SURGERY FORMULAS FOR SPIN MANIFOLDS

Greg Dropkin

(Received 28 March 1972)

ThE s-cobordism theorem and surgery together reduce the problem of classifying manifolds within one homotopy type X to two main calculations:
(1) The group $[X, G / H] ; H=O, P L$, or Top.
(2) The surgery obstruction $s:[X, G / H] \rightarrow \mathscr{L}_{\operatorname{dim} X}\left(\pi_{1} X\right)$.

Calculation of (1) is made possible when $H=P L$ or Top by Sullivan's analysis of the homotopy type of G / H. When $H=O$, the problem is a mixture of $[X, G]$, which is hard to compute, and $\operatorname{ker}([X, B O] \rightarrow[X, B G])$, which is determined by Adams' work "on $J(X)$ " plus the "Adams conjecture". Calculation of (2) depends first on the \mathscr{L} groups, but even when $\pi_{1} X=\{1\}$ may be unclear. However, if X is a 1 -connected manifold M, there are formulas which help to calculate s, see $[4,5]$. When $\operatorname{dim} M=4 r$,

$$
s(f)=f^{*}(u-1) \cap[M]_{\Delta}
$$

where

$$
f: M \rightarrow G / \text { Top. }
$$

$[M]_{\Delta}$ is Sullivan's $(K O)_{(\text {odd })}$ orientation for $M ; u \in(K O)_{\text {(odd) }} G /$ Top is the unit determined by fibre homotopy trivilization.

When $\operatorname{dim} M=4 r+2$

$$
s(f)=\left(V^{2}\left(\tau_{M}\right) \cup f^{*} k\right) \cap[M]_{H_{4+2}}
$$

where $\tau_{M}=$ tangent bundle, $V=$ total Wu class and k is a universal class in $H^{4^{*}+2}\left(G /\right.$ Top $\left.; Z_{2}\right)$. The main fact for calculating with k is that when restricted to $G / O, k$ has components only in dimensions $2^{i}-2$, see [3].

These two formulas play analogous roles in Sullivan's decomposition of $G /$ Top. Their relation becomes closer in the very special case that M is a smooth spin manifold (still 1 -conn.), r is even, and f factors through G / O. Now M is $K O$ oriented so $s_{8 r}$ may be expressed integrally; and $s_{8 r+2}$ simplifies to $V_{4 r}{ }^{2} f^{*}\left(k_{2}\right)$ which can also be expressed in $K O$. The formulas now fit neatly into the calculations, via Adams, of (1).

First define a bilinear form \langle,$\rangle on K O\left(M_{\text {spin }}^{n}\right)$ with values in $K O_{n}(p t)$, by $\langle a, b\rangle=$ $(a \otimes b) \cap[M]_{\mathrm{Dirac}}$. Here $[M]_{\mathrm{Dirac}}$ is the $K O$ fundamental homology class, constructed with the $\Delta_{+}-\Delta_{-}$orientation of the normal bundle of M, see [2].

Next define a unit $u \in 1+\overline{K O} G O$ by comparing the (Dirac) orientation of the universal bundle to the orientation induced from the trivial bundle by fibre homotopy trivialization, see [1]. From u form the class $i^{2} u / u^{2}$, which has filtration 2 .

Finally we need characteristic classes for M. For Spin (8r) bundles $E^{8 r}$ there are classes $\rho^{k} E \in K O^{\circ}$ (base (E)) obtained from the action of ψ^{k} on the (Dirac) orientation of E, see [1]. For $M^{8 r}$, we will use $\rho^{2} \tau_{M}$. For Spin $(8 r+2)$ bundles there is again a class $\rho^{2} E^{8 r+2}$ in $K O^{\circ}$, since the Spin $(8 r+2)$ representation $\Delta=\prod_{i=1}^{4 r+1}\left(Z_{i}^{1 / 2}+Z_{i}^{-1 / 2}\right)$ is real. However for $M^{8 r+2}$, it is not $\rho^{2} \tau_{M}$ we need, but rather " half of $\rho^{2} \tau_{M}$ ". Since M is 1 -connected. $M-p t$ has formal dimension $8 r$ so τ_{M} splits as $2+E^{8 r}$ there. Also, $1+E^{8 r}=F^{8 r+1}$ is uniquely determined by τ_{M} as a Spin $(8 r+1)$ bundle. The real spin representation $\Delta_{8 r+1}$ gives $\Delta_{8 r+1}(F)=\Delta_{3 r}(E)=p^{2} E$ so $\rho^{2} E$ is determined on $M-p t$ by τ_{M}. Since the $K O$ sequence for $M-p t \subset M \rightarrow S^{8 r+2}$ is split by $\cap[M]$, we can extend $\rho^{2} E$ over M. Let $\frac{\downarrow}{2} \rho^{2} \tau$ be any extension (there are two). $\frac{1}{2} \rho^{2} \tau$ is defined modulo an element of top filtration; and on $M-p t$ we have $2\left(\frac{1}{2} p^{2} \tau\right)=2 \rho^{2} E=\rho^{2} \tau$.

Formulas.

$$
\begin{gathered}
s_{8 r}(f)=\frac{1}{f}\left\langle\rho^{2} \tau_{M}, f^{*} \lambda^{2} u / u^{2}\right\rangle \varepsilon Z \\
s_{8 r+2}(f)=\left\langle\frac{1}{2} \rho^{2} \tau_{M}, f^{*} \lambda^{2} u / u^{2}\right\rangle \varepsilon Z_{2} .
\end{gathered}
$$

Notice that the second formula is independent of the choice of $\frac{1}{2} \rho^{2} \tau$ since Filtration $f^{*}\left(\lambda^{2} u / u^{2}\right)>0$.

The fact that $s_{8 r+2}$ is a group homomorphism (Whitney sum on G / O) appears here as the mod 2 identity $\left[\lambda^{2}(u v) /(u v)^{2}\right]=\lambda^{2} u / u^{2}+\lambda^{2} v / v^{2}$. The fact that $s_{8 r+2}$ vanishes for all f if M - pt has a 3 -field comes from the divisibility of $\frac{1}{2} p^{2} z$: if $\tau=3+D$ on $M-p t$ then $\rho^{2} E=\Delta_{8 r}(E)=2 \Delta_{8 r-1}(D)$ so $\frac{1}{2} \rho^{2} \tau$ may be taken to be twice an extension of $\Delta_{8 r-1}(D)$, e.g. this applies when M is 2 -connected.

Although the formulas are so similar, I do not know a unified proof for them. For $M^{8 r+2}$, the fact that the Wu class V is concentrated in dimensions $4 j$ (using M spin) gives $s_{8 r+2}(f)=\left(V_{4 r}{ }^{2} \cup f^{*}\left(k_{2}\right)\right) \cap[M]_{8 r+2}$ as on p. 255 of $[6]$. Or, $s_{8 r+2}(f)=W_{8 r} \cup f^{*}\left(k_{2}\right)$. We can reduce the $K O$ formula to this. Returning to $\tau=2+E^{8 r}$ on $M-p t$, we have $\rho^{2} E=$ $\Delta(E)=\Delta_{+}(E)+\Delta_{-}(E)$. If $x_{ \pm}$are extensions of $\Delta_{ \pm}(E)$ over M, then $x_{+}+x_{-}$is a possible choice for $\frac{1}{2} p^{2} \tau$. Then in $K O_{8 r+2}(p t)=Z_{2}$ we have

$$
\left\langle\frac{1}{2} \rho^{2} \tau, f^{*}\left(\lambda^{2} u / u^{2}\right)\right\rangle=\left\langle x_{+}+x_{-}, f^{*}\left(\lambda^{2} u / u^{2}\right)\right\rangle=\left\langle x_{+}-x_{-}, f^{*}\left(\lambda^{2} u / u^{2}\right)\right\rangle .
$$

Now Filtration $\left(x_{+}-x_{-}\right) \geq 8 r$ since $\Delta_{+}=\Delta_{-}$on Spin $(8 r-1)$ and E splits to $1+H^{8 r-1}$ over the $8 r-1$ skeleton; also filtration $f^{*}\left(\lambda^{2} u / u^{2}\right) \geq 2$.

Lemma 1. Let $F^{j}=\operatorname{ker}\left(K O^{\circ}(M) \rightarrow K O^{\circ}(j-1\right.$ skeleton of $M)$). There is a monomorphism $F^{2} / F^{3} G H^{2}\left(M, Z_{2}\right)$ given by the Stiefel-Whitney class W_{2}, and an epimorphism $H^{8 r}(M, Z) \rightarrow F^{8 r} / F^{8 r+1}$. Given $x \in F^{8 r}, y \in F^{2}$ suppose $w \rightarrow x$ and $y \rightarrow z$. Then $\langle x, y\rangle$ may be computed as $(\mathbb{H}(\bmod 2) \cup z) \cap[M]_{\mathrm{H}_{\mathrm{\theta}+2}}$.

Proof. This is a spectral sequence argument using
(a) M is $K O$ oriented so all differentials into the last column are zero.
(b) On $F^{8 r} \otimes F^{2},\langle$,$\rangle may be identified with F^{8 r} \otimes F^{2} \rightarrow F^{8 r+2}$.
(c) The pairing $K O^{-\mathrm{sr}}(p t) \otimes K O^{-2}(p t) \rightarrow K O^{-(3 r+2)}(p t)$ is the non trivial $Z \otimes Z_{2} \rightarrow$ Z_{2}.
Lemma 2.

$$
w_{2}\left(\frac{\lambda^{2} u}{u^{2}}\right)=k_{2} \text { on } G / O .
$$

Proof. $H^{2}\left(G / O ; Z_{2}\right)=Z_{2}$. The generator of $\pi_{2} G / O=Z_{2}$ gives a map $S^{2} \rightarrow G / O$ whose associated normal map is $\widetilde{T}^{\phi} S^{2}$; here \widetilde{T} is the torus with exotic framing. Since $f^{*} k_{2}=$ $s_{2}(f)=\operatorname{Arf}(\widetilde{T}) \neq 0, k_{2} \neq 0$ on G / O. Since $f^{*} u \cap\left[S^{2}\right]_{\text {Dirac }}=1 \cap[\tilde{T}] \neq 0$, we must have $f^{*} u=1+g$ where g generates $\widetilde{K O}{ }^{\circ} S^{2}$, so $w_{2} f^{*} \frac{\lambda^{2} u}{u^{2}}=w_{2} g \neq 0$; i.e. $w_{2} \frac{\lambda^{2} u}{u^{2}}$ and k_{2} are nonzero elements of $H^{2}=Z_{2}$.

Returning to $\left\langle\frac{1}{2} \rho^{2} \tau, f^{*}\left(\lambda^{2} u / u^{2}\right)\right\rangle$ we must choose $w \rightarrow x_{+}-x_{-}$to apply Lemma 1. Since $M-p t \hookrightarrow M$ induces isomorphisms of $H^{8 r}(-; Z)$ and $F^{8 r} / F^{8 r+1}$ we can choose w on $M-p t$. Here $x_{+}-x_{-}$is the $K O$ Euler class, $\Delta_{+}-\Delta_{-}$, for E, so we choose w universally to be the $H^{*}(-; Z)$ Euler class using $H^{8 r}(M$ Spin ($8 r$); $Z) \rightarrow F^{8 r} / F^{8 r+1}$ (M Spin ($8 r$)). Thus $w(\bmod 2)=w_{B r}(E)=w_{8 r}(\tau)$ and Lemma 1 reads $\left\langle x_{+}-x_{-}, f^{*}\left(\lambda^{2} u / u^{2}\right)\right\rangle=w_{8 r}(\tau) \cup$ $w_{2} f^{*}\left(\lambda^{2} u / u^{2}\right)$. Lemma 2 then completes the reduction of $\left\langle\frac{1}{2} \rho^{2} \tau, f^{*}\left(\lambda^{2} u / u^{2}\right)\right\rangle$ to $w_{8 r}(\tau) \cup f^{*}\left(k_{2}\right)$.

For $M^{8 r}$, we first rewrite Hirzebruch's signature formula as Sign $M_{\mathrm{spin}}^{8 r}=\left\langle\rho^{2} \tau, 1\right\rangle$.
This may be proved, e.g. by the rational calculation

$$
\begin{aligned}
& \rho^{2} \tau \cap[M]=\left(\operatorname{ph}\left(\rho^{2} \tau\right) \cup \hat{A}(\tau)\right) \cap[M]_{H_{8 r}} \\
&=\left(\prod_{i=1}^{4 r}\left(e^{x_{i} / 2}+e^{-x_{i} / 2}\right) \cup \prod_{i=1}^{4 r}\left(\frac{x_{t}}{e^{x_{i} / 2}-e^{-x_{i} / 2}}\right)\right) \cap[M]_{H_{\mathrm{Br}}}=L(\tau) \cap[M]_{H_{\mathrm{B} r}}
\end{aligned}
$$

Given $M^{8 r} \rightarrow G / O$, form the associated normal map $N^{8 r} \xrightarrow{\phi} M^{8 r} . v(N)=\phi^{*}\left(v(M)+f^{*} \zeta\right)$ where ξ is the universal "bundle with fibre homotopy trivialization". It follows that $\rho^{2} \tau_{N}=\phi^{*}\left(\rho^{2} \tau_{M} \otimes f^{*} \frac{\psi^{2} u}{u}\right)$ and $\forall x, \phi^{*} x \cap[N]=\left(x \otimes f^{*}\left(u^{-1}\right)\right) \cap[M]$. Therefore $s_{8 r}(f)=\frac{1}{8}[\operatorname{Sign} M-\operatorname{Sign} N]=\frac{1}{8}\left[\left\langle\rho^{2} \tau_{M}, 1\right\rangle_{M}-\left\langle\rho^{2} \tau_{N}, 1\right\rangle_{N}\right]$ $=\frac{1}{8}\left\langle\rho^{2} \tau_{M}, f^{*}\left(1-\frac{\psi^{2} u}{u^{2}}\right)\right\rangle_{M}=\frac{1}{4}\left\langle\rho^{2} \tau_{M}, f^{*} \frac{\lambda^{2} u}{u^{2}}\right\rangle_{M}$
as claimed.
The signature formula may be written in the spirit of V^{2} if we localize away from 2. On $\left(K O^{\circ}\right)_{\text {(odd) })}$, the bilinear from \langle,$\rangle is non degenerate into (Z)_{\text {(odd) }}$; this follows from Bott periodicity as in [4]. Let $\Sigma \in\left(K O^{\circ}\right)_{\text {(odd) }} M$ be the Wu class characterized by $\langle\Sigma, x\rangle=$ $\left\langle 1, \psi^{2} x\right\rangle$. The Wu relation here is $\psi^{2} \Sigma=\rho^{2} \tau$, so we have the formula

$$
\operatorname{Sign} M_{\mathrm{spin}}^{8 r}=\langle\Sigma, \Sigma\rangle
$$

REFERENCES

1. J. F. Adams: On the groups $J(X)$: II, Topology 3 (1965), 137-171.
2. M. F. Attyah, R. Bott and A. Shapiro: Clifford Modules, Topology 3 (Suppl. 1) (1964), 3-38.
3. G. Brumfiel, I. Madsen and R. J. Milgram: PL characteristic classes and cobordism, Bull. Am. math. Soc. 77 (1971), 1025-1030.
4. D. Sullivan: Geometric Topology Seminar Notes.
5. D. Sullivan: Localization, Periodicity and the Galous Group. M.I.T. (1970).
6. C. T. C. Wall: Surgery on Compact Manifolds. Academic Press, London (1970).

Manchester University

