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Abstract

Let R be an excellent local domain of positive characteristic with residueffiafd letR T be its
absolute integral closure. If T§(R+, k) vanishes, therR is weakly F-regular. IfR has at most an
isolated singularity or has dimension at most two, tiReis regular.
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1. Introduction

Recall that theabsolute integral closuret™ is defined for an arbitrary domaia as
the integral closure oft inside an algebraic closure of the field of fractions4ofA key
property of the absolute integral closure was discovered in [4]Rf@n excellent local
domain of positive characteristi®™* is abalanced big Cohen—Macaulay algebthat is
to say, any system of parameters®is anR*-regular sequence. Itis well known that this
implies that an excellent local domait of positive characteristic is regular if, and only
if, R — RT is flat. Indeed, the direct implication follows sin®& is a balanced big Coh-
en—Macaulay algebra of finite projective dinségn (use, for instance, [8, Theorem IV.1])
and the converse follows sinde — R* and RY? — RT are isomorphic whence both
faithfully flat, implying thatR — RY/? is flat, and therefore, by Kunz's Theorem, tiiais
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regular (hereRY/? denotes the extension & obtained by adding ajpth roots of element
of R; for more details, see [5, Theorem 9.1 and Exercise 8.8]).

Huneke [5, Exercise 8.8] points out that it is not known whether the weaker condition
that all Betti numberof R* vanish, that is to say, that all TR¢R*, k) vanish forn > 1,
already implies thar is regular. It is not hard to see, using tiRit is a big Cohen—-Mac-
aulay algebra, that this is equivalent with requiring that onlyfrﬁ’#, k) vanishes. The
main result of this paper is then the following positive solution for isolated singularities.

Theorem 1.1. Let (R, m) be an excellent local domain of positive characteristic with
residue fieldk. SupposeR has either an isolated singularity or has dimension at most
two. If Torf (R, k) = 0, thenR is regular.

For arbitrary domains, we obtain at least the following theorem.

Theorem 1.2. Let (R, m) be an excellent local domain of positive characteristic with
residue fieldk. If Torf(R*,k) =0, then R is weakly F-regular. In particular, R is
normal, Cohen—Macaulay, pseudo-rational and any finite extensighigsplit (i.e., R is

a splinter)

We have some more precise information on the vanishing of ceftais in terms of
the singular locus oR.

Theorem 1.3. Let (R, m) be an excellent local domain of positive characteristic and let
a be an ideal defining the singular locus &f (e.g, a is the Jacobian ideal oR). If
Torf(R*, k) = 0, wherek is the residue field oR, thenTor,’f(R+, M)=0foralln>1
and all finitely generate®-modulesM for which M /aM has finite length.

The key observation in obtaining all these results, is that, in general, the vanishing of
Torf(S, k) implies thatR — S is cyclically pure(orideal-purg, meaningthafl SN R =1,
for all ideals! of R. This is explained in Section 2. To prove Theorem 1.1, we need a result
from [8]: if the first Betti number of a module over an isolated singularity vanishes, then
the module has finite projective dimension. Now, the argument which proofthatR*
is flat whenR is regular, yields the same conclusion under the weaker assumptiaRrthat
has finite projective dimension. This proves also the two-dimensional case, since we know
already thatR is normal.

Balanced big Cohen—Macaulay algebras iamcteristic zero exist by the work of
Hochster—Huneke, basically by a lifting pratee due to Hochster. However, the balanced
big Cohen—Macaulay algebras obtained indd@ not canonically defined. In [7], | give an
alternative but canonical constructiét(R) of a balanced big Cohen—Macaulay algebra
for a C-affine local domainR using ultraproducts and the absolute integral closure in
positive characteristic. It follows from the present results that iff“(Bl(R), k) =0, where
k is the residue field oR, then R is regular provided® has an isolated singularity or
has dimension at most two (moreover,without these additional assumpRidras, at most
rational singularities). This is the more intstiag because it is not clear whether in general
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flatness ofR — B(R) implies regularity ofR. For a further generalization to arbitrary
excellent local domains, see the forthcoming [1].

2. Vanishing of Betti numbersand cyclic purity

We derive a simple criterion for a local ring homomorphism to be cyclically pure. We
start with an easy lemma, the proof of which is included for sake of completeness.

Lemma2.1l.LetA be aring a anidealinA andM andN two A-modules. liN =0and

Tor (M, N) = O,thenTorf/“(M/aM, N)=0.

Proof. One can derive this by aid of spectral sequences, but the following argument is
more direct. Pud := A/a. SinceN is anA-module, we can choose an exact sequence of
A-modules

O>-H—>F—>N-—>0

with F a free A-module. Tensoring with thel-module M := M/aM, we get an exact
sequence

0— Tor (M, N) > M @5 H— M & F.

Since the last two modules are equal M ®, H and M ®4 F, respectively, and
since Tof(M, N) = 0, the last morphism in this exact sequence is injective. Therefore,

TorlZ(IVI, N) =0, as required. O

Theorem 2.2. Let (R, m) be a noetherian local ring with residue fieldand let S be
an arbitrary R-algebra. IfTorf(S, k) =0andmS # S, thenR — S is cyclically pure.
Moreover, ifn is anm-primary ideal then

(m:g DS=mS:s1S) foreveryideall inR.

Proof. Since Tof(S,k) vanishes, so does Tffr”(S/nS,k) by Lemma 2.1, for every
m-primary idealn. By the Local Flatness Criterion (see [6, Theorem 22.3]) applied to
the artinian local ringR/n, the base chang®/n — S/nS is flat, whence faithfully flat,
sincemsS # S. In particular, this base change is injective, showing ttfah R = n. Since
every ideal is the intersection ef-primary ideals by Krull’'s Intersection Theorem, the
assertion follows.

The final assertion follows from the flatness ®Bfn — S/nS (use, for instance, [6,
Theorem 7.4]). O

Remark 2.3. Note that with notation from the theorem, we have that the induced map of
affine schemes Sp&c— SpecR is surjective, since thigber ringsS, /pS, are non-zero.
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The following lemma shows that for a local Cohen—Macaulay ring, the vanishing of
some Betti number of a big Cohen—Macaulay algebra is equivalent with the vanishing of
all of its Betti numbers.

Lemma 2.4. If (R, m) is a local Cohen—Macaulay ring with residue fieldand if S
is a big Cohen—Macaulay-algebrg such thatTorf(S, k) = 0 for somej > 1, then

Tor®(S,k) =0, forall n > 1.

Proof. Letx be a maximaR-regular sequence which is alSeregular. Put := xR. Since
Torf(S, k) vanishes, so does TjW(S/IS, k) by [6, Lemma 2, p. 140], so th&t//S has
finite flat dimension oveR/I by the Local Flatness Criterion. However, since the finitistic
weak dimension is at most the dimension of a ring by [2, Theorem 2.4], it follows that
S/1S is flat overR/I. Therefore, G:Tor,f/I(S/IS, k) =Tor,’f(S, k),foralln >1. O

Therefore, below, we may replace everywhere the condition thaﬁ(xok) =0 by
the weaker condition that some ';.“'QS, k) =0, provided we also assume thiis Cohen—
Macaulay. In fact, ifj is either 1 or 2, we do not need to assume & Cohen—Macaulay,
since this then holds automatically.

Proposition 2.5. If (R, m) is a noetherian local ring with residue fiekdand if S is a big
Cohen—MacaulayR-algebra such that eithefforf (S, k) or Torj (S, k) vanishes, theR
is Cohen—Macaulay.

Proof. | claim that IS N R = I, for some parameter idedl of R. By a standard
argument, it then follows that is Cohen—Macaulay (see, for instance, the argumentin [7,
Theorem 4.2]). Foij = 1, we can use Lemma 2.1 to conclude thatffé(S/IS, k)=0,

so that by the argument abovk/I — S/IS is faithfully flat. For j = 2, we reason as
follows. Let

O-M—-F—-S§S—~0
be a short exact sequence withfree. It follows that Tof(M, k) is equal to Tof(S, k),
whence is zero. Therefore, ltye same argument as befoné/I M is flat overR/I. On
the other hand, since we may chodsso that it is generated by aéregular sequence, we
get that Tof(S, R/I) =0 (indeed, the canonical morphish® S — IS is easily seen to
be injective). Hence we get an exact sequence
0O—> M/IM — F/IF — S/IS — 0

showing thatS/I S has finite flat dimension, whence is flat, silRgl is artinian. O

Is there a counterexample in which some®ii@, k) vanishes for some big Cohen—Mac-
aulay algebra and some > 2, withoutR being Cohen—Macaulay?
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3. Proofs

Recall that an excellent local ring of positive characteristic is cditedtional, if some
ideal generated by a system of parameters is tightly closedyvaakly F-regularif every
ideal is tightly closed. It is well known thdbr excellent local rings, weakly F-regular
implies splinter, and F-rathal implies Cohen—Macaulay and normal [5, Theorem 4.2]. By
[9, Theorem 3.1], an F-rational ring is pseudo-rational.

Proof of Theorem 1.2. Supposer is as in the statement of the theorem, so that in
particular Tof (R*, k) vanishes. By Theorem 2.2, the embedditg> R* is cyclically
pure. In order to show thak is weakly F-regular, it suffices to show by [5, Theorem 1.5]
that everym-primary ideal is tightly closed. Towards a contradiction, supposentiigan
m-primary ideal which is not tightly closed. Therefore, we can findia the tight closure

of n such thain :g u) = m. By Theorem 2.2, we have

(R :g+ u) =mRT. (1)

By definition, there is @ € R not contained in any minimal prime @& such thatu? € nl9],
for all powersq = p° (as usual/'9] denotes the ideal generated by it powers of
elements in an ideal). Since therefore'/?u € nR*, we get from (1) that'/? e mR*
whencec € m? R™. By cyclical purity,c € m4 for all ¢, contradiction.

In particular, R is F-rational whence pseudo-mtial, normal and Cohen—Macaulay
(in fact, R is Cohen—Macaulay, by Proposition 2.5, and normal, by the cyclic purity of
R — R™). SinceRr is normal, it follows from [3] thatR — R is pure. Let us give a direct
argument for showing thaR is a splinter. LetR C S be a finite extension. In order to show
that this is split, we may factor out a minimal prime ®fand hence assume théitis a
domain. SoR C S extends to the pure map— R* and hence is itself pure. Since a pure
map with finitely generated cokernel is split [6, Theorem 7.14], we showed that any finite
extension splits (as a module)O

Proof of Theorem 1.1. The vanishing of Tof(R*, k) implies thatR is Cohen—Mac-
aulay by Theorem 1.2. SincR™ is a balanced big Cohen—Macaulay algebra and since
R has an isolated singularity, we get from [8, Theorem IV.1] tRat> R™ is flat. As
already observed, this implies th&tis regular. If R has dimension at most 2, then by
Theorem 1.2, it is normal and therefore has an isolated singularity, so that the previous
argument applies. O

Recall that by the argument at the end of theviwus section, theanishing of a single
Torf(RJf, k) implies already thar is regular, if apart from being an isolated singularity,
we also assume tha is Cohen—Macaulay, whep > 3. In order to derive a regularity
criterion from Theorem 1.1, we need a lemma on flatness over artinian local Gorenstein
rings of embedding dimension one.

Lemma 3.1. Let (A, m) be an artinian local ring of embedding dimension one and let
M be an arbitrary A-module. TherM is A-flat if, and only if Anny, (1) = mM, wherel
denotes the socle df, that is to say/ = Anng(m).
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Proof. By assumptiom = x A, for somex € A. It follows that the socld of A is equal to
x¢~1A, wheree is the smallest integer for whictf = 0. | claim that Ann; (x¢~%) = x' M,
for all i. We will induct oni, where the casé = 1 is just our assumption. Far> 1,
let © € M be such that®~y = 0. Thereforex¢~*1u = 0, so that by our induction
hypothesis,u € x'~1M, say, u = x'~1v. Since 0= x*"Ip = x*~1v, we getv € xM
whenceu € x' M, as required.

Flatness now follows by the Local Flatness Criterion [6, Theorem 22.3]. Indeed, it
suffices to show thati/xA — M /xM is flat andxA ® M = xM. The first assertion is
immediate sinced/x A is a field. For the second assertion, observe thag A/x¢ 1A
and by what we just provedM = M/ Anny (x) = M/x¢~1M. It follows thatx A ® M is
isomorphic withx M, as required. O

Corollary 3.2. Let (R, m) be ad-dimensional excellent lot&€ohen—Macaulay domain of
positive characteristic. Suppose that there exists an iddal R generated by a regular
sequence such thai/I is a cyclic module. Suppose also thathas either an isolated
singularity or thatd < 2. If for each finite extension domaiR C S, we can find a finite
extensiorS C 7, such that

(IS:5(I:gm)S) CmT, (2)
thenR is regular.

Proof. Let (x1,...,x;) be the regular sequence generatingnd writem = I + xR. If

i <d then necessary=d — 1 andm is generated by elements, s® is regular. Hence
assume = d, that is to say/ is m-primary. It follows thatR := R/I is an artinian local
ring with maximal idealxR. Let ¢ be the smallest integer for whictf € I. Hence the
socle ofR isx¢"1R. Let RT := R*/IR™. | claim that

Anng- (xe_l) =xRT.

Assuming the claim, Lemma 3.1 yields th&t is R-flat. Therefore, ifk is the residue
field of R, then Tof(l?, k) =0. But (x1, ..., xg) is both R-regular andR™-regular, so
that Tonf(R+, k) = 0. Regularity ofR then follows from Theorem 1.1.

To prove the claim, one inclusion is clear, so assumedtaiR* is such thatx¢~1 e
IR™. Choose a finite extensiok C S C R™ containinga and such that we already have
a relationax®~! e IS. By assumption, we can find a finite extensiBrof S, such that
(IS :x°"1) Cc mT. Hencea € mT. SinceT maps toR™, we geta € mR*, and hence
a € xRT, as we wanted to show.O

The condition thatn is cyclic modulo a regular sequence is in this case equivalent with
R being Cohen—Macaulay with regularity defect at most one (recall thatethdarity
defectof R is by definition the difference between its embedding dimension and its Krull
dimension). IfR is regular, then (2) is true for any-primary ideall of R (use the fact
thatR — RT is flat).
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Proof of Theorem 1.3. Let (R, m) be as in the statement of Theorem 1.3. In particular,
R is Cohen—Macaulay by Theorem 1.2. LMtbe a finitely generate®-module such that

M /aM has finite length. Lef be the annihilator of/. By Nakayama's LemmaVf/aM
having finite length implies that + a is m-primary. We will induct on the dimension

of M. If e =0, so thatM has finite length, the vanishing of 'l:lHrRJF, M) follows from
Lemma 2.4 and a well-known inductive argument on the lengi¥ ¢éee, for instance, [8,
Corollary 11.6]). Hence assume> 0 and letH be the largest submodule of finite length
in M. The Tor long exact sequence obtained from

O-H—>M-—M/H—QO0

shows that it suffices to prove the result idy H instead ofM. Therefore, after modding
out H, me may assume thaf has positive depth. By prime avoidance and siheea is
m-primary, we can find a/-regular element € a. The short exact sequence

O->M3ZM— M/xM—0
gives rise to a long exact sequence
Tor®  (RY, M/xM) — Tor® (R™, M) & Tor®(RT, M),

for all n > 1. Since the left most module is zero by inductionegmultiplication with x
on To® (R*, M) is injective, for alln > 1. In particular, we have for eaechan embedding

Torf (RT, M) C (Torf(R*, M)), =Tor® ((R*) ., M.). (3)

Sincex € a, the localizationR, is regular. Therefor®, — (R,)™" is flat. An easy calcula-
tion shows thatR,)* = (RT), (see [4, Lemma 6.5]). In particular, Tr(R )., M,) =0,
and hence Tdr(RT, M) =0 by (3). O

If R has dimensionthree, then ]fquJf, R/p) vanishes for every > 1 and every prime
idealp of R not in the singular locus aoR, sinceRr is normal by Theorem 1.2 and hence
has height at least two. On the other hand, we have the following non-vanishing result.

Corollary 3.3. Let (R, m) be an excellent local domain of positive characteristicp If
is a prime ideal defining an irreducible component of the singular locug othen
TorR(R*, R/p) is non-zero.

Proof. Assume Tof(R+, R/p) vanishes. Hence so does fb((RJf)p, k(p)), wherek(p)
is the residue field of. Since(R™), is equal to(R,)™ by [4, Lemma 6.5] and sincg&,
has an isolated singularity, it follows from Theorem 1.1 tRgtis regular, contradicting
the choice op. O

In view of Lemma 2.4 we can generalize this even furtheR: i Cohen—Macaulay, then
each Tof (R, R/p) is non-zero fom > 1 and forp defining an irreducible component of
the singular locus oR.
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Note added in proof

I. Aberbach has recently announced a probfTheorem 1.1 without the isolated
singularities condition oIR.
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