considered and kept in mind early and during the whole residency. This will not only be of value when applying for a job but will open a number of collaborations as well introducing the trainee in a virtuous circle which will tremendously facilitate future projects, recognition, satisfaction and professional pleasure.

International exchanges and mobility are of utmost importance. From personal initiatives directly contacting a department head abroad via email or at a meeting to local/national or scientific societies programs there are many opportunities to gain such an enriching experience. ESTRO for instance supports short terms (few weeks) educational visits called mobility grants twice a year which allow for learning a specific technique in the context of a project propose by the candidate through a motivation letter which can be an excellent way to get some connections to look for longer term mobility. Entering a PhD program is another excellent opportunity to access the kind of international exchange and mobility that together with the scientific production and publication resulting from it will serve a career when looking for a position in a high level academic center. Indeed, having an international professional experience and a strong scientific background will be highly considered when applying for a job offer in a university hospital or a cancer center. This will even be almost mandatory when aiming at a research/teaching position.

Mentorship can be very helpful throughout a career. Benefiting from privileged dialogue, support and guidance from a more experienced person in the field considered as a mentor can enhance the effectiveness of any talent, help avoiding painful mistakes and optimizing choices that will have a major career impact and sometimes even an impact on the balance between professional and personal life which is often a fragile point in a demanding profession. Many countries across Europe are lacking of mentorship programs but in many institutions even without a dedicated program various types of mentoring are in place. Most of more experienced people are happy to share their experience and give some advices so one should not hesitate to ask for this helpful interaction. With or without a mentor here are key questions that are essential to guide one’s choices:

Who am I?
Where do I want to go?
What type of professional activity will I enjoy?
Which life will make me happy?

To conclude, the best advice would be to always wonder how to get the most out of one’s training period. In that aspect, ESTRO offers young professionals in the field of radiation oncology a wealth of opportunities from networking, grants, educational courses, fellowships, mentorships and workshops aiming at refining skills and gaining access to the latest developments in the field that will be of value finishing your residency not only with a job offer but with the job you want.

SP-0288
How to finish your residency / PhD project with a job offer as a radiobiologist
M.C. Vezin
Centre Hospitalier Universitaire Vaudois, Department of Radiation Oncology, Lausanne, Switzerland

PhD training/residency is a long-term and enriching experience, it requires time and commitment for scientific achievement; in addition, the future of a young scientist needs to be planned ahead. Therefore, having a clear view of your career’s perspectives at least 18 months before your defense is the way to professional success. Early during your training discuss your career aspirations and important issues in your professional development with your mentor; he/she will be able to provide you with career information and guidance. But ultimately you will be the one to define if you are seeking for an academic career, job in the industry or other professional options. In any case your mentor will introduce you to colleagues, potential employers, and other professionals who might help to advance your career. You also need to be highly proactive and present your research and creative work as often as possible in multiple forums including your department/university but also at professional conferences/meeting. You will need to apply for fellowships, awards, teaching opportunities and service committees in the scientific community. The aim is to create a strong network that will serve as the base for your job research and will provide you with multiple opportunities.

SP-0289
How to finish your residency / PhD project with a job offer as a physicist
D. Verellen
Université Ziekenhuis, Radiotherapy, Brussels, Belgium

SP-0290
How to finish your residency / PhD project with a job offer as a researcher
U. Gelfke
Institute of Cancer Research, Department of Radiation Oncology, United Kingdom

Symposium with Proffered Papers: Standardisation in clinical practice

SP-0291
Guideline-based contouring and clinical audit systems
C. Welten
University Hospital Leuven- KU Leuven, Radiotherapy- Oncology, Leuven, Belgium

Modern radiotherapy techniques focus on the precise irradiation of the target volume while minimizing the dose to adjacent normal tissues. Technical advances at all levels of the complex radiotherapy preparation and delivery process allowed reductions of safety margins and conformation of the high dose volume to the target volume. The introduction of these technical innovations has been supported by extended quality assurance procedures. A small part of the radiotherapy preparation process however has for a long time remained unaddressed: the quality of the delineation is still a weak link in the radiotherapy chain. Accurate, unambiguous and precise target delineation is mandatory in high conformal radiotherapy, since the treatment plan and subsequently treatment delivery are based on the delineated target volumes. Errors in target delineation will on the one hand lead to systematic errors in treatment delivery and possibly to geographical misses in clinical practice. The projected outcome will be undermined both with respect to the chances of tumor control and the risks of side effects. On the other hand, inconsistencies in target volume contouring comprise the validity of the results of clinical trials. To improve the quality of the delineations, guidelines were made for nearly all tumor sites as well as for the normal tissues. Notwithstanding these published guidelines, important inter- and intra-observer variation in target delineation have been demonstrated. Several solutions have been proposed to improve the quality of target delineation: (1) for nearly all tumor sites delineation guidelines with complementary atlases have been published, (2) the registration of CT scans in treatment position with a combination of different imaging modalities has been tested and introduced, (3) automated and semi-automated delineation software has been developed, and (4) education through hands-on workshops at radiotherapy meetings and online tutoring sessions (e.g. FALCON) is available. Studies also show that peer review can improve delineation quality. The quality of target delineation was measured in Belgium through clinical audits for rectal and breast cancer patients. We have evaluated the role of a central review platform in improving uniformity of clinical target volume delineations within a national Belgian project. All 25 Belgian radiation oncology departments were invited to participate in this QA project. CTV delineation guidelines and atlases were discussed and distributed at a national meeting. After this education of the radiation oncologists, a review process was set up. Departments were asked to delineate the clinical target volumes and to upload it to a secured server.