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Abstract

Let R be an excellent local domain of positive characteristic with residue fieldk and letR+ be its
absolute integral closure. If TorR

1 (R+, k) vanishes, thenR is weakly F-regular. IfR has at most an
isolated singularity or has dimension at most two, thenR is regular.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Recall that theabsolute integral closureA+ is defined for an arbitrary domainA as
the integral closure ofA inside an algebraic closure of the field of fractions ofA. A key
property of the absolute integral closure was discovered in [4]: forR an excellent loca
domain of positive characteristic,R+ is abalanced big Cohen–Macaulay algebra, that is
to say, any system of parameters onR is anR+-regular sequence. It is well known that th
implies that an excellent local domainR of positive characteristic is regular if, and on
if, R → R+ is flat. Indeed, the direct implication follows sinceR+ is a balanced big Coh
en–Macaulay algebra of finite projective dimension (use, for instance, [8, Theorem IV.1
and the converse follows sinceR → R+ andR1/p → R+ are isomorphic whence bot
faithfully flat, implying thatR → R1/p is flat, and therefore, by Kunz’s Theorem, thatR is
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regular (hereR1/p denotes the extension ofR obtained by adding allpth roots of elemen
of R; for more details, see [5, Theorem 9.1 and Exercise 8.8]).

Huneke [5, Exercise 8.8] points out that it is not known whether the weaker con
that allBetti numbersof R+ vanish, that is to say, that all TorR

n (R+, k) vanish forn � 1,
already implies thatR is regular. It is not hard to see, using thatR+ is a big Cohen–Mac
aulay algebra, that this is equivalent with requiring that only TorR

1 (R+, k) vanishes. The
main result of this paper is then the following positive solution for isolated singulariti

Theorem 1.1. Let (R,m) be an excellent local domain of positive characteristic w
residue fieldk. SupposeR has either an isolated singularity or has dimension at m
two. If TorR1 (R+, k) = 0, thenR is regular.

For arbitrary domains, we obtain at least the following theorem.

Theorem 1.2. Let (R,m) be an excellent local domain of positive characteristic w
residue fieldk. If TorR1 (R+, k) = 0, then R is weaklyF -regular. In particular, R is
normal, Cohen–Macaulay, pseudo-rational and any finite extension ofR is split (i.e., R is
a splinter).

We have some more precise information on the vanishing of certainTor’s in terms of
the singular locus ofR.

Theorem 1.3. Let (R,m) be an excellent local domain of positive characteristic and
a be an ideal defining the singular locus ofR (e.g., a is the Jacobian ideal ofR). If
TorR1 (R+, k) = 0, wherek is the residue field ofR, thenTorRn (R+,M) = 0 for all n � 1
and all finitely generatedR-modulesM for whichM/aM has finite length.

The key observation in obtaining all these results, is that, in general, the vanish
TorR1 (S, k) implies thatR → S is cyclically pure(or ideal-pure), meaning thatIS ∩R = I ,
for all idealsI of R. This is explained in Section 2. To prove Theorem 1.1, we need a r
from [8]: if the first Betti number of a module over an isolated singularity vanishes,
the module has finite projective dimension. Now, the argument which proofs thatR → R+
is flat whenR is regular, yields the same conclusion under the weaker assumption thR+
has finite projective dimension. This proves also the two-dimensional case, since we
already thatR is normal.

Balanced big Cohen–Macaulay algebras in characteristic zero exist by the work
Hochster–Huneke, basically by a lifting procedure due to Hochster. However, the balan
big Cohen–Macaulay algebras obtained in [4]are not canonically defined. In [7], I give a
alternative but canonical constructionB(R) of a balanced big Cohen–Macaulay alge
for a C-affine local domainR using ultraproducts and the absolute integral closur
positive characteristic. It follows from the present results that if TorR

1 (B(R), k) = 0, where
k is the residue field ofR, thenR is regular providedR has an isolated singularity o
has dimension at most two (moreover,without these additional assumptions,R has at mos
rational singularities). This is the more interesting because it is not clear whether in gene
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flatness ofR → B(R) implies regularity ofR. For a further generalization to arbitra
excellent local domains, see the forthcoming [1].

2. Vanishing of Betti numbers and cyclic purity

We derive a simple criterion for a local ring homomorphism to be cyclically pure
start with an easy lemma, the proof of which is included for sake of completeness.

Lemma 2.1. LetA be a ring, a an ideal inA andM andN twoA-modules. IfaN = 0 and
TorA1 (M,N) = 0, thenTorA/a

1 (M/aM,N) = 0.

Proof. One can derive this by aid of spectral sequences, but the following argum
more direct. PutA := A/a. SinceN is anA-module, we can choose an exact sequenc
A-modules

0 → H → F → N → 0

with F a freeA-module. Tensoring with theA-moduleM := M/aM, we get an exac
sequence

0→ TorA1 (M,N) → M ⊗A H → M ⊗A F .

Since the last two modules are equal toM ⊗A H and M ⊗A F , respectively, and
since TorA1 (M,N) = 0, the last morphism in this exact sequence is injective. There

TorA1 (M,N) = 0, as required. �
Theorem 2.2. Let (R,m) be a noetherian local ring with residue fieldk and let S be
an arbitrary R-algebra. If TorR1 (S, k) = 0 and mS �= S, thenR → S is cyclically pure.
Moreover, ifn is anm-primary ideal, then

(n :R I)S = (nS :S IS) for every idealI in R.

Proof. Since TorR1 (S, k) vanishes, so does TorR/n
1 (S/nS, k) by Lemma 2.1, for every

m-primary idealn. By the Local Flatness Criterion (see [6, Theorem 22.3]) applie
the artinian local ringR/n, the base changeR/n → S/nS is flat, whence faithfully flat,
sincemS �= S. In particular, this base change is injective, showing thatnS ∩ R = n. Since
every ideal is the intersection ofm-primary ideals by Krull’s Intersection Theorem, t
assertion follows.

The final assertion follows from the flatness ofR/n → S/nS (use, for instance, [6
Theorem 7.4]). �
Remark 2.3. Note that with notation from the theorem, we have that the induced m
affine schemes SpecS → SpecR is surjective, since thefiber ringsSp/pSp are non-zero.
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The following lemma shows that for a local Cohen–Macaulay ring, the vanishin
some Betti number of a big Cohen–Macaulay algebra is equivalent with the vanish
all of its Betti numbers.

Lemma 2.4. If (R,m) is a local Cohen–Macaulay ring with residue fieldk and if S

is a big Cohen–MacaulayR-algebra, such thatTorRj (S, k) = 0 for somej � 1, then

TorRn (S, k) = 0, for all n � 1.

Proof. Letx be a maximalR-regular sequence which is alsoS-regular. PutI := xR. Since
TorRj (S, k) vanishes, so does TorR/I

j (S/IS, k) by [6, Lemma 2, p. 140], so thatS/IS has
finite flat dimension overR/I by the Local Flatness Criterion. However, since the finitis
weak dimension is at most the dimension of a ring by [2, Theorem 2.4], it follows
S/IS is flat overR/I . Therefore, 0= TorR/I

n (S/IS, k) = TorRn (S, k), for all n � 1. �
Therefore, below, we may replace everywhere the condition that TorR

1 (S, k) = 0 by
the weaker condition that some TorR

j (S, k) = 0, provided we also assume thatR is Cohen–
Macaulay. In fact, ifj is either 1 or 2, we do not need to assume thatR is Cohen–Macaulay
since this then holds automatically.

Proposition 2.5. If (R,m) is a noetherian local ring with residue fieldk and if S is a big
Cohen–MacaulayR-algebra, such that eitherTorR1 (S, k) or TorR2 (S, k) vanishes, thenR
is Cohen–Macaulay.

Proof. I claim that IS ∩ R = I , for some parameter idealI of R. By a standard
argument, it then follows thatR is Cohen–Macaulay (see, for instance, the argument i
Theorem 4.2]). Forj = 1, we can use Lemma 2.1 to conclude that TorR/I

1 (S/IS, k) = 0,
so that by the argument above,R/I → S/IS is faithfully flat. For j = 2, we reason a
follows. Let

0 → M → F → S → 0

be a short exact sequence withF free. It follows that TorR1 (M,k) is equal to TorR2 (S, k),
whence is zero. Therefore, bythe same argument as before,M/IM is flat overR/I . On
the other hand, since we may chooseI so that it is generated by anS-regular sequence, w
get that TorR1 (S,R/I) = 0 (indeed, the canonical morphismI ⊗ S → IS is easily seen to
be injective). Hence we get an exact sequence

0 → M/IM → F/IF → S/IS → 0

showing thatS/IS has finite flat dimension, whence is flat, sinceR/I is artinian. �
Is there a counterexample in which some TorR

j (S, k) vanishes for some big Cohen–Ma
aulay algebraS and somej > 2, withoutR being Cohen–Macaulay?
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3. Proofs

Recall that an excellent local ring of positive characteristic is calledF-rational, if some
ideal generated by a system of parameters is tightly closed, andweakly F-regular, if every
ideal is tightly closed. It is well known thatfor excellent local rings, weakly F-regula
implies splinter, and F-rational implies Cohen–Macaulay and normal [5, Theorem 4.2]
[9, Theorem 3.1], an F-rational ring is pseudo-rational.

Proof of Theorem 1.2. SupposeR is as in the statement of the theorem, so tha
particular TorR1 (R+, k) vanishes. By Theorem 2.2, the embeddingR → R+ is cyclically
pure. In order to show thatR is weakly F-regular, it suffices to show by [5, Theorem 1
that everym-primary ideal is tightly closed. Towards a contradiction, suppose thatn is an
m-primary ideal which is not tightly closed. Therefore, we can find au in the tight closure
of n such that(n :R u) = m. By Theorem 2.2, we have

(nR+ :R+ u) = mR+. (1)

By definition, there is ac ∈ R not contained in any minimal prime ofR such thatcuq ∈ n[q],
for all powersq = pe (as usual,I [q] denotes the ideal generated by theq th powers of
elements in an idealI ). Since thereforec1/qu ∈ nR+, we get from (1) thatc1/q ∈ mR+
whencec ∈ mqR+. By cyclical purity,c ∈ mq for all q , contradiction.

In particular,R is F-rational whence pseudo-rational, normal and Cohen–Macaul
(in fact, R is Cohen–Macaulay, by Proposition 2.5, and normal, by the cyclic purit
R → R+). SinceR is normal, it follows from [3] thatR → R+ is pure. Let us give a direc
argument for showing thatR is a splinter. LetR ⊂ S be a finite extension. In order to sho
that this is split, we may factor out a minimal prime ofS and hence assume thatS is a
domain. SoR ⊂ S extends to the pure mapR → R+ and hence is itself pure. Since a pu
map with finitely generated cokernel is split [6, Theorem 7.14], we showed that any
extension splits (as a module).�
Proof of Theorem 1.1. The vanishing of TorR1 (R+, k) implies thatR is Cohen–Mac-
aulay by Theorem 1.2. SinceR+ is a balanced big Cohen–Macaulay algebra and s
R has an isolated singularity, we get from [8, Theorem IV.1] thatR → R+ is flat. As
already observed, this implies thatR is regular. IfR has dimension at most 2, then
Theorem 1.2, it is normal and therefore has an isolated singularity, so that the pr
argument applies. �

Recall that by the argument at the end of the previous section, the vanishing of a single
TorRj (R+, k) implies already thatR is regular, if apart from being an isolated singular
we also assume thatR is Cohen–Macaulay, whenj � 3. In order to derive a regularit
criterion from Theorem 1.1, we need a lemma on flatness over artinian local Gore
rings of embedding dimension one.

Lemma 3.1. Let (A,m) be an artinian local ring of embedding dimension one and
M be an arbitraryA-module. ThenM is A-flat if, and only if, AnnM(I) = mM, whereI

denotes the socle ofA, that is to say,I = AnnA(m).
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Proof. By assumptionm = xA, for somex ∈ A. It follows that the socleI of A is equal to
xe−1A, wheree is the smallest integer for whichxe = 0. I claim that AnnM(xe−i ) = xiM,
for all i. We will induct on i, where the casei = 1 is just our assumption. Fori > 1,
let µ ∈ M be such thatxe−iµ = 0. Therefore,xe−i+1µ = 0, so that by our induction
hypothesis,µ ∈ xi−1M, say, µ = xi−1ν. Since 0= xe−iµ = xe−1ν, we getν ∈ xM

whenceµ ∈ xiM, as required.
Flatness now follows by the Local Flatness Criterion [6, Theorem 22.3]. Indee

suffices to show thatA/xA → M/xM is flat andxA ⊗ M ∼= xM. The first assertion is
immediate sinceA/xA is a field. For the second assertion, observe thatxA ∼= A/xe−1A

and by what we just provedxM ∼= M/AnnM(x) ∼= M/xe−1M. It follows thatxA ⊗ M is
isomorphic withxM, as required. �
Corollary 3.2. Let (R,m) be ad-dimensional excellent local Cohen–Macaulay domain o
positive characteristic. Suppose that there exists an idealI in R generated by a regula
sequence such thatm/I is a cyclic module. Suppose also thatR has either an isolated
singularity or thatd � 2. If for each finite extension domainR ⊂ S, we can find a finite
extensionS ⊂ T , such that

(
IS :S (I :R m)S

) ⊂ mT , (2)

thenR is regular.

Proof. Let (x1, . . . , xi) be the regular sequence generatingI and writem = I + xR. If
i < d then necessaryi = d − 1 andm is generated byd elements, soR is regular. Hence
assumei = d , that is to say,I is m-primary. It follows thatR := R/I is an artinian loca
ring with maximal idealxR. Let e be the smallest integer for whichxe ∈ I . Hence the
socle ofR is xe−1R. Let R+ := R+/IR+. I claim that

Ann
R+

(
xe−1) = xR+.

Assuming the claim, Lemma 3.1 yields thatR+ is R-flat. Therefore, ifk is the residue
field of R, then TorR1 (R+, k) = 0. But (x1, . . . , xd) is bothR-regular andR+-regular, so
that TorR1 (R+, k) = 0. Regularity ofR then follows from Theorem 1.1.

To prove the claim, one inclusion is clear, so assume thata ∈ R+ is such thataxe−1 ∈
IR+. Choose a finite extensionR ⊂ S ⊂ R+ containinga and such that we already ha
a relationaxe−1 ∈ IS. By assumption, we can find a finite extensionT of S, such that
(IS : xe−1) ⊂ mT . Hencea ∈ mT . SinceT maps toR+, we geta ∈ mR+, and hence
a ∈ xR+, as we wanted to show.�

The condition thatm is cyclic modulo a regular sequence is in this case equivalent
R being Cohen–Macaulay with regularity defect at most one (recall that theregularity
defectof R is by definition the difference between its embedding dimension and its
dimension). IfR is regular, then (2) is true for anym-primary idealI of R (use the fact
thatR → R+ is flat).
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Proof of Theorem 1.3. Let (R,m) be as in the statement of Theorem 1.3. In particu
R is Cohen–Macaulay by Theorem 1.2. LetM be a finitely generatedR-module such tha
M/aM has finite length. LetI be the annihilator ofM. By Nakayama’s Lemma,M/aM

having finite length implies thatI + a is m-primary. We will induct on the dimensione
of M. If e = 0, so thatM has finite length, the vanishing of TorR

n (R+,M) follows from
Lemma 2.4 and a well-known inductive argument on the length ofM (see, for instance, [8
Corollary II.6]). Hence assumee > 0 and letH be the largest submodule of finite leng
in M. The Tor long exact sequence obtained from

0→ H → M → M/H → 0

shows that it suffices to prove the result forM/H instead ofM. Therefore, after moddin
outH , me may assume thatM has positive depth. By prime avoidance and sinceI + a is
m-primary, we can find anM-regular elementx ∈ a. The short exact sequence

0 → M x−→ M → M/xM → 0

gives rise to a long exact sequence

TorRn+1

(
R+,M/xM

) → TorRn
(
R+,M

)
x−→ TorRn

(
R+,M

)
,

for all n � 1. Since the left most module is zero by induction one, multiplication withx

on TorRn (R+,M) is injective, for alln � 1. In particular, we have for eachn an embedding

TorRn
(
R+,M

) ⊂ (
TorRn

(
R+,M

))
x

= TorRx
n

((
R+)

x
,Mx

)
. (3)

Sincex ∈ a, the localizationRx is regular. ThereforeRx → (Rx)+ is flat. An easy calcula
tion shows that(Rx)+ = (R+)x (see [4, Lemma 6.5]). In particular, TorRx

n ((R+)x,Mx) = 0,
and hence TorRn (R+,M) = 0 by (3). �

If R has dimension three, then TorR
n (R+,R/p) vanishes for everyn � 1 and every prime

idealp of R not in the singular locus ofR, sinceR is normal by Theorem 1.2 and hencea

has height at least two. On the other hand, we have the following non-vanishing res

Corollary 3.3. Let (R,m) be an excellent local domain of positive characteristic. Ip

is a prime ideal defining an irreducible component of the singular locus ofR, then
TorR1 (R+,R/p) is non-zero.

Proof. Assume TorR1 (R+,R/p) vanishes. Hence so does Tor
Rp

1 ((R+)p, k(p)), wherek(p)

is the residue field ofp. Since(R+)p is equal to(Rp)+ by [4, Lemma 6.5] and sinceRp

has an isolated singularity, it follows from Theorem 1.1 thatRp is regular, contradicting
the choice ofp. �

In view of Lemma 2.4 we can generalize this even further: ifR is Cohen–Macaulay, the
each TorRn (R+,R/p) is non-zero forn � 1 and forp defining an irreducible component
the singular locus ofR.
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Note added in proof

I. Aberbach has recently announced a proofof Theorem 1.1 without the isolate
singularities condition onR.
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