View metadata, citation and similar papers at core.ac.uk brought to you by .. CORE

provided by Elsevier - Publisher Connector

Topology Vol. 11, pp. 335-338. Pergamon Press, 1972. Printed in Great Britain

SURGERY FORMULAS FOR SPIN MANIFOLDS

GREG DRroOPKIN
(Received 28 March 1972)

THE s-cobordism theorem and surgery together reduce the problem of classifying manifolds
within one homotopy type X to two main calculations:

(1) The group [X, G/H]; H= 0, PL, or Top.
(2) The surgery obstruction s: [X, G/H] > & yim x (1, X).

Calculation of (1) is made possible when H = PL or Top by Sullivan’s analysis of the homo-
topy type of G/H. When H = O, the problem is a mixture of [X, G}, which is hard to com-
pute, and ker([X, BO]— [X, BG)), which is determined by Adams’ work ““on J(X)" plus
the ““Adams conjecture”. Calculation of (2) depends first on the % groups, but even when
7, X = {1} may be unclear. However, if X is a l-connected manifold M, there are formulas
which help to calculate s, see [4, 5]. When dim M = 4r,

s(f) =f*wu—-1) Ml
where
fi M- G[Top.

[M], is Sullivan’s (KO)(,q4y Orientation for M ; ue (KO) 44y G/Top is the unit determined
by fibre homotopy trivilization.

When dim M =4r + 2
s(f) = (V3 (za) Uf*h) n [M]y,, .,

where 1, = tangent bundle, ¥ = total Wuclassand k is a universal class in H* *%(G/Top; Z,).
The main fact for calculating with k is that when restricted to G/O, k has components only
in dimensions 2° — 2, see [3].

These two formulas play analogous roles in Sullivan’s decomposition of G/Top. Their
relation becomes closer in the very special case that M is a smooth spin manifold (still
l-conn.), r is even, and f factors through G/O. Now M is KO oriented so s, may be expressed
integrally; and sg,,, simplifies to ¥, *(k,) which can also be expressed in KO. The
formulas now fit neatly into the calculations, via Adams, of (1).

First define a bilinear form ( , ) on KO (M7,;,) with values in KO,(pt), by {a, b) =

(@®b) N [M]p;c- Here [M]p,... is the KO fundamental homology class, constructed with
the A, — A_ orientation of the normal bundle of M, see [2].
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Next define a unit u € | + KO°G/O by comparing the (Dirac) orientation of the universal
bundle to the orientation induced from the trivial bundle by fibre homotopy trivialization,
see [1]. From u form the class A%u/u?, which has filtration 2.

Finally we need characteristic classes for M. For Spin (8r) bundles E® there are classes
p*E € KO” (base (E)) obtained from the action of * on the (Dirac) orientation of E, see [1].
For M®", we will use pty,. For Spin (87 + 2) bundles there is again a class p?E%*? in KO°,
since the Spin (8 + 2) representation A = [[%S'(ZY? + Z7Y?) is real. However for
M3 *2 it is not p*t, we need, but rather *“ half of p*t,/”. Since M is l-connected. M — pt
has formal dimension 8r so 1, splits as 2 + E®" there. Also, | + E® = F®*! is uniquely
determined by 7ty as a Spin (8¢ + 1) bundle. The real spin representation Ag,., gives
As,11(F) = Ag(E) = p*E 5o p?E is determined on M — pt by 1,,. Since the KO sequence for
M — pt o M — S¥ "2 issplit by n[M], we can extend p*E over M. Let 1p?t be any extension
(there are two). $p71 is defined modulo an element of top filtration; and on M — pr we have
2tp?t) = 20°E = p*1.

Formulas.
se ) = 2p%ty, [*APujutYeZ
Sgre2lf) = <%p27f~fs f(*izll/u2>822 .

Notice that the second formula is independent of the choice of 4p®t since Filtration
F*(A2u/u?) > 0.

The fact that s,,,, is a group homomorphism (Whitney sum on G/O) appears here as
the mod 2 identity [A(uv)/(uv)’] = A%ufu? + A*vfv*. The fact that sq,,, vanishes for all fif
M — pt has a 3-field comes from the divisibility of 4p*z: if t =3+ D on M — pr then
p*E = Ag,(E) = 2A4,_ (D) so 1p*t may be taken to be twice an extension of Ag,_,(D),
e.g. this applies when M is 2-connected.

Although the formulas are so similar, I do not know a unified proof for them. For
M8 "2 the fact that the Wu class ¥ is concentrated in dimensions 4f (using M spin) gives
Sses2(f) = (Vo2 W k) [M],.., as on p. 255 of [6]. Or, Sges2{f) = Wa, 0 [*(ky). We
can reduce the KO formula to this. Returning to 7= 2 + E® on M — pt, we have p°E =
A(E) = A (E) + A_(E). If x, are extensions of A.(E) over M, then x, + x_ is a possible
choice for $p?t. Then in KOs, 4,(pt) = Z, we have

o, fHA2uuD)y = (xo + x, AR = ey — xo, fHE ).
Now Filtration (x, — x_) = 8¢ since A, = A_ on Spin (8 — 1) and E splits to 1 + HE !

over the 8r — 1 skeleton; also filtration f*(A2uju®) = 2.

Lemsa 1. Let F/ = ker(KO°(M) — KO°(j — 1 skeleton of M)). There is a monomor-
phism F*F®  H¥M, Z,) given by the Stiefel-Whitney class w,, and an epimorphism
H¥(M, Z)—» F3[F®¥*1 Given x € F¥, y € F? suppose w— x and y — z. Then {x, y) may be
computed as (w (mod 2y U z) n [M]y, ...
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Proof. This is a spectral sequence argument using

(a) M is KO oriented so all differentials into the last column are zero.

(b) On F¥ ® F2, { , > may be identified with F® ® F? — F%*2,

(c) The pairing KO~ % (pt) ® KO~ *(pt) = KO~ ®"*I)(pt) is the non trivial Z® Z, —
Z,.

LEMMA 2.
a2

H"?(/- 2“) = kz on G/O.
u

Proof. H¥(G/O; Z,) = Z,. The generator of n, G/O = Z, gives a map S* — G/O whose
associated normal map is T% S?; here T is the torus with exotic framing. Since f*k, =
55(f) = Arf(T) #0,k, # 0 on G/O. Since f*u [S*]piac = 1 N [T]#0, we must have

22 ]
ATU ATU

f*u =1+ g where g generates KO°S?, so w, f* =w,g #0; ie. w, —- and k, are non-
u-

2
{

{
zero elements of H2 = Z, .

Returning to (dp’t, f*(A2u/u?)) we must choose w—x, — x_ to apply Lemma 1.
Since M — pt M induces isomorphisms of H*(— ; Z) and F®/F%*! we can choose w on
M — pt. Here x, — x_ is the KO Eulerclass, A, — A_, for E, so we choose w universally to
be the H*(—; Z) Euler class using H® (M Spin (8r); Z)—» F®/F®*1 (M Spin (8r)). Thus
w(mod 2) = wg(E) = wg,(t) and Lemma 1 reads <{x, —x_, f*(A%u/u?)) = wg (1) U
w, f*(#2ufu?). Lemma 2 then completes the reduction of (4p%z, f*(A%u/u?)) to wg,(t) U f*(k>).

For M®, we first rewrite Hirzebruch’s signature formula as Sign M7, = (p’z, .

This may be proved, e.g. by the rational calculation
p*t N [M] = (ph(pt) U A(v)) N [M]g,,
s 2 - bt xi
=<._1 (e¥'* + e =2y I_Il (W)) N Mg, =L(™) n Mly,. .

i i=

Given M® — G/O, form the associated normal map N %% M?-. V(N) = ¢*(v(M) +1*&)

where ¢ is the universal *‘bundle with fibre homotopy trivialization™. It follows that
2

Pty = P* (per ®f* _W_u_u) and Vx, ¢*x n [N] = (x ® f*(u"1)) n [M]. Therefore

se(f) = 3[Sign M — Sign N] = }[{p’tar, 14 — P71y, 1)y]
1/, " viu L/, AU
—§<p e f (1_7)>M—Z<p e f uZ>M

The signature formula may be written in the spirit of V2 if we localize away from 2.
On (KO®)(oaqy » the bilinear from { , ) is non degenerate into (Z)4q,; this follows from Bott
periodicity as in [4]. Let Z € (KO®)qayM be the Wu class characterized by (Z, x> =
{1, ¥*x>. The Wu relation here is 2% = p?t, so we have the formula

Sign M¥. = (X, 3.

spin

as claimed.
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