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SUMMARY

Directed membrane trafficking is believed to be
crucial for axon development during neuronal mor-
phogenesis. However, the underlying mechanisms
are poorly understood. Here, we report a role of
Lgl1, the mammalian homolog of Drosophila tumor
suppressor Lethal giant larvae, in controlling mem-
brane trafficking underlying axonal growth. We find
that Lgl1 is associated with plasmalemmal precursor
vesicles andenriched indevelopingaxons. Lgl1 upre-
gulation promoted axonal growth, whereas down-
regulation attenuated it as well as directional mem-
brane insertion. Interestingly, Lgl1 interacted with
and activated Rab10, a small GTPase that mediates
membrane protein trafficking, by releasing GDP
dissociation inhibitor (GDI) fromRab10. Furthermore,
Rab10 lies downstream of Lgl1 in axon development
and directional membrane insertion. Finally, both
Lgl1 and Rab10 are required for neocortical neuronal
polarization in vivo. Thus, the Lgl1 regulation of
Rab10 stimulates the trafficking of membrane pre-
cursor vesicles, whose fusion with the plasmalemma
is crucial for axonal growth.

INTRODUCTION

The Lethal (2) giant larvae (Lgl) protein of Drosophila, initially

characterized as a tumor suppressor (Bilder et al., 2000; Gateff,

1978), regulates a variety of polarization processes, including

epithelial polarity formation, asymmetric cell division, and

directed cell migration (Hutterer et al., 2004; Ohshiro et al.,

2000; Peng et al., 2000). During these processes, Lgl was found

to be crucial for targeting specific proteins to subcellular

domains (Wirtz-Peitz and Knoblich, 2006), but the mechanism

by which Lgl regulates these processes is poorly understood.

Themammalian homolog Lgl1 is enriched in the brain (Klezovitch

et al., 2004), and Lgl1 gene deletion in mice caused the loss

of asymmetric cell division of neural progenitor cells, leading

to defects in cell cycle exit and tumorigenesis in the brain

(Klezovitch et al., 2004). Interestingly, Lgl1 is regulated by

atypical protein kinase C (aPKC) (Betschinger et al., 2003; Plant
Developmen
et al., 2003) and Disheveled (Dvl) (Dollar et al., 2005), both of

which are known to regulate neuronal polarity (Shi et al., 2003;

Zhang et al., 2007).

The process of neuronal polarization begins with the initiation

of a fast-growing axon that demands a large amount of new

membrane addition from the intracellular supply (Pfenninger,

2009; Ye et al., 2006). The molecular mechanisms controlling

this process remain largely unknown. Different members of

Rab family small GTPases play important roles in various

membrane trafficking events, including formation of transport

vesicles and their translocation, docking and fusion in eukaryotic

cells (Grosshans et al., 2006; Stenmark, 2009). Amongmore than

60 mammalian Rabs, Rab10 is shown recently to mediate traf-

ficking of membrane proteins to the plasmalemma in non-

neuronal cells (Sano et al., 2007). Like other small GTPases,

Rab proteins can be activated by guanine exchange factors

(GEFs), which trigger the exchange of GDP by GTP, and inacti-

vated by GTPase-activating proteins (GAPs) via hydrolysis of

the bound GTP to GDP (Pfeffer, 2001). In addition, Rab proteins

undergo the cycle of GDP dissociation inhibitor (GDI) association

and dissociation, as well as membrane detachment and attach-

ment, with the GDI dissociation and membrane attachment

stimulating Rab activation (Grosshans et al., 2006; Pfeffer,

2005; Seabra and Wasmeier, 2004). Both the function and regu-

lation of Rab proteins in the membrane trafficking underlying

neuronal morphogenesis are poorly understood.

In this work, we have identified Lgl1 as an activator for Rab10

and demonstrated that Lgl1 regulates membrane trafficking and

axon development via its action on Rab10.

RESULTS

Expression of Lgl1 in the Developing Brain
and Cultured Neurons
The specificity of anti-Lgl1 antibody was determined by western

blot analysis of cultured cortical neurons transfected with Myc-

Lgl1 or small interference RNA (siRNA) against Lgl1 (‘‘siLgl’’)

(see Figure S1A available online). Western blots of whole-brain

extracts showed that Lgl1 is highly expressed in the embryonic

and postnatal rat brain (Figure S1B). In agreement with the

finding that Lgl1 regulates asymmetric division of neural progen-

itor cells (Klezovitch et al., 2004), we found that Lgl1 was highly

expressed in ventricular (VZ) and subventricular (SVZ) zones

(Figure S1C). Furthermore, Lgl1 was also expressed in postmi-

totic b-tubulin III (Tuj1) positive neurons in the cortical plate
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Figure 1. Lgl1 Is Required for Axon Development in Cultured Hippocampal Neurons

(A) GFP-transfected hippocampal neurons at different stages (1–3 DIV) were stained for Lgl1 and Tuj1. Arrows indicate neurite or axonal growth cones. Boxed

areas (1 and 2) show axonal growth cone and shaft, respectively. Scale bar, 20 mm.

(B) Relative immunofluorescence intensity of Lgl1 over GFP in the processes of a stage 3 neuron was plotted against the distance from soma.

(C) Relative immunofluorescence intensity of Lgl1 at axonal or dendritic neurites. The ratio of the intensity of Lgl1 against that of GFP in dendrites was taken as 1.0.

The values were obtained from six neurons. *p < 0.05, Student’s t test.

(D) Knockdown effects of siRNAs on ectopic-expressed Myc-Lgl1 in HEK293 cells. Cotransfected GFP was used as control.
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(CP) (Figure S1C) and the adult hippocampal neurons (Fig-

ure S1D). Next, we determined subcellular distribution of Lgl1

and found that Lgl1 was mainly distributed in crude membrane

fractions of the P0 rat cortex (Figure S1E). Further fractionation

of the extract for membrane vesicles using OptiPrep density

gradient showed that Lgl1 is distributed to distinct fractions

that partially overlapped with those for early endosome marker

EEA1, trans-Golgi network marker TGN38, or cis-Golgi marker

GM130 (Figures S1F and S1G). Thus, Lgl1 is localized to

membrane compartments in the brain.

We next determined subcellular localization of Lgl1 in isolated

neurons using immunostaining. Isolated hippocampal neurons

from rat embryos undergo spontaneous polarization in culture

(Dotti et al., 1988; Goslin and Banker, 1989). Shortly after adher-

ence to the culture substratum, these neurons extend several

short neurites (stage 2). After 24 hr, however, one of the neurites

exhibits accelerated growth and becomes the axon (stage 3). To

determine subcellular localization of Lgl1 during axon specifica-

tion, dissociated hippocampal neurons were transfected with

GFP to mark neurite volume, and then stained with antibodies

against Lgl1 and Tuj1 at different stages. In stage 2 neurons

(1 day in vitro [DIV]), Lgl1 was present in vesicular-like structures

in the soma and the growth cone, as well as shaft, of all neurites

(Figure 1A). However, in neurons during the transition from stage

2 to stage 3, Lgl1 appeared to be enriched in the tip of the longest

neurite (Figure 1A, the second row from top, indicated by

arrows). By stage 3, vesicular Lgl1 was abundant in axonal shafts

and in growth cones but was largely absent from dendrites

(Figure 1A). The identity of the longest neurite as an axon was

determined by staining with axonal marker SMI-312 (Figure 1F).

Using transfected GFP as marker for the neurite volume, we

found that Lgl1 staining was indeed significantly higher in the

axon than in the dendrite of stage 3 neurons (Figures 1B and

1C). These results suggest a correlation between polarized

Lgl1 localization and neurite outgrowth and thus prompted us

to investigate the role of Lgl1 in axon development.

Lgl1 Is Required for Axon Development in Cultured
Hippocampal Neurons
A siRNA (siLgl1554) against rat Lgl1 was prepared, and its effec-

tiveness in suppressing Lgl1 expression was shown in cultured

HEK293 cells (Figure 1D) and primary neurons (Figure 1F). Trans-

fection of cultured hippocampal neurons before cell plating with

a plasmid encoding siLgl resulted in reduced immunostaining of

endogenous Lgl1 (Figure 1F, see the cell indicated by arrows in

the middle row), and a marked reduction in axon formation and

axon growth (Figures 1F–1H), as compared to cultures trans-

fected with control (scrambled) siRNA. The reduction of axon

formation was reflected by the reduced percentage of neurons
(E) HEK293 cells were cotransfected with pSUPER-siLgl1554 and Myc-Lgl1 or siR

indicated antibodies.

(F–H) Rat hippocampal neurons were transfected with pSUPER-siLgl that encode

(siLgl1/Lgl1Res, 1:1 or 1:2), and then stained with SMI-312 and Lgl1 or Myc antibo

indicate the neuron transfected with siLgl.

(G) Quantitative analysis for percentage of neurons with at least one axon.

(H) Quantitative analysis for TAL and TMNL.

(I) Hippocampal neurons transfected with GFP, either alone or together with Myc

(J and K) Quantitative analysis for neuronal polarity (J) and neurite length (K). D

experiments were analyzed. *p < 0.05, **p < 0.01, ***p < 0.001. ANOVA with Stu

Developmen
with axons, which were positively stained with SMI-312 (Figures

1F and 1G). In addition, we measured the total length of axons

(TAL), including branches, in each cell and found that it was

significantly shorter in neurons with Lgl1 knockdown (p <

0.001, siLgl versus scrambled siRNA) (Figure 1H). Of note, Lgl1

downregulation had no effect on total length of minor neurites

(TMNL) (Figure 1H), suggesting the specific role of Lgl1 in axon

growth. The effect of siLgl on axon development could be signif-

icantly prevented by coexpressing Lgl1Res, the siRNA-resistant

form of Lgl1 (Figures 1E–1H), thus excluding potential off-target

effects of siRNA.

Next, we determined the gain-of-function effect of Lgl1 by

overexpressing Myc-Lgl1 in cultured hippocampal neurons.

We found that overexpression of Lgl1 increased the axon

growth, as shown by the increased percentage of neurons with

multiple axons (R2 axons) (Figures 1I and 1J) and the TAL, but

had no effect on TMNL (Figure 1K). Thus, Lgl1 plays an important

role in axon development.

Lgl1 Acts Upstream of Rab10 in Promoting Axon
Development
Next, we investigated the mechanisms by which Lgl1 affects

axon development. In S. cerevisiae, the Lgl orthologs Sro7p

and Sro77p regulate polarized exocytosis (Lehman et al., 1999;

Zhang et al., 2005), probably by interacting with the exocyst

complex (Zhang et al., 2005) or Sec4p (Grosshans et al., 2006),

one of the 11 yeast Rabs involved in membrane trafficking. Out

of more than 60 mammalian Rabs, we screened 6 that have

high homology with yeast Sec4p and found that Lgl1 interacts

strongly with Rab10 when coexpressed in HEK293 cells, as

shown by coimmunoprecipitation (co-IP) of Myc-Lgl1 with

hemagglutinin (HA)-tagged Rab10, but not with Rab5a, 8b, 11,

or 13, and weakly with Rab8a (Figure 2A). Furthermore, Lgl1 co-

precipitated with native endogenous Rab10 extracted from

membrane fractions of cultured cortical neurons (Figures 2B

and 2C), suggesting that the Lgl1/Rab10 interaction also exists

in vivo.

Given the role of Rab10 inmembrane protein trafficking in non-

neuronal cells (Sano et al., 2007) and its interaction with Lgl1, we

sought to determine the role of Rab10 in axon development.

First, we determined the distribution of Rab10 in cultured hippo-

campal neurons transfected with GFP as marker for the neurite

volume (Figure S2A). We found that, similar to Lgl1, Rab10 ex-

hibited vesicular distribution in the soma and growth cones of

all neurites of stage 2 neurons (Figure S2A, the top row). During

the transition from stage 2 to 3, Rab10 was enriched in the

growth cone of the longest neurite (Figure S2A, the second

row). By stage 3, Rab10 was largely distributed in the distal

part of axons, rather than dendrites (Figures S2A, the third row,
NA-resistant Lgl1 (Myc-Lgl1Res). Resulting cell lysates were subject to IB with

s siRNA1554 or scrambled siRNA or siLgl plus different amount of Myc-Lgl1Res

dies at 3 DIV. Cotransfected GFP is used to mark transfected neurons. Arrows

-Lgl1, were stained with SMI-312 antibody at 3 DIV.

ata are shown as mean ± SEM. At least 54 neurons from three independent

dent’s t test. Scale bar represents 50 mm. See also Figure S1.
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Figure 2. Rab10 Acts Downstream of Lgl1 for Axon Development

(A) Cell lysates from HEK293 cells transfected with indicated plasmids were subject to IP, and then IB with indicated antibodies.

(B and C) Crude membrane fractions (500 mg) of cortical neurons were subject to IP with mouse anti-Rab10 (B) or rabbit anti-Lgl1 (C), or normal control IgG,

conjugated to either CNBr Sepharose (B) or protein A agarose (C) beads.

(D) Rat hippocampal neurons were transfected with GFP vector or together with Flag-tagged Rab10 constructs, and then stained with indicated antibodies

at 3 DIV.

(E) Hippocampal neurons were transfected with pSUPER vector encoding siRNAs against Rab10 (siRNA251 or 87) or scrambled sequence (control). Arrows

indicate cells transfected with siRab10.

(F–I) Quantification for the percentage of neurons with at least one axon (F and H) and TAL (G and I).

(J–M) Quantification for neuronal polarity (J and K) and TAL (L and M) of neurons transfected with various plasmid combinations. Results are shown as mean ±

SEM of three independent experiments with a total of at least 90 neurons. *p < 0.05, **p < 0.01, ***p < 0.001 (compared to control); #p < 0.05, ##p < 0.01, ###p <

0.001 (compared to siLgl in J or Lgl1 in K and M); ANOVA with Student’s t test. Scale bars represent 50 mm. See also Figure S2.
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and S2B). Quantitatively, the relative intensity of Rab10 in axons

was around 2-fold of that in dendrites (Figure S2C). Indeed, Lgl1

was partially colocalized with Rab10 in differentiating axons (Fig-

ure S2D), but to a lesser extent with GM130 or EEA1 (Figures S2E

and S2F). Interestingly, downregulation of Lgl1 led to diffuse

distribution of Rab10 (Figure S2G), and upregulation of Lgl1

caused enrichment of Rab10 in the tips and shafts of multiple

axons (Figure S2H). Thus, Rab10 localization is associated

with axon specification and regulated by Lgl1.

Having determined the interaction between Lgl1 and Rab10

and polarized distribution of Rab10, we next explored the role

of Rab10 in neuronal polarization by transfecting hippocampal

neurons with a wild-type (WT) or mutated forms of Rab10. We

found that about half of neurons transfected with dominant-

negative form of Rab10 (Rab10 T23N) remained at stage 2, with

only short neurites and without detectable axon at 3 DIV (Figures

2D and 2F). We also compared axonal growth and found that

neurons transfected with WT or constitutive-active form (Q68L)

of Rab10 usually exhibited an axon with many branches and

enhanced TAL (Figures 2D and 2G), compared to control cells

transfected with GFP alone. In contrast, transfection with

Rab10 T23N reduced axonal growth (Figures 2D and 2G). These

results suggest that Rab10 activation promotes axonal growth.

Given that different Rabsmay share common regulators or effec-

tors, the role of Rab10 in the participation of axon development

was further determined by downregulating the expression of

Rab10. We found that downregulating Rab10 by transfection

of two effective siRNAs (Sano et al., 2007) (Figure S2I and Fig-

ure 2E) markedly reduced the percentage of neurons with axon

(Figures 2E and 2H), and decreased axonal length (Figure 2I),

whereas transfection of the corresponding scrambled siRNA

controls had no effect. Similar to the effect of siLgl, siRNA of

Rab10 (siRab10) had no effect on the TMNL (Figure S2L). These

effects of siRab10 on axon development could be prevented by

overexpressing the siRNA-resistant Rab10Res (Figures S2J–

S2L). We also determined the role of Rab8a and 13, which are

closely related to Rab10, in neuronal polarization. We found

that downregulating Rab8a by transfection of effective siRNA

(Ishikura and Klip, 2008) markedly inhibited axon development

(Figures S2M–S2O), whereas siRNA for Rab13 (Sun et al.,

2010) had no effect (Figures S2M–S2O), in agreement with the

previous observation that Rab8 controls neuronal morphogen-

esis (Huber et al., 1995). Together, these results indicate that

Rab10 is a positive regulator for axon development.

The aforementioned gain- or loss-of-function approaches

were also used to determine the relation between Lgl1 and

Rab10 in regulating axon development. We found that overex-

pression of the WT or Q68L, but not T23N, form of Rab10

partially rescued the axon development defects in cells with

depletion of endogenous Lgl1, as shown by the percentages of

1 Axon and 0 Axon populations and the TAL (Figures 2J and

2L). In addition, transfection with Rab10T23N or siRab10 pre-

vented the axon growth-promoting effect of Lgl1, whereas

overexpressing Lgl1 had no effect on axonal defects caused

by either Rab10T23N or siRab10 (Figures 2K and 2M). Although

downregulation of Rab8a or overexpression of dominant-nega-

tive form of Rab8 (T22N) prevented neuronal polarization

(Figures S2M–S2R), overexpression of Rab8a or Rab13 had no

rescuing effect on the defect of neuronal polarity caused by
Developmen
Lgl1 depletion (Figures S2S–S2U). These results support the

notion that Lgl1 acts as an upstream activator of Rab10 in regu-

lating axon development.

Lgl1 Activates Rab10 by Releasing GDI
Interestingly, co-IP experiments showed that Myc-Lgl1 ex-

pressed in HEK293 cells preferentially interacted with

Rab10T23N, the GDP-locked inactive form of Rab10, rather than

with the WT or the GTP-locked active form (Rab10Q68L) (Fig-

ure 3A). This Lgl1 interaction with Rab10 is direct, because

beads coupled with glutathione S-transferase (GST)-Rab10

fusion protein could pull down affinity-purified hexahistidine

(His6)-tagged Lgl1 (Figure 3B). In line with the notion that Lgl1

preferentially interacted with GDP-locked form of Rab10,

Rab10 preloaded with GDP was more effective in pulling down

Lgl1 than Rab10 preloaded with GTP (Figure 3B). Thus, Lgl1

interacts directly with Rab10, preferentially in its GDP-bound

form. Membrane attachment promotes Rab activation (Gros-

shans et al., 2006; Pfeffer, 2005; Seabra and Wasmeier, 2004).

Interestingly, we found that overexpression of Lgl1 in cultured

cortical neurons increased the level of membrane-associated

Rab10, whereas downregulating Lgl1 with siLgl had an opposite

effect (Figure 3C), in line with the observation that downregula-

tion of Lgl1 caused diffused distribution of Rab10 (Figure S2G).

However, manipulation of Lgl1 levels had no effect on the level

of membrane-associated Rab8 or Cadherin (Figure 3C). Thus,

Lgl1 promotes membrane association of Rab10.

The membrane attachment/detachment cycles of Rab

GTPases are regulated by dissociation or association with GDI

(Grosshans et al., 2006). Given that Lgl1 promotes membrane

attachment of Rab10 (Figure 3C) and up- and downstream rela-

tionship of Lgl1 and Rab10, we tested the possibility that this

Lgl1 effect on Rab10 may be due to Lgl1-induced dissociation

of Rab10 and GDI. As shown in Figure 3D, transfected HA-

Rab10 and GFP-GDI formed a complex in HEK293 cells, and

this association was decreased by overexpressing Myc-Lgl1.

The possibility that other molecules in HEK293 cells may be

involved in this dissociation was excluded by the further experi-

ment using cell-free systems. Beads loaded with GST-GDI, but

not GST alone, could pull down HA-Rab10 expressed in

HEK293 cells (Figure 3E, lanes 1 and 2). Moreover, the amount

of GDI-associated Rab10 was progressively reduced by adding

increasing amounts of His6-Lgl1 (Figure 3E, lanes 3–7). As

a control, we showed that addition of Myosin V (aa 1320–

1346), which is known to interact with Rab10 (Roland et al.,

2009), had no effect on GDI-Rab10 association (Figure 3F).

Furthermore, we found that Lgl1 was unable to dissociate the

complex formed between GDI and Rab8a, Rab8b or Rab13

(Figure S3A), all of which have lower affinity for GDI than

Rab10 (Figure S3B). Taken together, these results strongly

support the notion that Lgl1 acts to release GDI from Rab10.

The dissociation of GDI from Rab10 facilitated by Lgl1 may

enhance the exchange GDP for GTP (Pfeffer, 2005; Segev,

2001; Sivars et al., 2003) (see Figure 3G). This was further

demonstrated in vitro by the GTP incorporation assay. For this

purpose, we first expressed and purified His6-Lgl1 and GST-

GDI from E. coli, and His6-Rab10 from Tn5 insect cells, in which

Rab10 is properly prenylated (Figures S3C–S3E) and able to

form a complex with GDI. We then preloaded Rab10 with GDP
tal Cell 21, 431–444, September 13, 2011 ª2011 Elsevier Inc. 435



C

J

G

Li
p o

s o
m

e-
as

s o
ci

at
ed

pr
e n

y l
R

a b
10

 (%
)

10

  15

5

0

-L
gl1

+L
gl1

+ +

 IB: GDI

 IB: Lgl1

 IB: Rab10

Lgl1
−GDP

Inp
ut

− +

His-Rab10 +++

H

GDI +++

−

PC vesicles

A

B

Lgl

GDP

GTPγS*

+

Rab10GDP : GDI

Rab10GDP GDI

GTPγRab10 S*

F

I

IP:GFP

Input

IB: HA

IB: GFP

IB: Myc

IB: GFP

IB: HA

IgGL

GFP-GDI

Myc-Lgl1
HA-Rab10

++
++
+-

HA-Rab10 + + +
GST-G

DI 

    
 pull-d

own

GST pull-d
own

+ + + +
His-Lgl1

IB: HA

GST-GDI

IB: Lgl1

1 2 3 4 5 6 7

GST-GDI

IB: HA

 His-Myosin Va
(aa 1320-1346)

HA-Rab10 + + + + + + +
GST pull-d

own

pull-down

 His-Myosin Va
(aa 1320-1346)

GST-G
DI 

    
 pull-d

own

1 2 3 4 5 6 7

IB: HA

pull-down

Input(3%) Input(3%)

IB: HA

0 5 10 15 20
0

0.1

0.2

0.3

Time (min)

1:0
1:0.5
1:2

GDI::Rab10/Lgl1

6 12 18 243− −6 12 18 243− − (μg) (μg)

[  
S]

-G
TP

γS
 (p

m
ol

)
35

HA-Rab10
Myc-Lgl1

WTWT
++++

IP: M
yc

IP: C
trl 

IgG

IB: HA

IB: Myc

IB: HA 

T23NQ68L

Input

+ +His-Lgl 

 GDP

GST-Rab10

GTP

GST-Rab10
  pull-down

Nucleotide

+ +

IB: His

E

D

IP
IB: Lgl1

IB: Rab10

IB: Rab8

IB: Cadherin

IB: GAPDH

Ctrl 
  

siL
gl1

Myc
-Lg

l1

Ctrl 
  

siL
gl1

Myc
-Lg

l1
Membrane Total

Figure 3. Lgl1 Dissociates the Rab10-GDI Complex

(A) Cell lysates from HEK293 cells transfected with indicated constructs were subject to IP and IB with indicated antibodies.

(B) GST-Rab10 immobilized on glutathione Sepharose beads were preloaded with GTP or GDP, and then incubated with purified His6-Lgl1. Bound proteins were

subject to IB with indicated antibodies.

(C) Cultured cortical neurons were transfected with vector control, Myc-Lgl1, or siLgl. Membrane or total proteins were subject to IB with indicated antibodies.

(D) Lysates of HEK293 cells transfected with indicated constructs were subject to IP and IB with indicated antibodies. Note that with the presence of Myc-Lgl1,

the association between GFP-GDI and HA–Rab10 was decreased (asterisk). IgGL, IgG light chain.

(E and F) HA-Rab10 expressed in HEK293 cells was affinity purified by GST-GDI immobilized on glutathione Sepharose beads, in the absence or presence of an

increasing amount of purified His6-Lgl1 (E) or His6-Myosin Va (1320–1346 aa) (F). Bound proteins were subject to IB with indicated antibodies. Coomassie stain

shows the amount of proteins added.

(G) Diagram for the proposed activity of Lgl1. GDI binds tightly to Rab10 and blocks release of bound GDP. Lgl1 facilitates the dissociation of Rab10 from GDI,

which has intrinsic activity to exchange bound GDP for GTPgS.

(H) Lgl1 promotes incorporation of [35S]GTPgS into Rab10 complexedwithGDI. The Rab10-GDI complex (10 pmol) wasmixedwith different amounts of Lgl1 (0, 5,

or 20 pmol) before performing [35S]GTPgS incorporation assay. The graph shows a representative experiment of at least three repetitions.

(I and J) Rab10-GDI complex was incubated with PC liposomes in the presence or absence of purified His6-Lgl1. Liposomes were separated from soluble

proteins by sucrose-gradient centrifugation. The amount of indicated proteins in the vesicle fractionwas detected by IB (I) and quantitatively analyzed (J). See also

Figure S3.
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(A) Schematic representation of Lgl1 structure. Lgl1-F, full-length of Lgl1; Lgl1-N, 1–266 aa; Lgl1-M, 267–702 aa; Lgl1-C, 703–1034 aa.

(B) Lysates of HEK293 cells transfected with HA-Rab10 were incubated with beads coated with 1 mg GST-GDI. Then, the same amount (24 mg) of His6-tagged

Lgl1-F or fragments (N, M, or C) was added to the bead-coupled Rab10-GDI complex, and the release of Rab10 was determined by IB.

(C) Hippocampal neurons were transfected with various Lgl1 constructs, together with GFP, and analyzed for neuronal polarity at 3 DIV. Neurons expressing GFP

alone were used as control.

(D and E) Quantitative analysis for neuronal polarity (D) and neurite length (E). Results are shown as mean ± SEM of three independent experiments with at least

100 neurons. *p < 0.05, **p < 0.01, ***p < 0.001; ANOVA with Student’s t test; scale bar represents 50 mm. See also Figure S4.
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and generated Rab10-GDI complex in vitro (Figure S3F), and

determined the activity of incorporating [35S]GTPgS (a non-

hydrolyzable GTP analog). In the absence of Lgl1, Rab10-GDI

showed spontaneous [35S]GTPgS incorporation that reached

a plateau within 10 min (Figure 3H). Addition of purified Lgl1

elevated the uptake of [35S]GTPgS by Rab10 (Figure 3H), consis-

tent with the release of GDI from Rab10. This effect of Lgl1 was

dose dependent (Figure 3H). The basal uptake of [35S]GTPgS

could be attributed to the intrinsic GDP/GTP exchange activity

of Rab10. Finally, we tested the role of Lgl1 in promoting

membrane association of Rab10 by using vesicle floating assay,

which measures the effect of Lgl1 in recruiting Rab10 from the

GDI-Rab10 complex into phosphatidylcholine (PC) liposomes.

We found that the level of Rab10 associated with PC liposomes

was undetectable in the absence of Lgl1 but markedly increased

after adding Lgl1 (Figures 3I and 3J). Taken together, these
Developmen
results indicate that Lgl1 activates Rab10 by releasing GDI and

promoting membrane association of Rab10.

GDI Displacement Activity of Lgl1 Is Involved
in the Axon Development
Having determined the relation between Lgl1 and Rab10 in regu-

lating the axon development and the role of Lgl1 as an activator

for Rab10, we next determined whether the GDI displacement

activity of Lgl1 is indeed involved in the axon development. For

this purpose, we generated three Lgl1 fragments (aa 1–266,

267–702, or 703–1034; Figure 4A) fused with His6, and hereafter

referred to as Lgl1-N, -M, or -C, respectively. We determined the

effect of these Lgl1 mutants on the GDI-Rab10 complex and

found that in GST-GDI pull-down experiments, the amount of

GDI-associated Rab10 was reduced by adding His6-tagged

full-length Lgl1 (Lgl-F) or Lgl1-C, but not Lgl1-N or -M (Figure 4B),
tal Cell 21, 431–444, September 13, 2011 ª2011 Elsevier Inc. 437
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suggesting that the GDI displacement activity is located in the

C terminus (aa 703–1034) of Lgl1. In line with this observation,

Lgl1-C expressed in cultured hippocampal neurons was still

associated with vesicles (Figure S4A) and localized in the

membrane fraction (Figure S4B). Furthermore, Lgl1-C was suffi-

cient to recruit Rab10 to the membrane fraction when overex-

pressed in cultured neurons with depletion of endogenous Lgl1

(Figure S4B). Next, we determined the effects of these truncated

forms of Lgl1 on axon development. Interestingly, similar to

Lgl1-F, overexpression of Lgl1-C increased the axon growth,

as shown by the increased percentage of neurons with multiple

axons (Figures 4C and 4D) and TAL (Figure 4E), but had no effect

on TMNL (Figure 4E). In contrast, overexpression of Lgl1-M

caused an opposite effect, and Lgl1-N had no effect (Figures

4C–4E). Indeed, as the substrate of aPKC, Lgl1 contains several

aPKC phosphorylation sites located in the M region of Lgl1

(Betschinger et al., 2003). Overexpression of Lgl1-M may inter-

fere with endogenous aPKC activity and thus display the domi-

nant-negative role. Nevertheless, these results suggest that the

GDI-displacement activity of Lgl1 is indeed involved in axon

development.

Lgl1 and Rab10 Are Required for Directional
Membrane Trafficking
Tomonitor membrane insertion in growing neurites, we first used

BODIPY-ceramide (BODIPY FL C5-ceramide), a fluorescent

sphingomyelin and glucosylceramide precursor that exhibits

concentration-dependent fluorescence—with red emission

(peak at �620 nm) when concentrated in Golgi-derived vesicles

and green emission (peak at�515 nm) after insertion and dilution

in the plasmalemma (Pagano et al., 1991). As shown in Fig-

ure S5A, the pattern of signals for internalized BODIPY-ceramide

was distinct from that of endosomes, which were labeled by

endocytosed transferrin ligand, and displayed a Golgi-like

pattern, in HEK293 cells. Next, cultured hippocampal neurons

were incubated with BODIPY-ceramide for 30 min, followed by

uptake for different time (0, 20, 40, or 60 min), and then washed

with BSA solution to remove nonspecific surface-bound BOD-

IPY-ceramide (see Figure S5B and Experimental Procedures).

We found that BODIPY-ceramide-labeled vesicles accumulated

in distal axon in time-dependent fashion, consistent with Golgi

derivation (Figure S5C). The rate of BODIPY uptake was similar

among different neurites of either stage 2 or stage 3 neurons

(Figures S5E and S5F), when using transfected CFP to normalize

the neurite volume. One hour after labeling, highest BODIPY-Red

signals were observed in neurite growth cones (Figure S5C).

Subsequent observation of fluorescence signals showed that

the growth cone of control neurons exhibited a gradual disap-

pearance of the red fluorescence (Figures 5A–5C), consistent

with insertion of Golgi-derived vesicles into the plasma

membrane. To exclude the possibility that the diminution of

BODIPY-Red signals could be due to vesicle transport rather

than membrane insertion, we performed live imaging to trace

individual BODIPY vesicles. As shown in Figure 5A (see also

Movie S1), the vesicles undergoing transportation (indicated by

yellow arrowheads) exhibited little change in the intensity of

BODIPY signals, whereas the signals in the growth cone

remained stationary (indicated by blue and red arrowheads)

and exhibited a gradual decrease in the intensity. Thus, the dissi-
438 Developmental Cell 21, 431–444, September 13, 2011 ª2011 Els
pation of BODIPY-Red signals was most likely due to membrane

insertion rather than transportation. As shown by the example

stage 2 neuron in a 20 hr culture in Figure 5B, we found that

this dissipation was usually most rapid in the longest neurite of

unpolarized neuron (Figure 5B, compare b2 with other neurites,

and Figure 5D). Next, we compared membrane insertion activity

between axon and dendrites of polarized neurons and found that

in stage 3 neurons, membrane insertion activity was higher in

axons than in dendrites (Figure 5C, compare c1 with c2 or 3,

and Figure 5E). These findings are consistent with the notion

that membrane addition associated with axon growth is due to

insertion of Golgi-derived membrane precursors. Notably, the

signal diminished along the axon in a distal to proximal direction

(Figure 5C, see c1), in agreement with the observation that

membrane addition happens in the distal part of the axon

(Dupraz et al., 2009). Importantly, BODIPY-labeled vesicles

were largely colocalized with Rab10 in axons (Figure S5D). Inter-

estingly, in siLgl- or siRab10-transfected neurons, the reduction

of the red fluorescence signal along the longest neurite of each

neuron was markedly prevented, as compared to control

neurons transfected with scrambled siRNA (Figure 5F). In line

with the notion that Lgl1 acts through Rab10 in regulating

axon development, overexpression of Rab10 prevented the

membrane insertion defect in neurons with Lgl1 downregulation

(Figure 5F). The general uptake of BODIPY-ceramide was unaf-

fected by manipulating levels of Lgl1 or Rab10 (Figure S5G).

These results suggest that Lgl1 and Rab10 regulate membrane

insertion in growing neurites, consistent with their effects on

axon development.

Lgl1 Is Associated with Plasmalemmal Precursor
Vesicles and Necessary for Axonal Membrane Insertion
To further determine whether Lgl1 is indeed associated with

membrane precursor vesicles, paramagnetic beads were

coated with purified Lgl1 and incubated with postnuclear super-

natant (PNS) from cortical neurons at 2 DIV, and the association

of vesicles with beads was analyzed by transmission electron

microscopy. As shown in Figure 6A, the size (�200 nm in diam-

eter) of vesicles associated with Lgl1-coated beads is similar to

that of PPVs (Pfenninger, 2009). Significantly, more vesicles

were found to be associated with Lgl1-coated beads, compared

to control beads coated with BSA (Figure 6B). Next, we deter-

mined the protein composition of vesicles by western blot

analysis. We found that Rab10 and Rab8 were associated with

Lgl1-coated beads, but not control beads, whereas Rab5 or 11

was undetectable, indicating that Lgl1-associated vesicles

may be distinct from early endosomes or recycling endosomes

(Figure 6C). Of note, IGFR-b, the receptor for insulin-like growth

factor that has been shown to be a PPVmarker (Pfenninger et al.,

2003), but not synaptic vesicle protein VAMP2, was found in

Lgl1-coated beads. The presence of TGN38 and absence of

Bip suggested Golgi derivation of the Lgl1-associated vesicles.

Interestingly, TrkB, the receptor for BDNF, and Frizzled 7, the

receptor for Wnt5a, but not another axonal membrane protein

L1/NgCAM (neuron-glia cell adhesion molecule) (Burack et al.,

2000), were also present in Lgl1-coated beads. Indeed, both

BDNF and Wnt5a have been shown to promote neuronal polar-

ization (Shelly et al., 2007; Zhang et al., 2007). Some neuronal

polarity-related proteins, including Par3, Par6, aPKC, and Dvl1,
evier Inc.
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Figure 5. Lgl1 and Rab10 Affect the Polarized Membrane Trafficking in Developing Neurons

(A–C) Time-lapse images showing the changes of BODIPY-ceramide labeled vesicles in an unpolarized neuron at 1 DIV (A and B) and a polarized neuron at 2 DIV

(C). Note the diminution of BODIPY-Red signals in the tip of neurite (see a1 and kymograph in a2, indicated by blue and red arrowheads). Magnified areas (B and

C) show the tips of the longest neurite (b2) and other minor neurites (b1, b3, b4), or axon (c1) and dendrites (c2, c3). Scale bars, 10 mm (A), 20 mm (B), and 50 mm (C).

(D) Comparison of BODIPY-Red dissipation rate on the longest neurite and other minor neurites for unpolarized neurons at 1 DIV. Neurite volume was normalized

by BODIPY-Green signals that show little change during the period of observation. *p < 0.05, paired t test (n = 20).

(E) Comparison of BODIPY-Red dissipation rate on axon and dendrites for polarized neurons at 2 DIV using BODIPY-Green to normalize neurite volume. *p < 0.05,

paired t test (n = 10).

(F) Changes of BODIPY-Red signals in the longest neurites of neurons transfected with siRab10, siLgl, or siLgl plus Rab10. CFP signals expressed by pSUPER

were used to normalize neurite volume. Results are shown asmean ± SEM from at least 13 neurons for each group (***p < 0.001, ANOVAwith Student’s t test). See

also Figure S5 and Movie S1.
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were also observed in the Lgl1 beads (Figure 6C). These results

suggest a possibility that Lgl1-mediated membrane insertion

may result in an increase in the local concentration and activation

of signaling molecules for neuronal polarization.

Next, we directly measured membrane fusion by the observa-

tion using total internal reflection fluorescence (TIRF) micro-

scope, which allows selective imaging of fluorescent signals

located in close proximity (<200 nm) to the coverslips. First, we

used Frizzled7 fused at its C terminus to GFP as a membrane

marker. Cultured hippocampal neurons were cotransfected

with Frizzled7-GFP and pSUPER-RFP, which encodes siRNA

against Lgl1, Rab10, or scrambled sequences, and analyzed

for epifluorescence or TIRF signals. As shown in Figure S6A,

although epifluorescence signals of Frizzled7-GFP were detect-

able in all the neurites of a stage 3 neuron, the TIRF signals were
Developmen
present mainly in the soma and distal region of axon and the

growth cone (see enlarged boxed region). This result suggests

directional membrane insertion during axon development. The

polarized membrane fusion was also determined using GFP-

TrkB as the probe. We found that the TIRF signals of TrkB

were mainly present in distal one-third of the axon and growth

cone (Figure 6D), whereas the TIRF signals of transferrin receptor

(TfR), a dendritic membrane protein (Burack et al., 2000), were

detected mainly in soma-dendritic regions (Figure S6D). Next,

we determined the role of Lgl1 and Rab10 in regulating

membrane localization of Frizzled7 or TrkB. We found that in

neurons transfected with siLgl1 or siRab10, although epifluores-

cence signals of GFP-tagged Frizzled7 or TrkB remained in the

soma and neuronal tips, the TIRF signals were largely abolished

(Figures 6D and 6E; Figures S6A and S6B), even in the soma.
tal Cell 21, 431–444, September 13, 2011 ª2011 Elsevier Inc. 439
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Figure 6. Lgl1 Is Associated with PPVs and Required for Directional Membrane Insertion

(A) Images by transmission electronic microscopy (TEM) showing vesicles associated with Lgl1-coated paramagnetic beads. Insets indicate an example vesicle

(arrow) associated with Lgl-coated bead. Arrowheads indicate bilayer membrane of the vesicle.

(B) Number of vesicles coupled to Lgl1- or BSA-coated beads analyzed by TEM from three independent experiments. *p < 0.05, Student’s t test.

(C) Lgl1-coated beads were subject to IB with indicated antibodies.

(D) Hippocampal neurons were cotransfected with GFP-TrkB and pSUPER-RFP vectors encoding siRNA against Lgl1, Rab10, or scrambled sequences.

Epifluorescence (epi-F) and TIRF signals represent total and plasma membrane-associated TrkB, respectively.

(E) Quantification for the TIRF signals relative to epi-F signals. Average values from control group were normalized as 100. Data are presented as mean ± SEM

(n = 5 neurons for each experimental group). **p < 0.01, Student’s t test.

(F) Hippocampal neurons were transfected with TrkB-pHluorin and observed using TIRF microscope at 2 DIV. Representative images from a time-lapse display

two vesicle fusion events (arrowheads).

(G and H) The frequency of vesicle fusion in the whole cell (G), including soma and neurites, and neurites (H) was quantified, respectively (n R 6 cells in each

group). *p < 0.05, Student’s t test. See also Figure S6.
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Figure 7. Lgl1 and Rab10 Are Required for Neocortical Development In Vivo

(A, B, F, and G) P0 neocortical slice from rat embryos electroporated at E16.5 with plasmids encoding siLgl (A and B), siRab10 (F and G), or respective scrambled

sequences, together with YFP to label newborn neurons. Enlarged areas (B and G) indicate axons coursing through the IZ.

(C and H) Example neurons in the CP. Arrows indicate the long thin trailing axon pointing toward deep layers.

(D and I) Neurolucida traces of individual neurons in either CP or IZ regions of P0 rats.

(E and J) Quantification for polarized NeuN+ cells in the CP and IZ regions. Data are presented asmean ± SEM (n = 36 for the control of siLgl, n = 40 for siLgl, n = 51

for the control of siRab10, n = 43 for siRab10). ***p < 0.001, **p < 0.01, Student’s t test. Scale bars represent 200 mm in (A) and (F), and 50 mm in (C), (D), (H), and (I).

See also Figure S7.
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Similarly, transfection with siRab8a also decreased TIRF signals

of TrkB, whereas siRab13 had no effect (Figure S6C). In support

of the TIRF results, the surface staining of TrkB was abolished by

downregulating Lgl1 or Rab10 (Figure S6E). In line with the

finding that VAMP2 was not present in Lgl1-coated beads (Fig-

ure 6C), downregulation of Lgl1 or Rab10 had no effect on

surface localization of VAMP2 (Figure S6F). Further, the role of

Lgl1 and Rab10 in membrane fusion was measured in stage 1

neurons using TIRF analysis for TrkB tagged with pHluorin

(Miesenböck et al., 1998), which has low fluorescence intensity

when remaining within the acidic vesicle lumen and exhibits

a fast increase in fluorescence signals when exposed to higher

pH upon fusion with plasma membrane (see Figure 6F for

fusion events). The fusion events in the soma and neurites

were quantified, respectively. As shown in Figure 6G and 6H,

downregulation of Lgl1 or Rab10 caused a remarkable decrease

in the membrane fusion in either the whole cell or neurites. Thus,
Developmen
Lgl1 and Rab10 are required for directional membrane fusion

during axon development.

Lgl1 and Rab10 Are Needed for Neuronal Polarization
In Vivo
To determine the effects of Lgl1 or Rab10 in the differentiation

of newborn neurons, E16.5 rat embryos were subject to in

utero electroporation with plasmids encoding siLgl, siRab10, or

respective scrambled sequences, together with pCAG-IRES-

EYFP to label cortical neural precursors. Four days after electro-

poration, the development of YFP-positive cells was examined

at P0 (Figures 7A and 7F). First, neuronal fate was determined

by staining with antibodies against NeuN, a marker for mature

neurons, or Ki67, which labels proliferating cells. We found that

siLgl transfection caused an increase in the percentage of

Ki67-positive (Ki67+) cells and a decrease in the percentage of

NeuN-positive (NeuN+) cells (Figures S7A–S7D), in agreement
tal Cell 21, 431–444, September 13, 2011 ª2011 Elsevier Inc. 441
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with a previous observation that Lgl1 affects differentiation of

neuronal precursors in the VZ (Klezovitch et al., 2004). Whereas

bundles of axons traversing through the intermediate zone (IZ)

were observed in control animals, such axonal projection was

not seen in siLgl-transfected animals (Figures 7A and 7B).

Such defects could be caused by abnormal neuronal fate deter-

mination or morphogenesis. To circumvent the multifaceted role

of Lgl1, we analyzed morphology of NeuN+ neurons located in

the IZ and CP regions. Interestingly, whereas most neurons of

control animals exhibited polarized structures with a leading

process destined to become dendrite and a long trailing process

destined to become axon, in the CP or IZ regions, a number of

neurons in animals transfected with siLgl failed to polarize nor-

mally (Figures 7C–7E). Thus, Lgl1 is needed for neuronal polari-

zation in vivo.

The same approach was used to determine the role of

Rab10 in the differentiation of cortical neurons. Unlike that of

Lgl1, Rab10 had no effect on neuronal fate determination

because transfection with siRab10 had no effect on the

percentage of NeuN+ or Ki67+ cells (Figures S7E–S7H). Never-

theless, severe defects in axon development were observed in

neurons with Rab10 downregulation (Figures 7F–7J), as re-

flected from the loss of axonal bundles coursing through the

IZ (Figures 7F and 7G) and failure of CP or IZ neurons to

extend the long trailing axon (Figures 7H and 7I). Indeed,

79.3% ± 0.9% of control neurons possessed a morphologically

polarized structure compared to 45% ± 2.7% of siRab10-

transfected neurons (Figure 7J). In addition to the defects in

axon formation, downregulation of Lgl1 or Rab10 also impaired

migration of newborn neurons to the CP. As shown in Figures

7A and 7F, whereas a large population of control cells was found

in the CP on P0, lesser siLgl- or siRab10-transfected neurons

were observed in the CP. Given the polarity defects of NeuN+

neurons in the CP and IZ of animals with downregulation of

Lgl1 or Rab10, we conclude that the Lgl1/Rab10 system is

required for axon specification both in vivo and in vitro. We

also determined the role of Rab8a and Rab13 and found that

downregulation of both Rabs appeared to affect neuronal

migration (Figure S7I), and, consistent with the results obtained

in cultured neurons, downregulation of Rab8a, but not Rab13,

impaired axon development in vivo (Figures S7J–S7M). The

regulatory or functioning mechanisms for Rab8 need further

investigation.

DISCUSSION

Studies of the molecular mechanisms underlying axon develop-

ment have identified a number of key molecules involved in

triggering axon specification and growth (Arimura and Kaibuchi,

2007; Barnes and Polleux, 2009). Many of these molecules are

believed to exert their action by regulating cytoskeleton organi-

zation (Barnes et al., 2007; Bradke and Dotti, 1999; Chen et al.,

2006; Jiang et al., 2005; Kishi et al., 2005; Schwamborn and

Püschel, 2004; Shelly et al., 2007; Witte et al., 2008; Yoshimura

et al., 2005). Another important cellular process critical for

axon development is the directed membrane trafficking under-

lying the insertion of new membrane associated with axon

growth, an aspect of axon development that remains poorly

understood. In this study, we show that Lgl1 plays an important
442 Developmental Cell 21, 431–444, September 13, 2011 ª2011 Els
role in directional membrane insertion underlying axon develop-

ment, by activating Rab10.

Cultured hippocampal neurons can undergo spontaneous

polarization, with one thin axon and multiple dendrites. In this

system, specification of axon-dendrite polarity is preceded by

the accelerated growth of only one neurite, which depends on

asymmetric insertion of new plasma membrane mediated by

directional vesicle recruitment and exocytic fusion (Dupraz

et al., 2009; Futerman and Banker, 1996; Pfenninger, 2009).

The role of the Lgl1-Rab10 system in directing membrane traf-

ficking was investigated here by using BODIPY-ceramide to

label PPVs or analyzing the TIRF signals of TrkB or Frizzled7 in

the growing neurites. We propose that membrane-associated

Lgl1 recruits Rab10 to the membrane by dissociating Rab10

fromGDI, and activation ofmembrane-bound Rab10may trigger

multiple steps required for addition of new membrane, including

vesicle recruitment and sorting, as well as vesicle docking and

fusion at the plasma membrane. In line with the finding that the

Lgl1-Rab10 system regulates vesicle trafficking, we found that

both Lgl1 and Rab10 are required for axon development in

cultured hippocampal neurons, as shown by axon differentiation

and elongation, and neocortical neuronal polarization in vivo.

That Lgl1 is a positive regulator of Rab10 is also supported

by the finding that Lgl1 acts upstream of Rab10 in promoting

axon development (Figures 2J–2M). How might Lgl1 itself be

regulated during neuronal polarization? A recent report showed

that the mammalian homologs of yeast exocyst complex

influence neuronal polarity through aPKC (Lalli, 2009), which is

known to regulate Lgl homologs in other systems. Furthermore,

Lgl1 has been shown to be regulated by Dvl (Dollar et al.,

2005). It is thus possible that Dvl/aPKC may act as upstream

regulators of the Lgl1-Rab10 system. It has been shown

that vesicle-SNARE (soluble N-ethylmaleimide-sensitive fusion

protein attachment protein receptor) proteins, such as VAMP2,

VAMP4, or VAMP7, are involved in the exocytic machinery that

drives neuritogenesis (Cocucci et al., 2008; Gupton and Gertler,

2010; Martinez-Arca et al., 2000). However, we found that

VAMP2 was not associated with Lgl1-coated beads (Figure 6C),

and downregulation of Lgl1 or Rab10 had no effect on

membrane localization of VAMP2 (Figure S6F). Nevertheless,

these results cannot exclude the possible interaction between

the Lgl1-Rab10 system and other SNARE proteins.

Among more than 60 mammalian Rab proteins, several

have been shown to regulate neuronal development and

membrane trafficking, besides Rab10 shown here. For example,

Rab27 activation promotes retrograde trafficking of BDNF/TrkB

endosomes (Arimura et al., 2009), and Rab3 activation promotes

membrane fusion of presynaptic vesicles (Geppert et al., 1997;

Schlüter et al., 2004), whereas Rab5 and Rab11 activation

inhibits neurite outgrowth (Liu et al., 2007; Shirane and

Nakayama, 2006). Similar to Rab10, downregulation of Rab8

affectedmembrane insertion as well as neuronal morphogenesis

(Huber et al., 1995). More recently, several Rab proteins,

including Rab5, Rab7, and Rab11, have been shown to be

involved in multiple phases of neuronal migration through

distinct endocytic pathways (Kawauchi et al., 2010). Different

Rabs may have distinct regulatory mechanisms. For example,

DENND4 family proteins have been identified as specific GEFs

for Rab10, rather than Rab8 or Rab13 (Yoshimura et al., 2010).
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Given the diverse roles of different Rab GTPases in mammalian

cells, it is of great interest to identify new regulatory factors

besides proteins in the GEF and GAP families.

Given that Rab-dependent directional membrane trafficking is

crucial for a number of polarization processes, the Lgl1-Rab10

systemmay also functionwithin other cellular contexts, including

membrane receptor insertion, asymmetric membrane distribu-

tion of cell fate determinants, axon guidance, as well as cell

migration.

EXPERIMENTAL PROCEDURES

Reagents and Biochemical Analysis

All reagents, including antibodies, siRNAs, and constructs used in this study

are introduced in the Supplemental Experimental Procedures. Recombinant

proteins used in this study were affinity purified from E. coli BL21 or Tn5 insect

cells with glutathione Sepharose or Ni-NTA agarose column, respectively.

Lysates or membrane fractions of transfected HEK293 cells or primary

neurons were subject to immunoprecipitation or pull-down analysis. The

[g35S]GTP incorporation assay was performed following the protocol

described in a previous report (Sivars et al., 2003). Rab10 recruitment onto

liposomes was analyzed following a previous report (Machner and Isberg,

2007). See Supplemental Experimental Procedures for details.

Vesicle-Binding Assay

Paramagnetic beads (Dynal) were coated with His6-Lgl1 according to the

manufacturer’s instructions. Cortical neurons at 2 DIV were homogenized

with PBS containing 250 mM sucrose, 0.5 mM DTT, and protease inhibitors,

followed by centrifugation at 10, 000 3 g for 10 min to generate postnuclear

supernatant (PNS) fraction (Machner and Isberg, 2006). The His6-Lgl1-coated

beads were incubated with PNS for 4 hr at 4�C, followed by extensive washes.

The pelleted beads were then processed for electron microscopy or immuno-

blotting analysis.

Neuron Culture, Electroporation, and Imaging

Rat hippocampal neurons were prepared as described previously (Chen et al.,

2006). Dissociated neurons were transfected by electroporation using the

Amaxa Nucleofector device, followed by imaging analysis for neuronal

polarity, subcellular localization, or TIRF signals. In utero electroporation

was performed as described previously (Saito and Nakatsuji, 2001), and all

animal usage followed guidelines by the Institutional Animal Care and Use

Committee of the Institute of Neuroscience, Chinese Academy of Sciences.

See Supplemental Experimental Procedures for details.

BODIPY-Ceramide Labeling and Fluorescence Observation

Hippocampal neurons cultured in vitro for 12–48 hr were incubated with 5 mM

BODIPY FL C5-ceramide conjugated with BSA for 30min in room temperature,

followed by three washes with HBSS to remove free dye, and subsequent

incubation at 37�C for different times (0–60 min) to induce the endocytic

uptake of source-absorbed BODIPY-ceramide, and then undergo three

washes (within 0.5 hr) with 5%BSA solution to remove surface-bound nonspe-

cific BODIPY-ceramide. Fluorescence signals for live neurons were viewed

and collected using individual filter set (525 ± 25 nm for green, >575 nm for

red, and 482 ± 25 nm for CFP). Details for software analysis of images are pre-

sented in Supplemental Experimental Procedures.

Quantitative Analysis

To quantify neuronal polarity, neurites positive for SMI-312 and longer than

100 mm were considered as axon. The TAL or TMNL (SMI-312 negative and

<100 mm in length) was measured, respectively. For those cells without

axon, the value of axon length was assigned as 0 mm. After analysis for the

normal distribution and homogeneity of variance among values of the same

set, these data were subject to statistical analysis using one-way analysis of

variance (ANOVA) supplemented with t tests. All the data are shown as

mean ± SEM from at least three experiments (p < 0.05 is considered as signif-

icant difference).
Developmen
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Miesenböck, G., De Angelis, D.A., and Rothman, J.E. (1998). Visualizing secre-

tion and synaptic transmission with pH-sensitive green fluorescent proteins.

Nature 394, 192–195.

Ohshiro, T., Yagami, T., Zhang, C., and Matsuzaki, F. (2000). Role of cortical

tumour-suppressor proteins in asymmetric division of Drosophila neuroblast.

Nature 408, 593–596.

Pagano, R.E., Martin, O.C., Kang, H.C., and Haugland, R.P. (1991). A novel

fluorescent ceramide analogue for studying membrane traffic in animal cells:

accumulation at the Golgi apparatus results in altered spectral properties of

the sphingolipid precursor. J. Cell Biol. 113, 1267–1279.

Peng, C.Y., Manning, L., Albertson, R., and Doe, C.Q. (2000). The tumour-

suppressor genes lgl and dlg regulate basal protein targeting in Drosophila

neuroblasts. Nature 408, 596–600.

Pfeffer, S.R. (2001). Rab GTPases: specifying and deciphering organelle

identity and function. Trends Cell Biol. 11, 487–491.
444 Developmental Cell 21, 431–444, September 13, 2011 ª2011 Els
Pfeffer, S. (2005). A model for Rab GTPase localization. Biochem. Soc. Trans.

33, 627–630.

Pfenninger, K.H. (2009). Plasma membrane expansion: a neuron’s Herculean

task. Nat. Rev. Neurosci. 10, 251–261.

Pfenninger, K.H., Laurino, L., Peretti, D., Wang, X., Rosso, S., Morfini, G.,
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