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Abstract

Answering a question of Adrian Bondy (Per. Comm.), we prove that every strong digraph

has a spanning strong subgraph with at most n þ 2a� 2 arcs, where a is the size of a maximum

stable set of D: Such a spanning subgraph can be found in polynomial time. An infinite family

of oriented graphs for which this bound is sharp was given by Odile Favaron (Discrete Math.

146 (1995) 289). A direct corollary of our result is that there exists 2a� 1 directed cycles which

span D: Tibor Gallai (Theory of Graphs and its Applications, Czech. Acad. Sci. Prague, 1964,

p. 161) conjectured that a directed cycles would be enough.

r 2002 Elsevier Science (USA). All rights reserved.

1. Introduction and known results

In this paper, cycles of length two are allowed. Since loops and multiple arcs play
no role in this topic, we will simply assume that our digraphs are loopless and
simple—when performing a contraction, we will implicitly delete the cycles of length
one and reduce the multiple arcs to simple one. Let D ¼ ðV ;EÞ be a strong digraph.
We are mainly concerned in this paper by the following problem: What is the
minimum number of arcs of a strong spanning subgraph of D? This classical
problem is known as the MSSS-problem, see for instance [1] for a survey on this
topic, see [6,8] for its relationship with connectivity and [7,11] for some
approximation algorithm. Let us say that a strong digraph D ¼ ðV ;EÞ is a k-handle

if k ¼ jEj � jV j þ 1 (a 0-handle is simply a single vertex). We want to find the
minimum k; for which there exists a k-handle which is a spanning subgraph of D:We
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introduce now the key-definitions in this topic: a handle is a directed path H :¼
x1;y; xl in which we allow x1 ¼ xl : We denote the restriction of H to

fxi; xiþ1;y; xjg by H½xi; xj
; and H
3

:¼ HWfx1; xlg: The vertex x1 is the head of H

and xl is the tail of H: If A and B are subgraphs of D; an ðA;BÞ-handle of D is a
handle with its head in VðAÞ; its tail in VðBÞ and its internal vertices and arcs disjoint
from A,B: We simply write ðAÞ-handle instead of ðA;AÞ-handle. A handle basis of
D (or ear decomposition, see [1]) is a sequence H0;H1;y;Hk of handles of D such
that H0 is a single vertex, Hi is a ð,fHj: joigÞ-handle for all i ¼ 1;y; k and

D ¼ ,fHi: i ¼ 0;y; kg: Clearly, a digraph has a handle basis H0;y;Hk if and
only if D is a k-handle. Moreover, if D0 is a minimum strong spanning subgraph of
D; every Hi in any handle basis of D0 has at least 2 arcs. It follows directly that D is
spanned by a k-handle with kpn � 1: Our goal in this paper is to prove the following
theorem, where aðDÞ is the number of vertices of a maximum stable set of D; called
the stability of D:

Theorem 1. Every strong digraph D is spanned by a k-handle, with kp2aðDÞ � 1:

To motivate this result, we invite the reader to check that the bound is sharp when
D is chosen in the following family of examples due to O. Favaron and drawn for the
illustrative case a ¼ 4:

Theorem 1 is one of the corollary of the following conjecture of Chen and
Manalastas, which is explicitly stated in [1,3].

Conjecture 1. Every strong digraph with stability a is spanned by the disjoint union of

some ki-handles, where ki40 for all i and the sum of the ki being at most a:

To see that Conjecture 1 implies Theorem 1, observe that such a disjoint union has
exactly n þ k � c arcs where c is the number of components and k is the sum of the
ki: Consequently, making this disjoint union strong requires at most 2c � 2 new arcs,
and thus D is spanned by a strong digraph with at most n þ k þ c � 2pn þ 2a� 2
arcs, since aXc: Conjecture 1 also implies the following result [9], once conjectured
by Las-Vergnas:

Theorem 2. Every strong digraph with stability a41 is spanned by the disjoint union of

a� 1 paths.

S. Bessy, S. Thomassé / Journal of Combinatorial Theory, Series B 87 (2003) 289–299290



But the real motivation of Conjecture 1 is to prove the following long-standing
conjecture of Gallai [5]: every strong digraph is spanned by the union of a cycles. For
all these reasons, Conjecture 1 seems to be the very challenge of this topic. It is
verified for a ¼ 1; this is the well-known result of Camion: every strong tournament

has a hamilton cycle. The case a ¼ 2 is the following theorem of Chen and
Manalastas [4]: Every strong digraph with stability 2 is spanned by two cycles,
intersecting one another on a (possibly empty) path. The case a ¼ 3 can be found in
[10]. The link between the MSSS-problem and the stability number is the classical
Gallai–Milgram’s theorem: every digraph D is spanned by the disjoint union of

aðDÞ directed paths. It suggests that the involved number of handles in a handle
basis should be related to a: In [3], Bondy proposed the following refinement of
Gallai–Milgram’s theorem. The proof is by induction on k; and can also be
found in [1,2].

Theorem 3. Let D be a digraph and fPi: 1pipkg be a spanning set of disjoint directed

paths of D. If k4aðDÞ; there exists a spanning set of disjoint paths fP0
i: 1pipk � 1g

of D such that every head (resp. tail) of a P0
i is the head (resp. the tail) of a Pj:

This theorem provides the key-operation of this paper—the main snag being that
strong connectivity is certainly not preserved under such a path exchange. The
difficult part of the proof is to find some structures (the so-called tree-handle
systems) on which we can perform Theorem 3.

2. Completion

An out-arborescence is an oriented tree in which every vertex has indegree at most
1. The one vertex with indegree 0 is called the root. The vertices with outdegree 0 are
the leaves. The dual definitions hold for in-arborescence. A bi-arborescence A is a tree
obtained by identifying the root of an in-arborescence A� and the root of an out-
arborescence Aþ: The vertices of A� (resp. Aþ) are the in-vertices (resp. the out-

vertices) of A: The vertices of A with indegree 0 (resp. outdegree 0) are the in-leaves

(resp. the out-leaves) of A: The common root is both an in-vertex and an out-vertex
of A; we call it the centre of A: Observe that the centre of A can also be a leaf of A;
when A� or Aþ is a single vertex. The vertices of A which are not leaves are the
internal vertices of A: A bi-arborescence is plain if it has at least two in-leaves and
two out-leaves. Let D ¼ ðV ;EÞ be a strong digraph and S a subset of V : We denote
by D½S
 the induced restriction of D on S: If A and B are two nonempty subsets of V ;
an ðA;BÞ-completion is a set fA1;y;Arg of bi-arborescences such that:

(i) Every Ai is a subgraph of D:
(ii) The internal vertices of Ai do not belong to A,B:
(iii) For all iaj;VðAiÞ-VðAjÞDA,B:

(iv) In the graph D½A,B
,A1,?,Ar (called completed graph), every vertex aAA

is the head of an ða;BÞ-path and every vertex bAB is the tail of an ðA; bÞ-path.
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An ðA;BÞ-completion C is minimum if
Pr

1 jVðAiÞj is minimum. Observe that if C is

minimum, every leaf f of Ai belongs to A,B: Indeed, if feA,B; the vertex f only
belongs to one bi-arborescence Ai and thus ðCWfAigÞ,fAiWf g is still a
completion, a contradiction to the minimality of C: It follows from this observation
that every vertex veA,B in the completed graph of a minimum ðA;BÞ-completion is
the head of a ðv;BÞ-path and the tail of an ðA; vÞ-path: indeed the vertex v is certainly
in a unique bi-arborescence Ai; therefore there exists a path from v to an out-leaf l of
T : If lAB we are done, and if lAA; by (iv), there is a path from l to B in the
completed graph. Similarly, an ðA; vÞ-path exists.

Lemma 1. Let C be a minimum ðA;BÞ-completion of a strong digraph D ¼ ðV ;EÞ: If a

bi-arborescence T of C has more than one out-leaf, all the out-leaves of T belong to

BWA: Similarly, if T has more than one in-leaf, all the in-leaves of T belong to AWB:

Proof. Suppose that T has one out-leaf fAA and another out-leaf gAB:We consider
C0 ¼ ðCWfTgÞ,fTWf g: Since TWf has an out-leaf in B; the completed graph of
C0 still satisfies the first part of (iv). Also, since f belongs to A; deleting f from T

does not affect the second part of (iv). Now we suppose that all the out-leaves of T

belong to AWB: In the completed graph, consider a path P from the centre c of T to
a vertex b of B: We call f the last out-leaf of T on the path P: We claim that
C0 ¼ ðCWfTgÞ,fT 0g; where T 0 :¼ T�,T ½c; f 
; is an ðA;BÞ-completion. Indeed, in
the completed graph of C0; every in-leaf of T 0 is still the head of a path with tail in B:
The second part of (iv) is still satisfied since we deleted out-leaves of T which belong
to A: We again contradicts the minimality of C; therefore the leaves of T form a
subset of BWA: The proof for the in-leaves follows by directional duality. &

Lemma 2. If D ¼ ðV ;EÞ is a strong digraph and A;B are two nonempty subsets of

V ;D admits an ðA;BÞ-completion.

Proof. We proceed by induction on jAj: If A ¼ fag; there exists a spanning out-
arborescence T rooted at a: Now we consider the set of sub-arborescences Ai of T

which have no internal vertices in A,B and are maximal with respect to inclusion
for this property. This set is clearly an ðA;BÞ-completion since it satisfies (i)–(iii) by
construction, and its completed graph contains T as a subgraph, therefore it satisfies
(iv). Now, we suppose that jAj41; and, for some aAA; we apply the induction
hypothesis in order to find an ðAWfag;BÞ-completion fA1;y;Ang: We assume,
without loss of generality, that this completion is minimum and denote its completed
graph by Dc: If the vertex a is a vertex of Dc; we are done since every vertex x of Dc is
the head of an ðx;BÞ-path. Otherwise, we consider a shortest directed ða;DcÞ-path P

in D: We denote by t the tail of P: If tAA,B; the set fA1;y;An;Pg is an ðA;BÞ-
completion. If t is an in-vertex of Ai; the set fA1;y;Ai�1;Ai,P;Aiþ1;y;Ang is an
ðA;BÞ-completion. If t is an out-vertex of Ai and Ai,P is a bi-arborescence (with
new centre t; this can only happen when Ai is the union of an in-arborescence and a
path which contains t as an internal vertex), fA1;y;Ai�1;Ai,P;Aiþ1;y;Ang is an
ðA;BÞ-completion. If t is an out-vertex of Ai and Ai,P is not a bi-arborescence, Ai
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has more than one out-leaf, and thus, by Lemma 1 all its out-leaves belong to B: We
denote by ðAiÞt the sub-out-arborescence of Ai with root t; and by A0

i the bi-

arborescence AiWðAiÞt: Finally, fA1;y;Ai�1;A0
i; ðAiÞt,P;Aiþ1;y;Ang is an

ðA;BÞ-completion. &

3. Spanning a neighbourhood

In this part, we show that, given a vertex w of a strong digraph D; there exists a k-
handle which spans w and the neighbours of w; where k is at most the stability of the
neighbourhood of w: This result is the core of our proof, we introduce for this the

notion of tree-handle system. Given a vertex v in a digraph D; we denote by Nþ
D ðvÞ

the set of out-neighbours of v in D; and by N�
D ðvÞ the set of in-neighbours of v in D:

We write also the dþ
D ðvÞ :¼ jNþ

D ðvÞj and d�
D ðvÞ :¼ jN�

D ðvÞj:

Theorem 4. If D ¼ ðV ;EÞ is a strong digraph and w is a vertex of D, the set

fwg,Nþ
D ðwÞ,N�

D ðwÞ is contained in a p-handle D0; where D0 is a subgraph of D and

ppaðD½fwg,Nþ
D ðwÞ,N�

D ðwÞ
Þ:

Proof. We will simply denote Nþ
D ðwÞ by wþ; N�

D ðwÞ by w� and aðD½fwg,wþ,w�
Þ
by a: We proceed by induction on E: To simplify a bit, we first treat the case

wþ-w�a|: Assume for this that a vertex v belongs to wþ-w�; and that strong
connectivity is lost when the arc vw or the arc wv is deleted (otherwise we simply
remove the arc—the stability is unchanged). In this case, D consists of the union of
two strong digraphs D1 and D2; such that wAD1 and vAD2 and the unique arcs
between D1 and D2 are vw and wv: By the induction hypothesis,

fwg,Nþ
D1
ðwÞ,N�

D1
ðwÞ is spanned by at most an ða� 1Þ-handle, to which we add

the handle wvw:
From now on, we suppose that wþ and w� are disjoint sets. Let C :¼ fB1;y;Brg

be a minimum ðwþ,fwg;w�,fwgÞ-completion. Observe that the completed graph
is strong, therefore, we may suppose that the completed graph is exactly D; otherwise
we apply the induction hypothesis. If one of the Bi is an out-arborescence, say with

root r and set of leaves L: We construct a digraph Dn by removing from D the
internal vertices of Bi and adding the set S consisting of all ðr;LÞ-arcs. Observe that
Bi has at least one internal vertex, otherwise fB1;y;BrgWfBig would be a

ðwþ,fwg;w�,fwgÞ-completion since the leaves of Bi belong to fwg,wþ,w�:
Thus, we can apply the induction hypothesis to Dn and span fwg,wþ,w� by a k-

handle H; where kpaðDn½fwg,wþ,w�
Þpa: Since H is strong and C is minimum,
the set of arcs S is included in the arc set of H; thus H 0 :¼ ðHWSÞ,Bi is a k-handle
and satisfies the conclusion of Theorem 4. We can now assume that every Bi is a
plain bi-arborescence. If for some i; Bi has at least two internal vertices, we can

consider instead of D the digraph Dn in which all the internal vertices of Bi are

contracted to a single vertex. Again, we apply the induction hypothesis to Dn to
conclude. From now on, we assume that every Bi is plain and has a single internal
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vertex bi: From Lemma 1, it follows that the out-leaves of Bi belong to w� and the

in-leaves of Bi belong to wþ:
We introduce the notion of tree-handle system of D: We define it as a set

TH ¼ fW ;A1;A2;y;AkjP1;P2;y;Plg;

where W and Ai; 1pipk; are some bi-arborescences whose centres are, respectively,
w and ai; and Pj; 1pjpl; are some handles (possibly arcs) with the additional

conditions:

(i) The sets VðWÞ;VðA1Þ;y;VðAkÞ; VðP1

3

Þ;y;VðPl

3

Þ are pairwise disjoint.

(ii) The digraph
S
fW ;A1;A2;y;Ak;P1;P2;y;Plg is a spanning subgraph of D:

We call it the realization of TH; and we denote it by R:
(iii) The head (resp. the tail) of Pj; 1pjpl; is an out-vertex (resp. an in-vertex) of an

Ai or W :
(iv) Every vertex x of D; except possibly w; verifies dþ

R ðxÞX1 and d�
R ðxÞX1:

(v) For all i; 1pipk; the out-neighbours (resp. the in-neighbours) of ai in R are in-
neighbours (resp. out-neighbours) of w in D:

We call l and k the handle index and the tree index of TH; respectively. Observe

that in R; every vertex x different from w is the tail of an ðwþ; xÞ-path and the head
of an ðx;w�Þ-path. Thus, by the minimality of the completion C; every arc of
Bi; 1pipr; must be an arc of R: In particular, every centre of Bi is also the centre of
an Aj:We will call special such a bi-arborescence Aj (to say it differently, Aj is special

if its centre does not belong to fwg,wþ,w�; and, conversely, if a vertex is not in

fwg,wþ,w�; it is the centre of a special bi-arborescence). Keep in mind that a
special bi-arborescence is necessarily plain. Let us prove now that D admits a tree-
handle system:

An out-fork is an out-arborescence with height exactly 1 (i.e. consists of one root
and a non-empty set of leaves), an in-fork is defined analogously. We denote by X

the subset of vertices of wþ which have an out-neighbour in w� and by Y the subset

of vertices of w� which have an in-neighbour in wþ: In particular, every vertex of X

has an out-neighbour in Y ; and every vertex of Y has an in-neighbour in X : It is
routine to check that X,Y is spanned by a disjoint union of out-forks with root in
X and leaves in Y and in-forks with root in Y and leaves in X : We denote by F this
union of forks. Since D is strong, for every vertex yAw�; there exists an ðu; yÞ-path in
D½w�
 with uAY or u is an out-leaf of some Bi: Equivalently, there exists a disjoint
union O of out-arborescences with set of roots Y,fbi: i ¼ 1;y; rg and set of
vertices w�,fbi: i ¼ 1;y; rg: By a similar argument, there exists a disjoint union I

of in-arborescences with set of roots X,fbi: i ¼ 1;y; rg and set of vertices

wþ,fbi: i ¼ 1;y; rg: Now F,O,I is a disjoint union of bi-arborescences whose
centres are the roots of the forks of F and the fbi: i ¼ 1;y; rg: We denote by
A1;y;Ak the subset of these bi-arborescences whose centre is not a leaf. We denote
by A0

1;y;A0
p the bi-arborescences whose centre is a leaf. Every in-leaf of Ai or A0

j is
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in wþ; and every out-leaf of Ai or A0
j is in w�: We denote by IL the set of wl

arcs where l is an in-leaf of Ai and by OL the set of lw arcs where l is an out-leaf
of Ai; for all i ¼ 1;y; k: We also denote by IL0 the set of wl arcs where l is an in-leaf
but not the centre of A0

j and by OL0 the set of lw arcs where l is an out-leaf but not

the centre of A0
j; for all j ¼ 1;y; p: Finally, we denote by CI the set of wl arcs

where l is an in-leaf and the centre of A0
j and CO the set of lw arcs where l is an

out-leaf and the centre of A0
j : Observe that W :¼ fwg,A0

1,?,A0
p,CI,CO is a

bi-arborescence with centre w: We have the tree-handle system TH ¼
fW ;A1;y;AkjIL,OL,IL0,OL0g; all the handles of which are arcs.

Our next goal is to prove that there exists a tree-handle system with handle
index at most a: We consider for this a tree-handle system TH ¼
fW ;A1;A2;y;AkjP1;P2;y;Plg which satisfies the following conditions:

(a) l is minimum.
(b) Subject to (a), k is minimum.
(c) Subject to (a) and (b), jVðP1Þj þ jVðP2Þj þ?þ jVðPlÞj is maximum.

Let us prove that TH is complete, that is, it verifies the property:

(vi) Except in the case x ¼ w; every out-leaf x of Ai or W satisfies dþ
R ðxÞX2 and

every in-leaf x of Ai or W satisfies d�
R ðxÞX2: In other words, x is the head or the tail

of at least two handles of TH:
Consider for this an out-leaf x of a bi-arborescence of TH and assume that x is the

head of a unique handle P of TH: Without loss of generality, we can suppose that
P ¼ P1: We consider several cases:

1. Assume that x belongs to the bi-arborescence W : If x ¼ w; condition (vi)
holds vacuously. If xaw; x has an in-neighbour x0 in W which is an out-vertex of
W : In this case, we extend P with x0; i.e. we consider TH 0 ¼
fWWfxg;A1;A2;y;Akjx0x,P1;P2;y;Plg: Note that the realization of TH

is exactly
S

TH 0; thus TH 0 is still a tree-handle system. However, the total length
of the handles of TH 0 has increased, a contradiction to condition (c).

2. Now, assume that x belongs to a bi-arborescence Ai for some i; say A1: If xaa1;
we conclude as previously in the case xaw: If x ¼ a1; we denote by t the tail of
P1:
� The simplest case arises when t does not belong to A1; say tAA2: Note

that the bi-arborescence A1 has no out-vertex except a1 and that a1

is the head of the unique handle P1: Consider TH 0 ¼
fW ;A1,P1,A2;A3;y;AkjP2;y;Plg and observe that TH and TH 0

have the same realization which implies, as previously, that TH 0 is a tree-
handle system. However, the handle index has strictly decreased and this
contradicts condition (a). The same argument holds if tAAi; 3pipk or if
tAW :

� Suppose now that t belongs to A1; in particular t is an in-vertex of A1: Again,
we modify TH in order to find a contradiction. There exists a path Q from t
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to a1 in A1: The union Q,P1 forms a cycle C in R which contains a1:
Note that, by property (v) in the definition of tree-handle systems, the in-

neighbour and the out-neighbour of a1 in C; respectively, belong to wþ and to

w�: Since wþ-w� ¼ |; it follows that C has at least three vertices, all of these
apart possibly a1 being neighbours of w: Indeed, the vertices of

DWðfwg,wþ,w�Þ are the centres of special bi-arborescences, so

CWfa1gDw�,wþ: Thus, we can exhibit two vertices y and z in CWfa1g
such that yz is an arc of C; yAw� and zAwþ: To conclude, observe
that A ¼ ðA1,P1,ywÞWyz is an in-arborescence rooted at w and that wz

forms a handle from W to A: Now, we consider TH 0 ¼
fW,A;A2;y;Akjwz;P2;y;Pkg and check that TH 0 is a tree-handle
system. Conditions (i) and (ii) clearly hold. The unique added handle
is the arc wz; since w is an out-vertex of W,A and z is an in-vertex
of W,A; property (iii) is satisfied. To check property (iv), observe
that z is the unique leaf possibly created by our modifications, and
in this case z is an in-leaf of W,A and the tail of the handle wz:
Finally, we have not created new arborescence, which implies that
property (v) still holds. Consequently, TH 0 is a tree-handle system with the
same handle index than TH but with lower tree index, a contradiction to
condition (b).

We proceed similarly if x is an in-leaf of a bi-arborescence. Since all these
cases give a contradiction, TH ¼ fW ;A1;A2;y;AkjP1;P2;y;Plg is a
complete tree-handle system. Now we want to achieve our bound, that is we
want to prove that l; the handle index of TH; is at most a: First observe that if one of
the handles Pj is an arc, we can simply remove it from TH and still have a

tree-handle system: the reason for this is simply that removing Pj cannot harm

condition (iv) in the definition of tree-handle system since TH is complete. By
minimality of l; all the handles have length at least 2. Suppose for contradiction

that l4a: Since P is a subset of wþ,w�; its stability is at most a; therefore we can

apply Theorem 3 to the set of disjoint paths P :¼ fP1

3

;P2

3

;y;Pl

3

g; in order to get a

set of disjoint paths P0 :¼ fP0
1;P0

2;y;P0
l�1g: Since the head of P0

i is the head of some

Pa

3

and the tail of P0
i is the tail of some Pb

3

; the path P0
i extends naturally to a handle

Hi :¼ hP0
it where h is the head of Pa and t is the tail of Pb: Let us show that

TH 0 :¼ fW ;A1;A2;y;AkjH1;H2;y;Hl�1g is a tree-handle system. Conditions (i)

and (ii) are still satisfied. Since the sets of heads and tails of P0 are subsets of
the sets of heads and tails of P; condition (iii) holds for TH 0: Since TH is
complete and exactly one head and one tail of P are lost, the condition (iv) holds.
Finally, no new out or in-neighbours of any ai is created in TH 0; so condition (v) still
holds. Thus TH 0 has handle index l � 1; a contradiction to condition (a).
Consequently, the handle index l of TH is at most a: Our last step is to span D

with an l-handle. By minimality, we recall that every handle of TH is non trivial (i.e.
has length at least 2).
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Consider for this a subgraph D0 of D with vertex set V 0 and arc set E0; which is
maximal with respect to jV 0j and verifies the following conditions:

(I) For some pAf0;y; lg;D0 is a p-handle and contains the vertices of at least p

handles of TH:
(II) For all j ¼ 1;y; l either VðPj

3

Þ-V 0 ¼ | or VðPjÞDV 0:

(III) For all i ¼ 1;y; k; either VðAiÞ-V 0 ¼ | or D0½VðAiÞ-V 0
 is a sub-bi-
arborescence of Ai which contains ai: Morever D0½VðWÞ-V 0
 is a sub-bi-
arborescence of W which contains w:

Since the singleton digraph fwg satisfies (I)–(III), such a D0 exists. We prove that
D0 necessarily spans D; and thus achieve our goal:

* Let us assume that there exists a ðV 0Þ-handle H in R which is not an arc. We
denote its head by h and its tail by t: By condition (III), H is not contained in a bi-
arborescence Ai or W : Therefore H contains an internal vertex of some handle P

of TH: By condition (II), it follows that P is contained in H: Thus, D0,H

contains at least one handle of TH which is not in D0; in particular D0,H satisfies

condition (I). If H
3

contains an internal vertex v of some handle Pv; the whole

handle Pv is contained in D0,H; so condition (II) is also satisfied. To check that

condition (III) is still satisfied, suppose that H
3

contains a vertex of some bi-

arborescence Ai which is disjoint from D0: Denote by a the first vertex of H
3

-Ai

along H and by b the last one. Since H is included in R; a is an in-vertex of Ai; b

is an out-vertex of Ai; and H½a; b
 is included in Ai; and thus forms a sub-bi-

arborescence which contains ai: Now if H
3

contains a vertex v of some bi-

arborescence Ai (resp. W ) which meets D0; assume without loss of generality that
v is an in-vertex of Ai (resp. W ). Since H is included in R and aiAD0 (resp. wAD0),
the path H½v; t
 is included in the set of in-vertices of Ai (resp. W ). In both of these
two cases, D0,H satisfies condition (III).

* If there is no ðV 0Þ-handle in R and VaV 0; since both the in and the out-degree in
R of any vertex different from w are greater than one, R contains a cycle C

which is disjoint from D0: The cycle C contains the centre ai of a bi-arborescence
Ai of TH: Let us denote by aj the next centre of an Aj on C; that is, no

internal vertex of C½ai; aj 
 is the centre of some bi-arborescence of TH: If ai is

the unique centre which is contained in C; we simply choose aj :¼ ai: Since

C½ai; aj
 contains a handle of TH; it has length at least two. By property (v)

of a tree-handle system, the out-neighbour aþ
i of ai in C belongs to w�; and the

in-neighbour a�
j of aj in C belongs to wþ: Since wþ and w� are disjoint sets,

aþ
i aa�

j : In particular, we can find in C½aþ
i ; a�

j 
 two consecutive vertices x and y

such that xAw� and yAwþ: The subgraph D0,wy,C½y; x
,xw of D contains at
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least one handle of TH which is not in D0 (indeed C½ai; aj
 contains exactly one

handle of TH), in particular it satisfies condition (I). Conditions (II) and (III) are
also easily verified.

So, V ¼ V 0 and hence, D0 is a p-handle which spans D; with pplpa: &

4. The main theorem. The algorithmic aspect

Finally, we prove Theorem 1, which is an easy corollary of the previous result.

Proof of Theorem 1. Let us fix a vertex w0 of D: According to Theorem 4, we can

cover fw0g,Nþ
D ðw0Þ,N�

D ðw0Þ by a k1-handle H1 with k1paðD½Nþ
D ðw0Þ,N�

D ðw0Þ
Þ:
We contract this k1-handle to form a digraph D1 and call w1 the contracted vertex.

We again apply Theorem 4, and cover fw1g,Nþ
D1
ðw1Þ,N�

D1
ðw1Þ by a k2-handle H2

with k2paðD1½Nþ
D1
ðw1Þ,N�

D1
ðw1Þ
Þ:

Perform these contractions until only one vertex wp remains. For l ¼ 1;y; p; we

denote by Vl the set of vertices of D contracted to wl and which were not contracted
to wl�1; observe that the stability of D½Vl 
; denoted by al ; is greater or equal to kl :
Moreover, if an arc of D has its endvertices in Vi and Vj ; we clearly have ji � jjp1:

Consequently, 1þ a2 þ a4 þ?paðDÞ and a1 þ a3 þ a5 þ?paðDÞ: Now, let D0
p :

¼ fwpg and, starting with j :¼ p; inductively replace wj in D0
j by the kj-handle Hj to

form the digraph D0
j�1: The spanning subgraph D0

0 of D is a k-handle where k is the

sum of the kj: Moreover, kpa1 þ a2 þ?þ app2a� 1: &

To conclude this paper, we invite the reader to check that an algorithm can easily
be derived from our proof. The calculation of a completion in which every arc is
necessary can be done in polynomial time. The reduction of a tree-handle system can
be performed in OðjV jÞ; and the path-exchange of Theorem 3 can be calculated in
OðjEjÞ: From this, the calculation of a ð2a� 1Þ-handle which spans D can be done in
polynomial time. Although the calculation of the minimum k for which a strong
digraph D admits a spanning k-handle cannot be approximated up to any fixed
factor (we leave this as an exercise for the reader), the best known bound (see [11]) is
the following: there exists an algorithm which calculates a spanning k-handle of a
digraph D where ðn þ k � 1Þ=ðn þ l � 1Þp3=2; where l is the minimum value for an
l-handle spanning D: Our approach gives a better bound for dense graphs, that is
when aon=4:
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