Topology Vol. 11, pp. 335-338. Pergamon Press, 1972. Printed in Great Britain

SURGERY FORMULAS FOR SPIN MANIFOLDS

GREG DROPKIN

(Received 28 March 1972)

THE s-cobordism theorem and surgery together reduce the problem of classifying manifolds within one homotopy type X to two main calculations:

- (1) The group [X, G/H]; H = O, PL, or Top.
- (2) The surgery obstruction $s: [X, G/H] \rightarrow \mathcal{L}_{\dim X}(\pi_1 X).$

Calculation of (1) is made possible when H = PL or Top by Sullivan's analysis of the homotopy type of G/H. When H = O, the problem is a mixture of [X, G], which is hard to compute, and ker($[X, BO] \rightarrow [X, BG]$), which is determined by Adams' work "on J(X)" plus the "Adams conjecture". Calculation of (2) depends first on the \mathcal{L} groups, but even when $\pi_1 X = \{1\}$ may be unclear. However, if X is a 1-connected manifold M, there are formulas which help to calculate s, see [4, 5]. When dim M = 4r,

 $s(f) = f^*(u-1) \cap [M]_{\Delta}$

where

 $f: M \rightarrow G/\mathrm{Top}.$

 $[M]_{\Delta}$ is Sullivan's $(KO)_{(odd)}$ orientation for M; $u \in (KO)_{(odd)} G$ /Top is the unit determined by fibre homotopy trivilization.

When dim M = 4r + 2

$$s(f) = (V^2(\tau_M) \cup f^*k) \cap [M]_{H_{4r+1}}$$

where τ_M = tangent bundle, V = total Wu class and k is a universal class in $H^{4^{*+2}}(G/\text{Top}; Z_2)$. The main fact for calculating with k is that when restricted to G/O, k has components only in dimensions $2^i - 2$, see [3].

These two formulas play analogous roles in Sullivan's decomposition of G/Top. Their relation becomes closer in the very special case that M is a smooth spin manifold (still 1-conn.), r is even, and f factors through G/O. Now M is KO oriented so s_{8r} may be expressed integrally; and s_{8r+2} simplifies to $V_{4r}^2 f^*(k_2)$ which can also be expressed in KO. The formulas now fit neatly into the calculations, via Adams, of (1).

First define a bilinear form \langle , \rangle on KO (M_{spin}^n) with values in $KO_n(pt)$, by $\langle a, b \rangle = (a \otimes b) \cap [M]_{Dirac}$. Here $[M]_{Dirac}$ is the KO fundamental homology class, constructed with the $\Delta_+ - \Delta_-$ orientation of the normal bundle of M, see [2].

Next define a unit $u \in 1 + \widetilde{KO}^{\circ}G/O$ by comparing the (Dirac) orientation of the universal bundle to the orientation induced from the trivial bundle by fibre homotopy trivialization, see [1]. From u form the class $\lambda^2 u/u^2$, which has filtration 2.

Finally we need characteristic classes for M. For Spin (8r) bundles E^{8r} there are classes $\rho^k E \in KO^\circ$ (base (E)) obtained from the action of ψ^k on the (Dirac) orientation of E, see [1]. For M^{8r} , we will use $\rho^2 \tau_M$. For Spin (8r + 2) bundles there is again a class $\rho^2 E^{8r+2}$ in KO° , since the Spin (8r + 2) representation $\Delta = \prod_{i=1}^{4r+1} (Z_i^{-1/2} + Z_i^{-1/2})$ is real. However for M^{8r+2} , it is not $\rho^2 \tau_M$ we need, but rather "half of $\rho^2 \tau_M$ ". Since M is 1-connected. M - pt has formal dimension 8r so τ_M splits as $2 + E^{8r}$ there. Also, $1 + E^{8r} = F^{8r+1}$ is uniquely determined by τ_M as a Spin (8r + 1) bundle. The real spin representation Δ_{8r+1} gives $\Delta_{8r+1}(F) = \Delta_{8r}(E) = \rho^2 E$ so $\rho^2 E$ is determined on M - pt by τ_M . Since the KO sequence for $M - pt \subseteq M \to S^{8r+2}$ is split by $\cap [M]$, we can extend $\rho^2 E$ over M. Let $\frac{1}{2}\rho^2 \tau$ be any extension (there are two). $\frac{1}{2}\rho^2 \tau$ is defined modulo an element of top filtration; and on M - pt we have $2(\frac{1}{2}\rho^2 \tau) = 2\rho^2 E = \rho^2 \tau$.

Formulas.

$$s_{8r}(f) = \frac{1}{4} \langle \rho^2 \tau_M, f^* \lambda^2 u | u^2 \rangle \varepsilon Z$$

$$s_{8r+2}(f) = \langle \frac{1}{4} \rho^2 \tau_M, f^* \lambda^2 u | u^2 \rangle \varepsilon Z_2.$$

Notice that the second formula is independent of the choice of $\frac{1}{2}\rho^2 \tau$ since Filtration $f^*(\lambda^2 u/u^2) > 0$.

The fact that s_{8r+2} is a group homomorphism (Whitney sum on G/O) appears here as the mod 2 identity $[\lambda^2(uv)/(uv)^2] = \lambda^2 u/u^2 + \lambda^2 v/v^2$. The fact that s_{8r+2} vanishes for all f if M - pt has a 3-field comes from the divisibility of $\frac{1}{2}\rho^2 z$: if $\tau = 3 + D$ on M - pt then $\rho^2 E = \Delta_{8r}(E) = 2\Delta_{8r-1}(D)$ so $\frac{1}{2}\rho^2 \tau$ may be taken to be twice an extension of $\Delta_{8r-1}(D)$, e.g. this applies when M is 2-connected.

Although the formulas are so similar, I do not know a unified proof for them. For M^{8r+2} , the fact that the Wu class V is concentrated in dimensions 4j (using M spin) gives $s_{8r+2}(f) = (V_{4r}^2 \cup f^*(k_2)) \cap [M]_{8r+2}$ as on p. 255 of [6]. Or, $s_{8r+2}(f) = W_{8r} \cup f^*(k_2)$. We can reduce the KO formula to this. Returning to $\tau = 2 + E^{8r}$ on M - pt, we have $\rho^2 E = \Delta(E) = \Delta_+(E) + \Delta_-(E)$. If x_{\pm} are extensions of $\Delta_{\pm}(E)$ over M, then $x_{\pm} + x_{\pm}$ is a possible choice for $\frac{1}{2}\rho^2\tau$. Then in $KO_{8r+2}(pt) = Z_2$ we have

$$\left\langle \frac{1}{2}\rho^2\tau, f^*(\lambda^2 u/u^2) \right\rangle = \left\langle x_+ + x_-, f^*(\lambda^2 u/u^2) \right\rangle = \left\langle x_+ - x_-, f^*(\lambda^2 u/u^2) \right\rangle.$$

Now Filtration $(x_+ - x_-) \ge 8r$ since $\Delta_+ = \Delta_-$ on Spin (8r - 1) and E splits to $1 + H^{8r-1}$ over the 8r - 1 skeleton; also filtration $f^*(\lambda^2 u/u^2) \ge 2$.

LEMMA 1. Let $F^j = \ker(KO^{\circ}(M) \to KO^{\circ}(j-1 \text{ skeleton of } M))$. There is a monomorphism $F^2/F^3 \subseteq H^2(M, \mathbb{Z}_2)$ given by the Stiefel-Whitney class w_2 , and an epimorphism $H^{8r}(M, \mathbb{Z}) \to F^{8r}/F^{8r+1}$. Given $x \in F^{8r}$, $y \in F^2$ suppose $w \to x$ and $y \to z$. Then $\langle x, y \rangle$ may be computed as $(w \pmod{2}) \cup z) \cap [M]_{H_{8r+2}}$.

Proof. This is a spectral sequence argument using

- (a) M is KO oriented so all differentials into the last column are zero.
- (b) On $F^{8r} \otimes F^2$, \langle , \rangle may be identified with $F^{8r} \otimes F^2 \to F^{8r+2}$.
- (c) The pairing $KO^{-sr}(pt) \otimes KO^{-2}(pt) \rightarrow KO^{-(sr+2)}(pt)$ is the non trivial $Z \otimes Z_2 \rightarrow Z_2$.

Lemma 2.

$$w_2\left(\frac{\lambda^2 u}{u^2}\right) = k_2 \text{ on } G/O.$$

Proof. $H^2(G/O; Z_2) = Z_2$. The generator of $\pi_2 G/O = Z_2$ gives a map $S^2 \to G/O$ whose associated normal map is $\tilde{T} \stackrel{\phi}{\to} S^2$; here \tilde{T} is the torus with exotic framing. Since $f^*k_2 = s_2(f) = \operatorname{Arf}(\tilde{T}) \neq 0, k_2 \neq 0$ on G/O. Since $f^*u \cap [S^2]_{\text{Dirac}} = 1 \cap [\tilde{T}] \neq 0$, we must have $f^*u = 1 + g$ where g generates $\widetilde{KO}^\circ S^2$, so $w_2 f^* \frac{\lambda^2 u}{u^2} = w_2 g \neq 0$; i.e. $w_2 \frac{\lambda^2 u}{u^2}$ and k_2 are nonzero elements of $H^2 = Z_2$.

Returning to $\langle \frac{1}{2}\rho^2 \tau, f^*(\lambda^2 u/u^2) \rangle$ we must choose $w \to x_+ - x_-$ to apply Lemma 1. Since $M - pt \subseteq M$ induces isomorphisms of $H^{8r}(-; Z)$ and F^{8r}/F^{8r+1} we can choose w on M - pt. Here $x_+ - x_-$ is the KO Euler class, $\Delta_+ - \Delta_-$, for E, so we choose w universally to be the $H^*(-; Z)$ Euler class using $H^{8r}(M \operatorname{Spin}(8r); Z) \to F^{8r}/F^{8r+1}$ (M Spin (8r)). Thus $w \pmod{2} = w_{8r}(E) = w_{8r}(\tau)$ and Lemma 1 reads $\langle x_+ - x_-, f^*(\lambda^2 u/u^2) \rangle = w_{8r}(\tau) \cup w_2 f^*(\lambda^2 u/u^2)$. Lemma 2 then completes the reduction of $\langle \frac{1}{2}\rho^2 \tau, f^*(\lambda^2 u/u^2) \rangle$ to $w_{8r}(\tau) \cup f^*(k_2)$.

For M^{8r} , we first rewrite Hirzebruch's signature formula as Sign $M_{spin}^{8r} = \langle \rho^2 \tau, 1 \rangle$.

This may be proved, e.g. by the rational calculation $\rho^2 \tau \cap [M] = (\operatorname{ph}(\rho^2 \tau) \cup \widehat{A}(\tau)) \cap [M]_{H_{8r}}$

$$= \left(\prod_{i=1}^{4r} \left(e^{x_i/2} + e^{-x_i/2}\right) \cup \prod_{i=1}^{4r} \left(\frac{x_i}{e^{x_i/2} - e^{-x_i/2}}\right)\right) \cap [M]_{H_{\theta r}} = L(\tau) \cap [M]_{H_{\theta r}}.$$

Given $M^{8r} \to G/O$, form the associated normal map $N^{8r} \to M^{8r}$. $v(N) = \phi^*(v(M) + f^*\xi)$ where ξ is the universal "bundle with fibre homotopy trivialization". It follows that $\rho^2 \tau_N = \phi^* \left(\rho^2 \tau_M \otimes f^* \frac{\psi^2 u}{u} \right)$ and $\forall x, \phi^* x \cap [N] = (x \otimes f^*(u^{-1})) \cap [M]$. Therefore $s_{8r}(f) = \frac{1}{8} [\text{Sign } M - \text{Sign } N] = \frac{1}{8} [\langle \rho^2 \tau_M, 1 \rangle_M - \langle \rho^2 \tau_N, 1 \rangle_N]$ $= \frac{1}{8} \left\langle \rho^2 \tau_M, f^* \left(1 - \frac{\psi^2 u}{u^2} \right) \right\rangle_M = \frac{1}{4} \left\langle \rho^2 \tau_M, f^* \frac{\lambda^2 u}{u^2} \right\rangle_M$

as claimed.

The signature formula may be written in the spirit of V^2 if we localize away from 2. On $(KO^\circ)_{(odd)}$, the bilinear from \langle , \rangle is non degenerate into $(Z)_{(odd)}$; this follows from Bott periodicity as in [4]. Let $\Sigma \in (KO^\circ)_{(odd)} M$ be the Wu class characterized by $\langle \Sigma, x \rangle = \langle 1, \psi^2 x \rangle$. The Wu relation here is $\psi^2 \Sigma = \rho^2 \tau$, so we have the formula

Sign
$$M_{\rm spin}^{8r} = \langle \Sigma, \Sigma \rangle$$
.

GREG DROPKIN

REFERENCES

- 1. J. F. ADAMS: On the groups J(X): II, Topology 3 (1965), 137-171.
- 2. M. F. ATIYAH, R. BOTT and A. SHAPIRO: Clifford Modules, Topology 3 (Suppl. 1) (1964), 3-38.
- 3. G. BRUMFIEL, I. MADSEN and R. J. MILGRAM: PL characteristic classes and cobordism, Bull. Am. math. Soc. 77 (1971), 1025-1030.
- 4. D. SULLIVAN: Geometric Topology Seminar Notes.
- 5. D. SULLIVAN: Localization, Periodicity and the Galous Group. M.I.T. (1970).
- 6. C. T. C. WALL: Surgery on Compact Manifolds. Academic Press, London (1970).

Manchester University