Hiris & Blake, 1992). Here
we assume that adaptation changes an automatic gain

control in the motion system and that the nulling mo-

tion augments activity in the adapted channel to com-

pensate for decreased gain. For such a gain-control

model nulling methods have a reasonably straightfor-

ward interpretation. If a similar model holds for the

sMAE a similar conclusion follows, but we specifically

target the dMAE. The main goal of this paper is to show
with the help of a gain-control model, how nulling

thresholds of the dMAE relate to dMAE-durations and

to validate the model-predictions in psychophysical

measurements. This provides a general theoretical basis

for the interpretation of MAE-phenomena and can be of

great help in the design of experiments.
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We will argue more extensively in the discussion that

our measurements select a �high-speed� motion channel
that is responsible for the dMAE. The present results are

therefore not necessarily relevant for the sMAE. This

point was made before by Blake and Hiris (1993) who

developed a nulling method that is in principle similar to

ours. The main difference is that they used sparse ran-

dom dot patterns with a coherence measure based on the
percentage of dots moving in the same direction amidst

dots moving in random directions. We use moving

random-pixel arrays (RPAs, moving Julesz-patterns)

with variable amounts of first-order (luminance-based)

motion information, quantified by the luminance signal-

to-noise ratio (LSNR). The LSNR-value of a test mo-

tion pattern that cancels the dMAE will be called the

nulling threshold. It represents the amount of motion
energy necessary to null the MAE relative to non-

drifting noise energy. Compared to moving sinewave

gratings our stimulus has the advantage that it does not

suffer from aliasing problems. For example, a sinewave

pattern stepping an integer number of periods per frame

cannot be discriminated from a non-moving sinewave

pattern, whereas any step size (smaller than the screen-

size) per frame of an RPA defines and looks like motion.
Compared to sparse random dot patterns a moving

RPA has the advantage that it maximises the number of

stimulated motion sensors per unit area of the visual

field and thus gives a maximum MAE.

The large number of options for adaptation and test

stimuli has led to many papers on the MAE that are

difficult to relate to each other or to work on motion

perception in general. It seems important therefore to
try to develop theories and models that can be used as

effective tools of thought to tie together the various

phenomena of the MAEs and of motion detection. As a

modest contribution to this goal we develop an auto-

matic gain-control stage for a MAE network model

developed by Grunewald (1996). The network model

can explain several crucial results and correctly pre-

dicted a new phenomenon (Grunewald & Lankheet,
1996). One strength of the network model is that it ex-

plains the finding (Verstraten, Fredericksen, & van de

Grind, 1994) that adaptation to two motion patterns at

the same time and place (so-called �bi-vectorial� trans-
parent motion) normally leads to univectorial MAEs. It

also explains the one exception where adaptation to

opponent motion can, under favourable conditions, lead

to an orthogonal transparent MAE (Grunewald &
Lankheet, 1996). Moreover, the Grunewald–Lankheet

model encompasses previous models like the ratio-

model (Moulden & Mather, 1978; Sutherland, 1961)

and �distribution-shift� model (Mather, 1980; Mather &
Harris, 1998).

An automatic gain-control mechanism, the ultimate

cause of MAEs, will be described in some detail, so that

it can be used to quantitatively explain (describe) the

psychophysical findings. Such a gain control stage is

assumed to be present in each direction-specific channel

of the Grunewald-network. It is necessary to add one

generalisation to the network model, so as to provi-

sionally extend it in the speed dimension. Moreover, and

most importantly, we will assume that the model is also

valid (albeit with different parameters) for the more re-

cently described dMAE, the topic of this paper. We have
reason to believe that the dMAE and the sMAE are

generated in separate parallel networks (van de Grind,

van Hof, van der Smagt, & Verstraten, 2001; van der

Smagt, Verstraten, & van de Grind, 1999), possibly in

different brain regions. We assume that these networks

have a highly similar structure, dictated by the compu-

tational tasks and their possible neuronal implementa-

tions, but differ in several parameter values.
Fig. 1 illustrates the Grunewald-network that will be

used as our starting point. For the sake of simplicity we

have drawn only 12 motion sensors in the input layer,

one for each clock-direction. They are assumed to rep-

resent direction-selective cells in V 1. Either in V 1 at the
output or in the next station (e.g. V 5) at the input we
find an automatic gain-control unit (circle crossed by

oblique line in Fig. 1). The model comprises three layers
even though these might physiologically only represent

two cell-layers. The directional tuning curve of the

sensors is a Gaussian with a half-width of, say, 30�–45�.
We have only drawn the divergence of signals from the 6

o�clock channel�s gain-unit to the integrator layer, but
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Fig. 1. Schematic representation of the Grunewald MAE network

model. The lower layer ðSÞ is the sensor layer and consists of direction
selective speed-tuned sensors, possibly V 1 neurons. They are each

followed by an automatic gain control stage (circle crossed by an ob-

lique line), the main topic of the present paper. Whereas the input

sensitivity is represented by a velocity-dependent fixed motion-gain

factor gmðV Þ, the gain control has an adaptation-dependent gain

gðV ; tÞ. Arrows in the units of the S- and I-layer symbolise optimal
tuning directions. Each direction specific sensor projects via its gain

stage onto a range of �similar-direction� I-cells (excitatory connections)
and to a wider range of �unsimilar-direction� cells (inhibitory connec-
tions). �Unsimilar-direction� refers to a range of directions around and
similar to the opponent direction. Here we only included connections

from the six o�clock direction sensor to the integrator cell layer, but
every sensor has the same type of projection to the I-layer centered
around its own preference (excitatory, arrows) and opponent direc-

tions (inhibitory, closed circles). An explanation of the network actions

is given in the text.
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all sensors have a similar mapping upon the integrator

layer. This mapping consists of a relatively narrow

spread of excitation, making the direction tuning curve

of integrator units about 90� wide (as in V 5-units in the
monkey), and a very broad spread of inhibition, cen-

tered on the unit of opposite direction-selectivity. In the

example of Fig. 1 this is the 12 o�clock unit. The spread
of inhibition is also Gaussian.
The gain-units are assumed to have a resting gain of

1, which goes down on adaptation (never reaching 0 of

course) and recovers exponentially after adaptation.

Such an automatic gain control is easy to construct from

a leaky integrator with a relatively long time constant, as

will be explained below in connection with Fig. 3. The

basic idea of the network model is that a lowered gain

in, say, the 6 o�clock channel will give it a lower output
during testing than the 12 o�clock channel, due to the
decrease of the latter channel�s inhibition from the 6

o�clock channel (disinhibition). During testing the 12

o�clock channel will therefore be the most active of all.
In case of bivectorial adaptation, the wide spread of

inhibition will ensure a fusion of aftereffects into one

single direction. We refer to Grunewald and Lankheet

(1996) for further details on this aspect of the model.
Note that the inhibition pattern becomes manifest as

soon as all the direction-channels are stimulated, during

the MAE-test, but not if thresholds are measured for a

single motion direction. For example, the threshold of

the adapted channel is increased, but that of the oppo-

nent channel is unchanged. The model was originally

designed to explain phenomena of the sMAE. Here we

assume that a similar network is responsible for the

dMAE.

The Grunewald network is designed for all directions,

but only one speed. The simplest extension in the speed-

dimension is to postulate that there is such a network for
each of a large number of speeds, as symbolised in Fig.

2A. Because the MAE-duration is speed-dependent,

every separate speed-specific Grunewald-network might

have its own time-constant of adaptation and recovery

of its gain. Obviously the speed-specific networks must

somehow interact, spread their excitation and/or inhi-

bition across neighbours or to more distant regions. In

other words: the gain-units must have a receptive and
projective field structure in the speed dimension as well

as in the direction dimension. Fig. 2B illustrates which

part of the complex network of Fig. 2A will be relevant

in the present analysis. Every speed-specific network is

only represented by two opponent direction-channels.

The interactions between speed-specific networks (dou-

ble arrows in Fig. 2B) are neglected, since we only used

one speed at a time in our experiments. Here we will
concentrate on the automatic gain controls, and quan-

tify their influence on the dMAE.

Suppose one would want to null the MAE in a

Grunewald network or in the degenerate version used in

this paper (Fig. 2B). What has to be done is in principle

rather simple: send an extra signal through the adapted

channel, such that its output equals that of the other

channels during testing. This will eliminate the disinhi-
bition effect on channels around the opponent direction

as well as compensate for the lower output of the

adapted channel. The model predicts that perfect nulling

should be possible by adding a weak stimulus of the

same kind (direction etc.) as the adaptation stimulus.

Due to the neglected complexities of interactions in the

speed dimension one cannot expect this nulling to be

perfect for long. Eventually the focus of gain-imbalance
might drift towards other (less-adapted) speed-specific

layers, e.g. because they have longer recovery time-

constants. Therefore we concentrate on nulling imme-

diately after adaptation, while the gain is still maximally

modulated in the targeted speed-specific network.

The following section describes our gain-control

model in some detail and shows how nulling threshold

and MAE-duration are related to adaptation strength.
We also derive a relation between MAE-duration and

nulling-threshold. Our next aim is to test the model

predictions in three psychophysical experiments. To do

so, stimulus variables have to be mapped onto model

variables. Before we can discuss our solution to this

mapping-problem we need to describe the stimuli. After

developing model relations and the basic plan for three

psychophysical experiments in the next section, we will

Fig. 2. In A we symbolise that a Grunewald network (Fig. 1) might

exist for each of a range of speeds. The gain controls of any of the

networks might get input from other speed-tuned networks as well, but

we will address one speed at a time, so that these interactions in the

speed-direction play no role. We will only consider opponent-direction

channel-pairs from each speed layer, as indicated in B. The automatic

gain control circuits (small circles, each crossed by an oblique line) are

specified in Fig. 3.
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therefore describe the stimuli and their basic parameters

(methods), before translating the model formulae into

psychophysical predictions in the introduction to the

experiments. To keep the model and psychophysical

domains clearly separated we will use the following

convention. Signals in the model domain are denoted

with an x plus index (e.g. x0 ¼ the nulling signal,

xA ¼ adaptation signal), whereas the psychophysical
measure of signal strength is always an LSNR-value,

denoted as S with a corresponding index (e.g. S0 for
nulling or SA for adaptation LSNR-values).

2. Gain-control model

Fig. 3 presents the gain-control model that will be

used in this paper. It has a feedforward-divisive (FFD-)

structure. We have studied three alternative models as

well. For example, one can make the gain g (see Fig. 3)
equal to 1� u, to obtain a feedforward multiplicative

(FFM-) version. If the leaky integrator is connected to

the output rather than input one gets a feedback-divisive
(FBD-) and feedback-multiplicative (FBM-) version,

respectively. Some formulae (e.g. formula (3) below) can

be written in such a form that they hold for all four

models. In many respects the model-choice is not very

critical so that we can view the chosen FFD-version as a

generic model, representing a class of models. Yet, ex-

cept for formula (3) below, the other formulae are spe-

cific for the FFD-model, which we used to interpret our
psychophysical results.

It is possible to choose the signal-range at the model

input relatively arbitrarily, because it only influences

two linear scaling factors (gm, the motion signal gain,
and gn, the noise signal gain: Fig. 3) in the mapping

function that translates psychophysical quantities into

model quantities. We chose the input range from 0 to 10.

With this choice we can then fix the value of w, the input
weight of the leaky integrator (Fig. 3). For a constant

maximum input x ¼ 10, gain g in Fig. 3 would adapt to
a minimum value of ð1þ 10wÞ�1, so it is advisable

to choose a relatively small value for w. We chose

w ¼ 0:05, so that the minimum value of g is 2/3 of the
unadapted value of 1. There is no direct information on

the maximum gain factor decrease after prolonged ad-
aptation, but it is certainly not extreme. For example,

Raymond (1993) studied the increase of a motion co-

herence threshold after adaptation, and found an in-

crease from 14.3% to 62.8% for a speed of 1.68 deg/s. It

is not immediately obvious how this can be translated in

model-terms, especially because the test only consisted

of a single motion step of a sparse dot stimulus. But it

illustrates that the threshold increase is relatively mod-
est. In accordance with her findings our model shows no

threshold-increase for directions that differ (sufficiently)

from the adaptation direction. After fixing w, our gain-
control model only has two free parameters, time con-

stant s and a threshold criterion h (see below). In

addition, the front-end mapping symbolised in Fig. 3

has two free parameters, gm, the motion signal gain, and
a parameter that characterises the effectiveness of test
noise at the gain-control (noise gain gn, see later). One
aim of the paper is to show how these four parameters

can be determined unambiguously from psychophysical

measurements.

To facilitate the derivation of predictions for the

three psychophysical experiments in the next sections,

we first discuss a few general properties and explain the

notational conventions. In the non-adapted case, gain g
(defined in Fig. 3) will be 1, so the signal going to the

integrator units and beyond then equals input signal x. If
this signal has to surpass some fixed threshold h to be
perceived, the threshold input signal xd will equal h. We
will use this equality in the analysis of experiment 3.

During adaptation the stimulus causes some constant

neural signal xA at the gain-control input, so the leaky
integrator (an RC-integrator) will charge. The leaky
integrator has a time constant s and a small input

weighting factor w (w ¼ 0:05), so its output u at time t
after the start of adaptation (at t ¼ 0) will be:

uðtÞ ¼ wxAð1� e�t=sÞ ¼ F ðtÞxA ð1Þ

where index A refers to the adaptation phase and F ðtÞ is
defined as F ðtÞ ¼ wð1� e�t=sÞ. Let us use a star to cha-
racterise the various quantities at the end of a complete

adaptation period of t� s. Thus u� denotes the charge of
the leaky integrator at the end of adaptation, just before

testing, and is given by formula (1) with t ¼ t�, so we
have

u� ¼ F �xA ð2aÞ

F � ¼ wð1� e�t�=sÞ ð2bÞ

Fig. 3. Schematic diagram of an automatic gain-control system of the

feedforward divisive (FFD-) type, as described in the text. An en-

semble of motion sensors of equal speed-tuning converge at the input

and are weighted by the overall input motion-signal gain gm. This gain
depends upon number and sensitivity of the converging sensors. Noise

has a different mapping gain gn. In the gain-control proper (box of
interrupted lines) a leaky-integrator with input weight w and time

constant s determines the adapted gain. Its output signal u is used to
control gain factor g ¼ 1=ð1þ uÞ. Weight w has to be small enough to
ensure that g will not approach zero. In fact g should probably never
be lowered more than 0.1–0.5 below its resting value of 1. There are no

psychophysical indications that the gain can get substantially smaller.
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where F � is constant for a constant adaptation duration

and time constant. F � can change with speed, because

we assume that s can change with speed-tuning of the
targeted network. If the adaptation period t� lasts n
times s s and n is large enough, we can regard F � as

equal to w and constant at any speed. (For example, for
n ¼ 4 we have F � ¼ 0:982w, for n ¼ 5 F � ¼ 0:993w, etc.)
Input signals to the automatic gain control itself will

always be denoted as x, with an index to show their kind
or size. For example, xA is the adaptation value of x, xt is
the test value of x (during testing of the MAE), x0 is the
nulling motion signal at the gain-control�s input, and xd
is the threshold value of x. (We used d from the dutch

�drempel�, meaning �threshold�, because the t was already
used for �test�.) Later we will use exactly the same con-
vention for stimulus values in the psychophysical do-
main. They are all luminance signal-to-noise ratios, the

value of which is denoted as S, and we will use exactly
the same indices to indicate their kind, such as SA for the
adaptation strength.

2.1. MAE-durations and experiment 1

Let us first present a formula for the MAE-duration.
During recovery (testing) u leaks exponentially (time

constant s) from starting value u� towards an end value
determined by the test stimulation. For a fixed time

constant and test stimulus the duration of this recovery

phase is mainly determined by u�. To calculate the

MAE-duration one needs a MAE detection criterion.

We assume that the MAE is visible as long as the dif-

ference between the opponent channel�s output and the
adapted channel�s output exceeds h. All four versions of
an automatic gain-control model mentioned above lead

to a logarithmic relation between MAE-duration T and

u�, which can be written (Appendix A) as

T ¼ sLnðbu�=hÞ ð3Þ
Factor b is a different expression for each of the models
(and sometimes a small additive term has to be added to

the Ln-function�s argument as well). For the FFD-

model of Fig. 3 we will use the following approximate

result (Appendix A):

b � ðxt � hÞ=ð1þ wxtÞ�2 ð4Þ
where xt is the excitation value of the noise test. As ex-
plained in the appendix this approximation depends on

the values of the various model variables, and is cer-

tainly not universally valid, but an exact formula can

always be calculated if necessary. For a constant test

signal in the psychophysical domain, the value of xt
might be different for gain-controls in different speed-

tuned channels. Thus b can be treated as a constant only
for a constant test stimulus and a constant adaptation

speed. If these conditions are met h will also be constant
and formula (3) predicts a simple linear relation between

T and Ln(u�). This also entails a similar relation of T
and the Ln of adaptation strength xA because formula
(2a) in (3) gives

T ¼ sLnfðbF �=hÞxAg ð5Þ

Relation (5) will be tested in the first psychophysical

experiment, in which we measure dMAE-duration T as a
function of adaptation strength for a fixed speed (so that

b, s, F � and h are constant). The experiment will be done
for three speeds in a range where one can expect a strong

dMAE, viz. 6, 12, and 18 deg/s, and we will use moving

random pixel arrays with a variable LSNR.

2.2. Nulling thresholds and experiment 2

What happens during nulling? In that case we selec-

tively apply an extra input signal x0 to the adapted

direction-channel, whereas the test signal (noise) stim-

ulates all direction-channels equally. Unadapted chan-

nels, such as the opponent of the adapted direction, only
carry signal x0t , where x

0
t is the excitation of all direction-

tuned gain-controls for the chosen velocity by the

dynamic noise of the test pattern. That such a noise-

excitation of motion channels must exist follows from

the fact that no dMAE is seen in darkness or on a static

test pattern, dynamic noise is required to see a dMAE.

Note that x0t is not the same test stimulus as used in a
duration dMAE-measurement with a standard noise test
xt. During nulling experiments the noise (¼test) compo-
nent and the nulling-signal component are both present

and usually a decrease of the nulling signal automati-

cally means an increase of the noise component and vice

versa. In any case, this is the principle we used, as will be

explained in the methods section. The maximum value

of x0t is reached when no motion signal is present, so

Max[x0t ] equals xt as we use it in a MAE-duration test. In
the adapted channel g 6¼ 1 so the signal carried there is

the sum of nulling and test signals multiplied by gain g.
We use a Quest method to null the dMAE (see Section

3), which means that we estimate the point of equality of

signals carried by the adapted channel and its opponent.

In other words nulling means that

gðx0 þ x0t Þ ¼ x0t

or, if we null briefly and immediately after (re-)adapta-

tion, while the situation is still about equal to that at

t ¼ t�:

1=g� ¼ 1þ x0=x0t

By definition (Fig. 3) g ¼ ð1þ uÞ�1, so that 1=g� ¼
1þ u�, from which we see with the previous relation

that:

x0=x0t ¼ u� ð6aÞ

or with (2a)
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x0=x0t ¼ F �xA ð6bÞ

Of practical importance in this derivation is the as-

sumption that the leaky integrator does not �leak� sig-
nificantly during brief testing periods and that the

nulling stimulus does not change the integrator�s charge
significantly.

In psychophysical experiment 2 we test model pre-

diction (6b), which is independent from prediction (5),
tested in the first experiment. The idea is to measure

nulling threshold S0, an LSNR-value, in between re-

adaptations, and for a constant speed. This should en-

sure that F � can be regarded as constant, so that the

nulling threshold has a simple relation with adaptation

strength.

2.3. Relation between MAE-durations and nulling thres-

holds

According to (6a) nulling thresholds are directly re-
lated to u�, the leaky integrator�s charge at the end of
adaptation, and according to (3) T is related to the Log

of u�. Formulae (6a) can be inserted in (3) to show a

(logarithmic) relation between results of duration mea-

surements and nulling measurements:

T ¼ sLnfðb=hÞðx0=x0t Þg ð7Þ

Formulae (3) and (6) show explicitly that both psy-

chophysical methods (nulling and duration measure-

ments) probe u�, the �hidden� variable that determines
aftereffect strength. This conclusion from the above

model analysis is of practical and theoretical impor-

tance, because it ties together two methodologies that
have so far been used independently, and it even shows

how their results can be translated into each other

(formula (7)). We have found no earlier attempts in the

literature to do so.

2.4. Speed-dependencies: experiment 3

If we take a closer look at (7) we see that there are

two terms, of which the first one describes the influence

of test noise (and the model�s threshold) on MAE-

duration. This term is certainly speed-dependent, be-

cause we know that the low speed channels do not react
to random-noise test-patterns. Provided s is known the
term b=h can be determined from measurements of both

MAE-duration and nulling-thresholds. If we also want

to know b in absolute terms it is necessary to measure
unadapted threshold values as well as to estimate h
ð¼ xdÞ. These considerations led to the design of exper-
iment 3 in which we measure MAE-duration, nulling-

threshold and direction-discrimination threshold, all as
a function of speed.

3. Methods

3.1. The nulling- and detection-threshold stimuli

Moving random-pixel arrays (RPAs) of 256� 256

pixels are generated by a custom-built hardware device,

controlled by a Macintosh computer. The patterns are

presented on a CRT-display (Electrohome model EVM-
1200, P4 phosphor) at a frame rate of 90 Hz. We used

the LSNR-method developed by van Doorn and Koen-

derink (1982a,b). On every frame of the �signal� RPA a

new noise RPA is added pixel-by-pixel in such a way

that the rms (root-mean-square-) contrast of the sum

C ¼ pðC2
m þ C2

nÞ is kept constant at 0.7 or 70%. Cm is

the rms contrast of the coherently moving RPA and Cn
of the added dynamic noise patterns. The ratio of signal-
pattern to noise-pattern variances is changed accord-

ing to the subject�s responses. It is the LSNR-value
S ¼ C2

m=C
2
n. A hardware look-up table is used to set the

luminance of each pixel accordingly. The patterns step i
pixels between subsequent frames, so that the speed is i
pixels per frame (ppf). At a viewing distance of 2 m, as

used in these experiments, the pixel-size on the screen

was 1 arcmin, so that a speed of 1 ppf corresponds at 90
frames/s to V ¼ 1:5 deg/s.

3.2. Adaptation and nulling

In experiments 1 and 2 the adaptation LSNR-value is

varied from 0.05 to 400. In experiment 3 the adaptation

stimulus is a moving RPA of a high and constant
LSNR-value (400). In all cases the average luminance is

50 cd/m2. Nulling stimuli have the same average lumi-

nance and the same spatio-temporal properties as ad-

aptation stimuli, but differ in LSNR-setting. Both

adaptation and nulling stimuli have a constant rms-

contrast of 0.7 (70%). After a pre-adaptation of 15 s, a

periodic sequence starts of 5 s top-up adaptation and 0.5

s testing (nulling). Subjects have to indicate the per-
ceived direction of motion during test-intervals in a two-

alternative forced-choice task. If adaptation motion is to

the right and the MAE therefore to the left, a nulling-

stimulus of low LSNR in the test-interval moves to the

right. If the MAE is stronger motion to the left is seen, if

the nulling stimulus is stronger motion to the right is

seen. A Quest staircase procedure (Watson & Pelli,

1983) was used to estimate the 50% point in 30 test-
intervals. The LSNR-value of this 50% point is the

nulling-threshold, S0, at the chosen speed.

3.3. Direction-discrimination threshold and MAE-dura-

tion measurements

To measure the (unadapted) direction-discrimination

thresholds Sd in experiment 3 we also use a Quest-

staircase procedure with a two-alternative forced-choice
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method, but now the stimulus moves randomly to the

left or right. A Quest procedure varies the LSNR in such

a way that the staircase converges on 85% correct an-

swers. The staircase consisted of 50 trials. Presentation

duration of the trials was 0.5 s and the subject started

the next trial by pressing a key.

MAE-durations were measured in both the first and

third experiment after 30 s adaptation at the chosen
speed. The same step rates and step sizes were used as in

the nulling experiments, to ensure compatibility. Inter-

vals between the end of adaptation and the observer�s
key press, which indicated the end of a MAE, were

timed by the computer.

3.4. Observers, viewing and presentation conditions

Subjects were seated at the end of a dark tunnel in

which the monitor was placed at 2 m from the nodal

point of their right eye. The left eye was covered. Chin

support and forehead rest stabilised the head in space.

The experienced observers were instructed to fixate a
cross, consisting of two perpendicular lines of 4 pixels

length, in the center of the screen. Stimuli were pre-

sented in a circular aperture with a diameter of 256

pixels (4.27 deg) in an otherwise dark environment. The

computer controlled the Quest staircase, stimulus para-

meters and warning sounds, using software designed

and written by one of the authors (ML). For duration

measurements we used software written by R.E. Fred-
ericksen, who also wrote interface software driving the

IEEE-bus of our custom-built hardware stimulus gen-

erator (noise image machine or NIM). The three authors

served as subjects in all experiments.

4. Psychophysical experiments

4.1. General introduction: the mapping of LSNR-values

onto model signals

To test the model predictions psychophysically, we

now need to map psychophysical stimulus strength S (a
LSNR) onto the model signals x. From previous expe-

riences with our LSNR-method we know that fixed S-
increments, DS, make a lot of perceptual difference for
small S values, but less and less for increasing S-values.
This means that the function, mapping S-values on x-
values should show a saturation-type non-linearity. It

should smoothly converge on a fixed upper limit, be-

cause one cannot perceptually discriminate different

stimuli with S-values above about 400–1000. At the

other end of the scale the curve should be steep and go

through zero for S ¼ 0. This is a logical requirement,
because S ¼ 0 means that there is no motion-signal

contrast at all, that is, Cm ¼ 0 (For definitions of Cm, Cn,

C, and their relations, see Section 3). Taken together this

suggests that x should be proportional to C2
m=C

2, which

measures the ratio of signal-variance to the overall

variance of signal-plus-noise, and is therefore a princi-

pled choice. This ratio is zero for zero signal contrast,

increases steeply in the low signal-variance range, and

converges in saturation-like manner on an upper limit,

where all the variance (squared contrast) of the stimuli is

signal variance. With the formulae of the methods sec-
tion C2

m=C
2 can be rewritten in terms of S, leading to the

proposed mapping formula:

x ¼ gmS=ð1þ SÞ ð8aÞ
This is not only a principled choice, it also conforms to
Weber�s law and to Naka–Rushton compression for-

mulae as often used in the electrophysiological literature

(for a review see van de Grind, Gr€uusser, & Lunkenhei-

mer, 1973).

Formula (8a) can only be used for motion stimuli, not

to transform dynamic test noise strength into a model

excitation value xt. There is a simple reasoning that

makes it possible to include noise-sensitivity, albeit at
the cost of an extra gain-variable gn, the �noise-gain�.
During nulling the noise component�s strength is the

inverse of the motion signal strength, or S�1
0 , the noise-

to-signal ratio. Therefore we can use formula (8a) with

S0 replaced by S�1
0 to express the noise strength. How-

ever, we do not know a priori whether noise gain cor-

relates with motion gain. In fact this is unlikely, because

low-speed sensors do not react to dynamic noise, despite
their motion sensitivity. It is therefore necessary to in-

clude a different mapping gain factor, which leads to:

x0t ¼ gnS�1
0 =ð1þ S�1

0 Þ ð8bÞ
The maximum value of this term is reached when

S0 ! 0, in which case we find

xt ¼ gn ð8cÞ
This is the noise strength used during MAE-duration

measurements.

4.1.1. Experiment 1: influence of adaptation strength on

the MAE-duration

Formula (8a) can be inserted in formulae (5) to ob-

tain a model prediction in a form suitable for psycho-
physical testing:

T ¼ c1 þ 2:3sLogfSA=ð1þ SAÞg ð9aÞ
Note the switch from Ln to Log, which facilitates curve

fitting. In this formula

c1 ¼ 2:3sLogðbF �gm=hÞ ð9bÞ
where b, F �, gm, and h were discussed in the model

section. The purpose of experiment 1 is to measure T as
a function of adaptation strength SA and test how well
model prediction (9a) describes the psychophysical re-

sults. If it does, we view this as support for both the

presented gain-control model and mapping assumption
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(8a). We will measure T at a fixed speed and fixed ad-

aptation duration, so that c1 and s are constants that
can be used to fit formula (9a) to the data. By measuring

the relation at different speeds we get an impression of

the change of s with speed. The factors making up c1 will
be studied as a function of speed in the third experiment.

Fig. 4 presents results of an experiment with three

observers in which dMAE-duration was measured as a
function of LSNR-value SA of the adaptation stimulus.
For each observer one example is given in the graphs of

a fitted curve and of the standard deviations as a func-

tion of adaptation strength. The complete results of

fitting predicted relation (9a) to the data can be found in

Table 1. The fourth panel of Fig. 4 presents averages

across subjects per speed (symbols). Because the aver-

aged results for the different speeds are so similar we
also calculated the average and standard deviation of

the whole data set per SA-setting. The vertical bars in the
fourth panel show the standard deviations, and the

smooth curve is a fit of formula (9a) to the average data,

with coefficients c1 ¼ 8:186, s ¼ 2:633, and correlation
coefficient r2 ¼ 0:993. This is a superb fit. For each

speed the MAE-duration was measured six times per

Table 1

Coefficient-values c1 and s of least-square fits of formula 9a to the
psychophysical results of experiment 1 for three observers and three

speeds (Fig. 4). The last column gives the correlation coefficients

Subject Speed (ppf) c1 s r2

ML 4 8.859 1.968 0.793

8 8.531 3.023 0.926

12 7.394 2.541 0.976

WG 4 7.884 2.360 0.893

8 6.723 2.520 0.936

12 6.661 2.787 0.867

RT 4 6.893 1.786 0.825

8 9.584 2.700 0.881

12 10.897 3.134 0.921

Fig. 4. Results of the first experiment: dMAE-duration T (ordinate) as a function of adaptation strength SA (abscissa). Circles: subject ML, squares:
subject WG, diamonds: subject RT. Open symbols: data for 4 ppf (6 deg/s), crossed symbols: data for 8 ppf (12 deg/s), filled symbols: data for 12 ppf

(16 deg/s). The fourth panel (lower right) presents averages across subjects for each speed separately, and the standard deviations calculated for the

overall average across subjects and speeds (54 duration values per SA-value). The continuous curve in this panel is the best fit of formula (9) of the text
to the overall average data.
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subject and per SA-value, so the grand average and its
standard deviation were calculated from 54 duration

measures per SA-setting. Average, standard deviation,

and fitted curve in the fourth panel give a good im-

pression of the general relation between T and SA. The
data for individual subjects in the other panels show that

the speed-tuning of MAE-durations varies between

subjects, as has been reported before (e.g. van de Grind
et al., 2001). For example, subject RT has shorter MAE-

durations for low speeds and longer durations for

high speeds compared to the other two subjects, indi-

cating a speed-tuning curve shifted somewhat towards

higher speeds.

The goal of this experiment was to test prediction (9a)

of the model. The examples of data-fitting in Fig. 4 (one

per panel) show that relation (9a) fits the data very well
and we found that it describes the grand average of all

data superbly. The parameters c1 and s as well as cor-
relation coefficient r2 of the fit are given in Table 1 for
each of the subjects and speeds. Table 1 shows that the

time constants for dMAEs vary between 1.8 and 3.1 s

for the speeds and subjects of this experiment.

The relative standard deviation of these duration-

measurements ranged from an average value of 24% at
medium to high T -values to 35% at low T -values. The
values of individual relative standard deviations ranged

from 6% to 55%, except for two peak values above

100%. This reflects that MAE-duration data are always

rather noisy. In this connection it must be emphasized

that the present variances are relatively modest due to

the fact that our subjects are highly trained. With un-

trained subjects we routinely get substantially higher
variances of repeated measures. For this reason the

MAE-duration is not a very attractive quantifier of the

state of motion adaptation, especially not if untrained

subjects are used in an experiment.

The experience of our observers was that it is rela-

tively hard to judge the MAE-duration at low SA-values,
because it is very brief. Any hesitation in signalling the

end of a MAE expresses itself as a major relative ex-
tension of the duration. Also it is sometimes hard to

judge whether there was a MAE or none at all in these

cases. Therefore durations tend to be over-estimated at

the low end of the curve. Once you become certain of the

MAE at somewhat higher SA-values they already last
some 3–5 s and subjectively nothing much changes then

with increasing SA. The curve for V ¼ 4 ppf of subject

ML (upper left panel in Fig. 4) illustrates this problem
quite clearly. We found that it is useful to excercise re-

porting MAE-durations for very weak adaptation

stimuli promptly in order to get short and consistent

durations. One has to overcome the tendency of scruti-

nising the display for some remaining local movement

and of hesitating in deciding that no MAE is seen

(anymore). This is more of a decision than a perceptual

problem. Despite this problem at very low adaptation

levels, we think the data are described so well by for-

mula (9a), that the model and mapping formula (8) are

clearly supported by these psychophysical results.

4.1.2. Experiment 2: influence of adaptation strength on

the nulling threshold

With formulae (8a) and (8b) the left-hand side of

formula (6) reduces to gmS0=gn, and after transforming
the right-hand side with formula (8a) we find

S0 ¼ F �gnSA=ð1þ SAÞ ð10aÞ

Because the effective adaptation duration is long enough

in these experiments we can replace F � by w ¼ 0:05. For
convenience of curve-fitting formula (10a) can then be

written as

S0 ¼ c2 þ 0:05gn½SA=ð1þ SAÞ� ð10bÞ

where fitting constant c2 should have values around

zero.

Purpose of the second experiment is to measure

nulling-threshold S0 as a function of adaptation strength
SA and to test how well model prediction (10b) describes
the psychophysical results. This test is independent of

the previous one (experiment 1), so if formula (10b)

describes the results well this is additional support for

the model and mapping assumption.

Fig. 5 shows how nulling threshold S0 depends on the
adaptation strength SA for the three subjects of this

experiment (panels labelled ML, WG and RT). Nulling-
thresholds were measured three times for every condi-

tion and each measurement consisted of 30 trials. Three

different speeds were used (4, 8 and 12 ppf, that is 6, 12

and 18 deg/s), as indicated in Fig. 5. The smooth curves

are least-squares fits of function (10b) to the data.

Fig. 5 shows that the fit of model prediction (10b) is

excellent for each of the three speeds and each of the

three subjects. Coefficients of the least-squares fits are
summarised in Table 2. Correlation coefficients r2 range
from 0.931 to 0.991 for the nine curves, so we can

conclude that this experiment provides a very strong

confirmation of the model predictions. Furthermore, as

the model led us to expect, coefficient c2 is mostly close
to zero. The only two exceptions are the cases V ¼ 12

for ML and V ¼ 12 for RT, where c2 has values of )0.12
and )0.15, respectively. In all other cases jc2j is smaller
than about 0.06. Curves with c2 ¼ 0 represent the

model-behavior exactly, so by setting c2 ¼ 0 for all the

nine curves, we get three hypothetical observers corre-

sponding closely in behavior to the real observers. Let us

average per speed across these three hypothetical ob-

servers, so that they fuse into one. This results in the

curves of the last panel in Fig. 5, the gn-values of which
are averages of the three gn-values found per speed for
the three subjects. It is interesting to compare perfor-

mance of our real subjects with this hypothetical subject.

To do so we scaled their data and replotted them as
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loose symbols in the last panel of Fig. 5. Data-scaling

consisted of taking the ratio between S0-values at max-
imum SA for the hypothetical and the real observer and
scale the data of the latter with this factor. It is clear

from the result of this exercise that the hypothetical

observer, behaving strictly according to the model�s
prescription, is an excellent representative of our three
real observers, save for some linear scaling factor.

Table 2 shows that gn, the noise gain, increases with
speed and varies from a minimum of about 3.5 at 4 ppf

(subject RT) to a maximum of about 17.5 at 12 ppf

(same subject). This is a nice result, showing how dy-

namic noise is more effective in evoking a MAE at

higher speeds.

In conclusion, the results of experiment 2, like those
of experiment 1, provide strong support for the gain-

control model and this time for mapping postulate (8b).

4.1.3. Experiment 3: speed-dependence of dMAE-dura-

tion, nulling threshold and their relation

From (7) and (8), the translation of x0=x0t into

gmS0=gn as explained in the introduction to experiment
2, S0 ¼ wgn (see formula 10 for large SA), and formula
(4) with (8c) we have

Fig. 5. Results of the second experiment. The first three panels present nulling threshold S0 (ordinate) as a function of adaptation strength SA
(abscissa) for the three subjects ML (top left), WG (top right) and RT (bottom left). Each of these three panels presents data sets for three speeds, as

indicated in the insets. The smooth curves are fitted functions, as given in formula (10) of the text. The fourth panel presents normalised data for the

three subjects and three speeds, calculated as described in the text, compared to three curves representing the average of the model predictions for

each speed. See the text for more details.

Table 2

Coefficient values c2 and gn of least-square fits of formula 10b to the
psychophysical results of experiment 2 for three subjects and speeds

(Fig. 5). The last column gives the correlation coefficients

Subject Speed (ppf) c2 gn r2

ML 4 0.019 4.98 0.987

8 )0.038 9.64 0.980

12 )0.120 14.7 0.958

WG 4 0.033 6.18 0.985

8 0.002 9.32 0.991

12 )0.028 12.94 0.977

RT 4 0.064 3.54 0.931

8 )0.018 8.74 0.958

12 )0.149 17.2 0.945
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T ¼ 2:3sLog½ðgmS0 � whÞ=fhð1þ S0Þ2g� ð11aÞ

neglecting the small term wh this gives

T=ð2:3sÞ ¼ Logðgm=hÞ þ LogfS0=ð1þ S0Þ2g ð11bÞ

With this formula we can determine Logðgm=hÞ as a
function of speed, provided we know s and measure T ,
and S0 as a function of speed. For the purposes of this
paper we will use rough estimates of s as a function of V ,
derived from experiment 1. If we could somehow de-

termine threshold h from a separate psychophysical

threshold measurement, it would become possible to

calculate all model parameters (gn from 10, gm=h from
11, h from a relation to Sd). We will use the direction
discrimination threshold value Sd for this purpose. In a
separate analysis below we will then attempt to couple h
to Sd.
In the third experiment we therefore measured T , S0,

and Sd as a function of speed V , and used the data to

estimate how the model variables change with speed.

Fig. 6 presents the results of this experiment, in which

speeds were used from 1–24 ppf (1.5–36 deg/s). The same

three subjects participated as in the previous experi-

ments. For each subject duration measures were re-

peated six times for every condition, whereas S0 and Sd
were measured three or four times per condition.

Fig. 6 also presents the ratio S0=Sd, which was cal-
culated to test a suggestion from previous work (van de

Grind, Lankheet, van Hof, & Verstraten, 2000), that this

ratio is a predictor of T -values. For two subjects (ML
and WG) we indeed see that the ratio S0=Sd is numeri-
cally approximately equal to T in a limited range of

speeds. For the third subject this is not the case, how-

ever. The third subject in Fig. 6 (RT, bottom left), had

higher direction discrimination thresholds (Sd-values)
than the other subjects. This is the main reason why her

S0=Sd ratio�s always fall short of being numerically equal
to the MAE-duration in seconds. It was noticed during

the experiments that nulling becomes more and more

Fig. 6. Results of experiment 3. S0 and Sd were measured three times for ML and RT and 4 times for WG, whereas T was measured six times for all
subjects. Standard deviations are indicated by vertical bars, except where they are smaller than the symbol-size. Closed symbols: Sd-values, open
symbols: MAE-durations T , crossed (or grey) symbols: nulling thresholds. Diagonally divided black–white square symbols represent the ratio S0=Sd.
The fourth panel presents averages for each speed across observers and the best fitting smooth functions through these points.
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difficult for higher speeds, because it is difficult to clearly

see the motion-direction at high speeds. Motion and its

orientation (e.g. horizontal) are clearly seen, but the

direction (e.g. left versus right) is uncertain. Thus the

subjects often indicate �wrong� directions, both when

the MAE dominates and when the nulling stimulus

dominates the balance between the two. This perceptual

uncertainty increases the variance of the settings. Sub-
jects then often felt the task became virtually impossible.

That is why no nulling thresholds were obtained for

some of the higher speeds. The direction discrimination

performance deteriorated less for increasing speeds, and

could be quantified up to 24 ppf (36 deg/s) and some-

times even up to 40 ppf (not shown).

For the speed-range of Fig. 6 we find a monotonously

increasing direction-discrimination threshold Sd. An
exponential function of the form Sd ¼ a � 10b proved to

give an good fit. The nulling threshold can be described

by a linear increase with speed V over the measured

range in Fig. 6. These regularities hold for all three

subjects. The bottom right panel in Fig. 6 presents an

average across subjects for all the data sets in the other

three panels. Best fitting smooth functions are included

in the figure. They are: Sd ¼ 0:02� 100:057V (r2 ¼ 0:984,
V in ppf); S0 ¼ 0:086þ 0:034V (r2 ¼ 0:954, V in ppf);

T ¼ 13:34� 0:558V (r2 ¼ 0:862, V in ppf). It should be

emphasized that the model does not predict how T , S0,
and Sd change with speed V , making these curve fitting
results irrelevant to the model. They are only intended

as summaries of the psychophysical findings.

To calculate the model parameters from the psycho-

physical data we first need an estimate of s as a function
of speed. To this end we averaged the s-values of Table 1
per speed across subjects, and fitted a linear relation to

the resulting s-values for the three speeds. This leads to
sðV Þ ¼ 1:8þ 0:1 V (s). With this rough estimate and

formula (11b) we can, for every speed in the measured

range, calculate gm=h, a �threshold-normalised� motion
gain, from the measured T and S0-values. We used the
average data of the fourth panel of Fig. 6 in this cal-
culation. Because we know from formula (10) that for

large SA and long enough adaptation S0 ¼ w� gn, the
noise gain factor gn can be calculated from S0. If we can
determine h from Sd we therefore have all the model
parameters as a function of speed. This is an indepen-

dent challenge, because it means coupling a MAE-model

parameter (h or gm) to a normal unadapted motion

system threshold parameter. This and the determination
of all model parameters is the purpose of the following

analysis.

4.2. Linking motion detection thresholds to MAE model-

parameters

In the model description we stated that xd ¼ h, so it is
tempting to translate xd as gmSd=ð1þ SdÞ and thus

conclude that only the ratio of h and gm can be calcu-

lated from Sd. It is clear, however, that this would be a
wrong assumption, because it would mean that the

threshold is not influenced by the added noise, only by

the motion signal. Noise gain gn must also play a role.
We will therefore assume that the noise component

gnS�1
d =ð1þ S�1

d Þ increases the detection threshold. Ac-

tually there is no logical necessity to assume that this
detection or discrimination threshold is the same as

threshold h that we used for MAE detection. Yet, in a

model it is attractive to assume that it is, so that the

number of degrees of freedom is as limited as possible.

The assumption can be written as

gmSd=ð1þ SdÞ ¼ h þ gnS�1
d =ð1þ S�1

d Þ ð12aÞ

This detection postulate can be translated in a form

containing the ratio gm=h, which we determined from

the MAE-data (see above). The result is

h ¼ gn=fSdðgm=h � 1Þ � 1g ð12bÞ

We calculated h with (12b) from Sd and the MAE data,
then multiplied gm=h, as determined from the MAE-data

alone, by this value of h to obtain gm. Fig. 7 shows the
results of this analysis, h, gm and gn as functions of V .
Provided the above coupling of h to Sd is correct we

can conclude from Fig. 7 that the motion gain gm de-

creases slightly with increasing speed, that the noise gain

gn increases noticeably with speed and the threshold

criterion h even more, possibly to cope with the in-

Fig. 7. Motion signal gain gm, noise signal gain gn, and threshold h of
the model, calculated with the model�s formulae from psychophysical

data of the fourth panel in Fig. 6. The calculation is described in the

text. If these parameters are inserted in a model simulation we re-

produce the data of Fig. 6 fourth panel, showing that the (approxi-

mation) formulae are satisfactory for the purposes of this paper.
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creasing noise sensitivity. The high motion gain can

easily be interpreted as a high convergence of motion

sensors on each single gain-control unit. During strong-

signal adaptation, gm should preferably not exceed the

value 10, because otherwise the input signal exceeds the

range limits of the model. This is not a serious problem

and it can be resolved without additional assumptions.

The factor w, which we fixed from the start at a value of
0.05, can be varied to fine-tune the relation between

direction discrimination threshold and MAE-data. This

is easiest explained by solving formula (12b) for Sd:

Sd ¼ ðgn=h þ 1Þ=ðgm=h � 1Þ ð12cÞ

In most of the parameter ranges of this study we can

neglect 1 relative to gn=h or gm=h, so that (12c) shows
that Sd � gn=gm and with S0 ¼ wgn we then find:

S0=Sd � wgm ð13Þ

This relation makes perfect sense, because it says that

the ratio of a MAE-quantity (S0) and the discrimination
threshold is determined by how much signal one shunts
via weight w into the adaptation pathway. The higher w,
the higher the ratio between nulling and discrimination

threshold. As a result we can shift the balance between

adaptation effects and threshold values with w. If we
increase w by some factor the calculated gain factors gm
and gn go down by this factor. Since a calculation of the
ratio gm=h from formula (11) is independent of this we

still get the same MAE-duration if we also decrease h by
the same factor. Such a scale change does not influence

the overall pattern of results in Fig. 7, only the numbers

along the ordinate.

It is not trivial to link psychophysical detection or

discrimination data to neuronal activity (Hol & Treue,

2001), let alone to a model mimicking neuronal activity

at a more abstract level. Therefore, formula (12) should

be viewed as a preliminary linking proposition. Its major
strength is that it works in the context of the present

model, but it is certainly desirable to design psycho-

physical experiments to test it more directly. This must

be left to future work.

Because we used several approximations in deriving

the formulae, an overall check of the above exposition by

simulation of the model seemed necessary. We therefore

simulated the model in Matlab 5.2, using Simulink, on a
Macintosh G4. The simulation consists of wiring the

various building blocks of Simulink in the appropriate

way (similar to Fig. 3) and running a system simulation

separately for each of the parameter choices. Results of

our simulations confirmed the above reasoning and

formulae. It was possible to reproduce all of the psy-

chophysical data with a good accuracy by using the

parameter values calculated as explained above. For
w ¼ 0:05 the simulation results were mostly less than

�5% different from the psychophysical data, except at

the highest speeds of 21 and 24 deg/s, where the simu-

lated values of S0 differed 12% and 25% respectively

from the psychophysical measures. A similar good fit

was obtained for w ¼ 0:5 if the model parameters were
calculated with more exact formulae. (The handy ap-

proximations above were mostly based on the assump-

tion that the term wh is small and can be neglected.)

Taken together the model-simulation data and psycho-

physical data were in excellent agreement.
In summary: The psychophysical results of experi-

ment 3 suggest that nulling thresholds increase and

MAE-durations decrease about linearly in the medium-

to-high speed range, while direction discrimination

thresholds increase exponentially with speed. When we

use the psychophysical findings to estimate model and

mapping parameters we find that the noise gain is lin-

early proportional to S0 (formula (10), experiment 2),
and thus (like S0) increases about linearly with V . The
model�s threshold h increases with speed, slowly at me-
dium speeds and faster at higher speeds (Fig. 7). The

motion gain decreases modestly with speed (Fig. 7).

5. Discussion

The three experiments and accompanying data anal-

ysis of this paper show that it is possible in principle to fit

the model to empirical data and this was illustrated with

quantitative fits. Of course, this is only a proof of the

principle. More experiments are needed to quantitatively
fit the model to psychophysical data. Notably, it would

be useful to develop a more direct way to determine

psychophysically how h relates to Sd. Also the data on
time constant s are somewhat meager at this time. Yet,
we think we have shown conclusively that a gain-control

model as developed above can indeed couple MAE-

duration and nulling data, and that it is possible to

determine the model parameters from psychophysical
experiments. The correspondence between model pre-

dictions and psychophysical findings in the first two ex-

periments was impressive enough to accept the presented

gain-control model as a tool of thought in designing and

describing experiments on the dMAE. The third exper-

iment showed how one can, in a practical case––the

study of speed-dependence––tune the model to psycho-

physical results. This led to sensible results, and thus
gives us some confidence in assuming that the model

might be a valuable tool to design new experiments and

interpret the results. Also support for formula (8) which

maps the psychophysical domain on the model domain,

proved to be strong. Experiments 1 and 2, fully confirm

the expectations derived from the model analysis, in-

cluding formula (8). We think our gain-control model

provides a promising start of an attempt to develop
models explaining both motion detection and motion

aftereffects in a single model. However, our model only

holds for one of the motion systems, as argued below.
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After a sufficiently long adaptation to a moving RPA

(or sparser random-dot pattern) one can evoke a sMAE

by testing with a static pattern of similar spatial struc-

ture as the adaptation pattern. If one tests with dynamic

noise, however, a MAE is found with different proper-

ties (Blake & Hiris, 1993; Hiris & Blake, 1992), the

dMAE. The sMAE can only be experienced for rela-

tively low adaptation speeds, below about 12–20 deg/s,
whereas the dMAE can be generated by medium- to

high-speed adaptation patterns of up to 40–80 deg/s in

the fovea (Verstraten, van der Smagt, & van de Grind,

1998, 1999). Conversely, at the lowest speeds one can

only evoke a sMAE, no dMAE (Verstraten et al., 1998,

1999). The different properties of the relatively low-

speed (s-) and relatively high-speed (d-) MAE have been
extensively documented in our laboratory (van de Grind
et al., 2001; van der Smagt et al., 1999; Verstraten et al.,

1998, 1999). In this paper we used an LSNR-nulling

method and thus we always had noise in the compen-

sation stimulus while setting the nulling-threshold.

Therefore what we compensated (cancelled, nulled)

must always have been the dMAE. As a consequence, all

results and conclusions in this paper are only directly

valid for the dMAE. To the extent that a similar gain-
control model also holds for the sMAE, nulling of the

sMAE is not made impossible by the fact that it requires

compensation of a �paradoxical� motion experience with
real motion. The paradoxical aspect of the classical

MAE probably stems from simultaneous activation of

both the slow motion system and a position analysis

system by a static test stimulus. This leads to the percept

of a static pattern, the details of which have a fixed
position, and motion at the same time and place. Dy-

namic noise, as used for the dMAE, does not seem to

stimulate any local position detectors, so that no para-

doxical experience of fixed position and motion arises.

Empirical support for this interpretation has been pre-

sented elsewhere (Fig. 1 in van de Grind et al., 2001).

A question that arises from this reasoning is whether

a similar cancellation method would be possible for the
sMAE evoked by coherently moving RPAs. At first

sight, the literature appears to be replete with successful

nulling methods for the sMAE (e.g. Bex, Metha, &

Makous, 1999; Chichilnisky, Heeger, & Wandell, 1993;

Cords & von Br€uucke, 1907; Culham, Verstraten, Ashida,
& Cavanagh, 2000; Gregory, 1985; Harris, Morgan, &

Still, 1981; Johnston & Wright, 1983; Ledgeway, 1994;

McCarthy, 1993; Murakami, 1995; Murakami & Shi-
mojo, 1995; Pantle, 1978; Sachtler & Zaidi, 1993; von

Gr€uunau & Dub�ee, 1992; Wright, 1986; Wright & John-

ston, 1985). However, it is by no means certain that all

these studies probed the sMAE. As we will see below, a

counterphasing test (and nulling) pattern is likely to

evoke the so-called counterphase-flicker-MAE or cMAE.

Indeed, all these studies used periodic patterns such as

sinewaves. The spatial properties of these patterns are

described by a one-dimensional discrete Fourier-spec-

trum. Pairs of identical patterns of this kind, moving in

opposite directions at equal speed make up a static

counterphase-flickering pattern. The idea is that such a

pattern provides equal stimulation to opponent motion

detectors perpendicular to the grating bars. For vertical

grating bars, motion sensors tuned to motion to the left

and to the right are equally activated, unless one has
adapted to motion to the right, say. In that case one sees

motion to the left, because the rightward sensors are

desensitised. By decreasing contrast of the leftward

component of the counterphasing test pattern, the MAE

can then be nulled. The problem is that one combines

static position information (as is necessary to evoke a

sMAE) and flicker in this test stimulus. It appears likely

that flicker stimulates motion sensors driven by transient
input cells, that do not play a role in the classical sMAE.

Therefore the MAE measured by this nulling technique

might be the sum of a sMAE and a flicker-selective

MAE. As we will see below this is not just an academic

worry. The cMAE has properties that differ from those

of the sMAE (e.g. Ashida & Osaka, 1994; Nishida &

Sato, 1995). Whereas an opponent pair of sinewave

gratings with equal parameters completely cancel each
others motion, no such cancellation occurs for oppo-

nently moving RPAs. On the contrary, one can see them

move transparently across each other and they do not

cancel each others motion information at all. They do

decrease each others visibility or detectability, but this

effect is rather modest (Lindsey & Todd, 1998). In a pilot

study with three observers, we attempted to null the

sMAE evoked by a moving RPA with real motion of the
test RPA, which was of variable contrast. This proved to

be impossible. As soon as the test pattern became visible

(differed visibly from a uniform field) it was seen in

transparent motion with the sMAE. In itself this ob-

servation of transparency of a sMAE and a (test) mo-

tion stimulus is interesting, but it disqualifies the nulling

method in this domain. It was just as impossible to null

a sMAE for moving RPAs by changing the speed of the
test pattern rather than contrast.

This finding warns us against the assumption that

counterphase-flicker MAEs of the moving sinewave lit-

erature are identical to what we call dMAEs in this

paper. Discovery of the cMAE was preceded by the

discovery of an other �flicker�-MAE by Green, Chilcoat,
and Stromeyer (1983). This flicker MAE was seen on

spatially homogeneous flickering test fields, and showed
no interocular transfer. The cMAE on the other hand

shows interocular transfer and differs also in other re-

spects from the flicker-MAE of Green et al. (Nishida &

Sato, 1995). Interestingly the Green et al. stimulus hardly

contains position information, whereas the cMAE might

require both static position and flicker signals, as argued

above. Second-order motion does not lead to a sMAE,

but does evoke a MAE on dynamic test patterns
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(Ledgeway, 1994; McCarthy, 1993), such as counter-

phase flickering patterns (von Gr€uunau & Dub�ee, 1992).
The cMAE is strong for high temporal and low spatial

frequencies (like the dMAE), whereas the sMAE is

strong for relatively low temporal frequencies. Thus

there are parallels between the dichotomy sMAE versus

cMAE for sinewaves on the one hand, and the dichot-

omy sMAE versus dMAE for moving RPAs on the
other hand. Yet these dichotomies are not identical. If

one uses a counterphasing RPA test, in analogy with the

counterphasing sinewave tests, the resulting MAE

evoked by adaptation to moving RPAs has properties in

between our sMAE and dMAE (van der Smagt, 1999,

chapter 5; van der Smagt, Verstraten, & van de Grind,

2000). Such a cMAE for RPAs has longer duration for

low speeds than the dMAE, but shorter than the sMAE,
whereas it has longer durations than the sMAE but

shorter than the dMAE at higher speeds. It appears to

be a mixture of responses from the low-speed and high-

speed channel that are read out in isolation by a static

RPA or dynamic noise, respectively (van de Grind et al.,

2001; van der Smagt et al., 1999). We conclude from this

that our present nulling-method exclusively addresses

what we have called a high-speed motion channel, and
that the above model, relating MAE-duration to the

nulling LSNR-threshold, should be evaluated in this

restricted context. It is not unlikely that a similar model

can be formulated for the sMAE evoked by moving

RPAs (low-speed channel) and evaluated with a suitable

noise-free and flicker-free nulling method. This remains

to be explored, but a suitable nulling method has not yet

been found for the sMAE of RPAs.
Despite this lack of a full-blown model for the sMAE,

one can at least check some of the above ideas. For

example, Keck, Palella, and Pantle (1976) studied

sMAE-duration as a function of contrast for sinewave

gratings. Formula (9a) of our model appears to describe

their results well if SA in the formula is replaced by C,
the contrast of the sinewaves. Results in their Fig. 1 are

described quite well by this formula, e.g. their data for
the test contrast of 1.7% could be described by T ¼
18:7þ 35:3LogfC=ð1þ CÞg, with r2 ¼ 0:98. If this can
be interpreted as in our model, it would signify a time

constant of 15 s (35.3/2.3) for their sMAE. This example

suggests that the model of this paper might also help in

understanding some of the sMAE findings. Moreover,

Nishida, Ashida, and Sato (1997) showed that there was

little difference between the contrast dependence of the
sMAE and cMAE. Therefore the validity of the model

ideas might also extend to the cMAE. Yet, one must

keep in mind that this requires a number of important

changes in the model. A noise test is ineffective for the

sMAE, whereas a static test is. Therefore, the noise ac-

tion of our model, which extends to all direction-tuned

channels, should be replaced by an input from static

stimuli (such an input was already suggested by Keck

et al., 1976). It is not immediately obvious how this

should be done to comply with the finding that a lower

contrast test gives a longer duration for the sMAE. It

would also be necessary to rethink the implementation

of nulling, and solve the riddle why it is so difficult to

null an sMAE evoked and tested with RPAs.

We presented a gain-control model that can be in-

serted in the Grunewald-network model of the intro-
duction and showed that it predicts a simple relation

between dMAE-duration T and adaptation strength, as

well as between the nulling threshold S0 and adaptation
strength. The data confirm the predictions. We showed

that MAE-durations and nulling-thresholds provide

similar information on the underlying mechanisms.

Thus, there is no urgent need any more to measure

dMAE-durations, with the inherently large variance and
low repeatability, because one can use more robust

nulling data instead. Usually some form of gain-control

has been presumed to be responsible for the MAE, yet

there is a lack of explicit gain-control models in the

MAE-literature. Similarly, recovery from adaptation

has often been described by a negative exponential

function. But, these descriptions have mostly been ver-

bal rather than in the form of a simulation or a math-
ematical model. One exception is the work by Sachtler

and Zaidi (1993) who formulated a feedforward multi-

plicative gain-control model like the one we called an

FFM-control above. However, they did not need to

explicitly specify the dynamic properties of their model,

because they used it to explain equilibrium data. Thus a

direct comparison is not possible, but a version of their

gain control, as used in some of our simulation studies,
might work just as well as the model we analysed in

depth in this paper. Like Sachtler and Zaidi (1993) we

found it advantageous to formulate the gain-control

model in sufficient detail to guide us in interpreting

psychophysical findings.

There is an additional advantage to the use of this type

of explicit model of a gain-control stage. With reference

to Fig. 2 it is clear that the gain controls could get
additional input from nearby channels, tuned to other

orientations, speeds, spatial or temporal frequencies.

This would mean that it is possible to null the MAE of

speed V1 or orientation a with a different speed V2 or
orientation b. Eventually these interactions will have to
be specified in such a way that they describe results for

bivectorial adaptation with different speeds (Verstraten

et al., 1994) in some detail and explain the perceptual
�slowing down� of both the adaptation stimulus and the
MAE with time. A mathematical description of such

speed-interactions as given by Hammett, Thompson,

and Bedingham (2000) might serve as a guide, even

though their formulation cannot be completely correct.

It disallows motion transparency for different speeds and

neglects the transparent MAE for a combination of fast

and slow motion adaptation (van der Smagt et al., 1999).
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Thus formulating proper interactions in the speed do-

main is probably more complex than in the direction

domain and must be left to future work. Similarly one

can adapt to speed V1 with a given frame rate and try to
null with speed V1 at a different frame rate. This will give
insight into the temporal tuning range of the motion

sensors and gain-controls in the model. Therefore an

explicit model as presented in this paper is a useful tool of
thought, suggesting sensible experiments that will allow a

step by step refinement of the model and will thus deepen

our insight into the relation between MAEs and the

structure of our motion perception systems.
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Appendix A

The analysis is done for two opponent channels of the

network, one of which has been adapted. We consider

the situation at time t during recovery, where t ¼ 0 is the

end of adaptation and start of testing. The adapted
channel�s leaky integrator then has a charge:

u1 ¼ u� expð�t=sÞ þ wxtf1� expð�t=sÞg
Here the first term is the leak-term, which describes a

decreasing influence of adaptation charge u� with time
during testing, and the second term represents the inte-

grator�s charging due to the test stimulus. They can be
added according to the superposition principle for linear

systems. For the non-adapted channel we call the cor-

responding leaky integrator variable u2, and it has the
same second term as u1 above, but no first term (no

adaptation charge). The MAE ends if the difference

between the output of the non-adapted and adapted
channel equals and becomes less than threshold criterion

h, so at t ¼ T

xt=ð1þ u2Þ � xt=ð1þ u1Þ ¼ h

To simplify the typography we now leave out the star

from u� and write x for xt, call expð�T=sÞ ¼ E and
1þ wx ¼ a. This leads to

ða� wxEÞða� wxE þ uEÞ ¼ xuE=h ðA:1Þ
From this equation we want to solve E, because if

E�1 ¼ Y we have the solution as T ¼ sLnðY Þ. Although
an exact solution is possible the result is unwieldy, so we

decided to work with reasonable approximations that

emphasize the main factors. First of all we dropped all

terms with E2, because E is a very small number, and in
the solution for E�1 we then also dropped a term 2wxh,
because it is small relative to the other terms. This led to

E�1 � uðx� ahÞ=ðha2Þ ¼ bu=h ðA:2Þ
with

b � ðx� hÞ=ð1þ wxÞ2 ðA:3Þ
where we again dropped a term (whx relative to x). The
above simplifications might not be valid for other

choices of the parameters than we use in this paper, but

one can always use the exact solution, if necessary. To

gain a deeper insight in the model�s behavior, the pre-
sented simplifications are very convenient, and devia-

tions from the exact solution are mostly smaller than

5–10% for the parameter values used in this paper.

Formula (A.2) gives formula (3) of the text and (A.3)

gives formula (4) of the text, where the indices are of

course restored.
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