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Abstract

Let I ⊆ R be a interval and k : I2 → C be a reproducing kernel on I . By the Moore–Aronszajn
theorem, every finite matrix k(xi , xj ) is positive semidefinite. We show that, as a direct algebraic
consequence, if k(x, y) is appropriately differentiable it satisfies a 2-parameter family of differential
inequalities of which the classical diagonal dominance is the order 0 case. An application of these
inequalities to kernels of positive integral operators yields optimal Sobolev norm bounds.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction and definitions

Given a set E, a positive definite matrix in the sense of Moore (see, e.g., Moore [6],
Aronszajn [1]) is a function k :E × E → C such that
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n∑
i,j=1

k(xi, xj )ξiξj � 0 (1.1)

for all n ∈ N (x1, . . . , xn) ∈ En and (ξ1, . . . , ξn) ∈ C
n; that is, all finite square matrices M

of elements mij = k(xi, xj ), i, j = 1, . . . , n, are positive semidefinite.
From (1.1), it is easily shown that a positive definite matrix in the sense of Moore has

the following properties: (1) it is conjugate symmetric, that is, k(x, y) = k(y, x) for all
x, y ∈ E, (2) it satisfies k(x, x) � 0 for all x ∈ E, and (3) |k(x, y)|2 � k(x, x)k(y, y) for
all x, y ∈ E. We refer to inequality (3) as the basic ‘diagonal dominance’ inequality; it
implies the previous inequality as a particular case on the diagonal y = x.

The theorem of Moore–Aronszajn [1,6] provides an equivalent characterization of
positive definite matrices in the sense of Moore as reproducing kernels. It states that
k :E × E → C is a positive definite matrix in the sense of Moore if and only if there
exists a (uniquely determined) Hilbert space Hk composed of functions on E such that

∀y ∈ E, k(x, y) ∈ Hk as a function of x, (1.2)

and

∀x ∈ E, ∀f ∈ Hk, f (x) = 〈
f (y), k(y, x)

〉
Hk

. (1.3)

Properties (1.2) and (1.3) are jointly called the reproducing property of k in Hk . The func-
tion k itself is called a reproducing kernel on E and the associated (and unique) Hilbert
space Hk a reproducing kernel Hilbert space; see, e.g., Saitoh [8]. Throughout this paper
we deal with the case where E = I ⊆ R is a real nonempty interval.

2. Two results on positive definite and semidefinite matrices

In this section we prove two results on finite matrices. Both admit a weak and a strong
version and are stated accordingly. In the weak version, positive semidefiniteness of a ma-
trix is assumed in the hypothesis and the conclusion is that an associated matrix is positive
semidefinite. If the hypothesis is strengthened to positive definiteness, the corresponding
statement is that the associated matrix is positive definite. The version relevant for repro-
ducing kernels, to be used in Sections 3 and 4, is the semidefinite version, as should be
clear from Section 1.

Let m and n be positive integers and A be a square matrix of order n(m + 1). In Propo-
sition 2.1 we denote by Apq the order n square submatrices of A, with p,q = 0, . . . ,m,
resulting from the partition of A into the m+1 square blocks defined by [Apq ]ij ≡ [apq

ij ] =
[ast ] for s = i + pn, t = j + qn and i, j = 1, . . . , n.

Proposition 2.1. Let A be an n(m+1) square matrix. For each X = (X0, . . . ,Xm) ∈ C
m+1,

define the n × n matrix

A(X) =
m∑

p,q=0

ApqXpXq.
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(a) If A is positive semidefinite, then for any choice of X ∈ Cm+1 the matrix A(X) is
positive semidefinite.

(b) If A is positive definite, then for any nonzero choice of X ∈ C
m+1 the matrix A(X) is

positive definite.

Proof. We begin by proving (a); the proof of (b) will differ on minor details.
Suppose A is semidefinite. Write A = [αij ]i,j=1,...,n, where αij = ∑m

p,q=0 a
pq
ij XpXq .

We are required to show that, for an arbitrary choice of (ξ1, . . . , ξn) ∈ C
n, we have∑n

i,j=1 αij ξiξj � 0.

Since A is positive semidefinite, for any (ζ1, . . . , ζn(m+1)) ∈ C
n(m+1) we have

n(m+1)∑
s,t=1

ast ζsζt � 0.

For p = 0,1, . . . ,m, i = 1, . . . , n and s = i + pn, choose ζs = Xpξi . Then

n(m+1)∑
s,t=1

ast ζsζt =
m∑

p,q=0

(p+1)n∑
s=pn+1

(q+1)n∑
t=qn+1

ast ζsζt =
m∑

p,q=0

n∑
i,j=1

a
pq
ij XpξiXqξj

=
n∑

i,j=1

(
m∑

p,q=0

akl
pqXpXq

)
ξiξj =

n∑
i,j=1

αij ξiξj � 0. (2.1)

Therefore A(X) is positive semidefinite, as stated.
The proof of (b) is analogous, with the additional observation that since A is positive

definite,
∑n(m+1)

s,t=1 ast ζsζt = 0 holds if and only if ζs = 0 for s = 1, . . . , n(m + 1). With
our previous choice ζs = Xpξi for p = 0,1, . . . ,m, i = 1, . . . , n and s = i + pn, it follows
from (2.1) that A(X) = ∑n

i,j=1 αij ξiξj = 0 only if ξi = 0 for all i = 1, . . . , n or Xp = 0
for all p = 0,1, . . . ,m. Since the last case is ruled out by hypothesis, it follows that A(X)

is positive definite. �
Proposition 2.2. Let T be a square matrix of order (m + 2) partitioned in the block form

T =

⎡
⎢⎢⎢⎣

b c0 · · · cm

d0 a00 · · · a0m

...
...

...

dm am0 · · · amm

⎤
⎥⎥⎥⎦

and consider the square matrix A of order m + 1 defined by

[Aij ]mi,j=0 ≡ [aij b − dicj ]mi,j=0.

(a) If T is positive semidefinite, then A is positive semidefinite.
(b) If T is positive definite, then A is positive definite.

Proof. As in the previous result, we start by proving statement (a). We begin by consid-
ering the case where b = 0. Then the basic properties of semidefinite matrices imply that
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ci = dj = 0 for all i, j = 0, . . . ,m. Therefore in this case the matrix [Aij ]mi,j=0 is the zero
matrix and the assertion is trivially verified.

From now on we assume, without loss of generality, that b > 0. Under this assumption
we use this entry of T as a pivot and perform Gaussian elimination. Multiplying, for each
i = 0, . . . ,m, the (i +2)th row of T by b and subtracting from the resulting row the product
of di by the first row we obtain the matrix T ′ defined by

T ′ =

⎡
⎢⎢⎢⎣

b c0 · · · cm

0 A00 · · · A0m

...
...

...

0 Am0 · · · Amm

⎤
⎥⎥⎥⎦ ,

where [Aij ]mi,j=0 ≡ [aij b − dicj ]mi,j=0. We now prove that this (m+ 1)× (m+ 1) matrix is
positive semidefinite. To this end, it is sufficient to show that every principal minor of A is
non-negative.

Let M = {0,1, . . . ,m}, Sl = {i1, . . . , il} be an arbitrary subset of l different elements
of M (obviously l � m + 1). Let ASl

be the order l principal submatrix of A associated
with Sl . Consider the order l + 1 principal submatrix TSl

of T defined by

TSl
=

[
b CSl

DSl
ASl

]
,

where CSl
is the line vector [cj ]j∈Sl

and DSl
is the column vector [dj ]j∈Sl

.
It is immediate to recognize that ASl

is obtained from TSl
by performing the exact

same procedure leading from T to A, i.e., Gaussian elimination using b > 0 as a pivot
and consideration of the resulting principal submatrix complementary to b. Computation
of the corresponding determinants then yields |ASl

| = bl−1|TSl
|. Observing that TSl

is a
principal submatrix, and thus |TSl

| a principal minor, of T , which by hypothesis is positive
semidefinite, we conclude that |ASl

| � 0. Since ASl
is an arbitrary principal minor of A, it

follows that A is positive semidefinite.
To prove statement (b), observe that the hypothesis that T is positive definite implies that

in the previous reasoning strict inequalities are valid for the minors under consideration.
Since T , and therefore A, are Hermitian, this is sufficient to ensure that A is positive
definite, as stated. �

3. Differential inequalities for reproducing kernels

Let I ⊆ R be a nontrivial interval and k : I × I → C. We define the operators Δx,h and
Δy,h by

Δx,hk(x, y) = k(x + h,y) and Δy,hk(x, y) = k(x, y + h) (3.1)

for any h ∈ R such that (x + h,y) and (x, y + h) lie in I 2. In a similar way, for m ∈ N and
h ∈ R denote by Imh the set of all x ∈ I such that x + mh ∈ I . For sufficiently small |h|,
Imh is nonempty. We define δmh : I 2 → C by
mh
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δmh(x, y) = (Δy,h − 1)m(Δx,h − 1)mk(x, y)

=
m∑

p,q=0

(−1)p+q

(
m

p

)(
m

q

)
k(x + ph,y + qh). (3.2)

We then have the following statement.

Lemma 3.1. If k(x, y) is a reproducing kernel on I 2, then δmh(x, y) is a reproducing
kernel on I 2

mh.

Proof. Let n ∈ N and (x1, . . . , xn) ∈ In
mh. We are required to show that the order n square

matrix

A = [αij ]ni,j=1 = [
δmh(xi, xj )

]n
i,j=1

is positive semidefinite.
Define xnp+i = xi + ph for every p = 0, . . . ,m and consider the n(m + 1) square

matrix A = [ast ]n(m+1)
s,t=1 = [k(xs, xt )]n(m+1)

s,t=1 . Since k is by hypothesis a reproducing ker-
nel, A is positive semidefinite. We may therefore apply Proposition 2.1 to A. Writing
Apq = [apq

ij ]ni,j=1 = [k(xi + ph,xj + qh)]ni,j=1 for p,q = 0, . . . ,m, we conclude that for

any choice of (X0, . . . ,Xm) ∈ C
m+1 the order n square matrix

∑m
p,q=0 ApqXpXq is posi-

tive semidefinite. Choosing Xp = (−1)p
(
m
p

)
, p = 0, . . . ,m, this statement implies that the

order n square matrix[
m∑

p,q=0

(−1)p+q

(
m

p

)(
m

q

)
k(xi + ph,xj + qh)

]n

i,j=1

= [
δmh(xi, xj )

]n
i,j=1 = A

is positive semidefinite. This finishes the proof. �
From now on, if x ∈ I is a boundary point of I , a limit at x will mean the one-sided limit

as y → x with y ∈ I (note, however, that we do not suppose I to be closed or bounded, so
that this remark need not apply).

Definition 3.2. Let I ⊂ R be an interval. A function k : I 2 → C is said to be of class Sn(I
2)

if, for every m1 = 0,1, . . . , n and m2 = 0,1, . . . , n, the partial derivatives ∂m1+m2

∂ym2 ∂xm1 k(x, y)

are continuous in I 2.

Remark 3.3. From Definition 3.2 it follows that Sn(I
2) ⊂ Sm(I 2) if n > m and C2n(I 2) ⊂

Sn(I
2) ⊂ Cn(I 2). It is clear that a function of class Sn(I

2) will not in general be in
Cn+1(I 2); note, however, that in class Sn(I

2) the order of differentiation for all mixed
partial derivatives of orders up to 2n is immaterial.

Lemma 3.4. Let I ⊂ R
2 be an interval and suppose k : I 2 → C is of class S1(I

2). Then

∂2

∂y∂x
k(x, y) = lim

h→0

1

h2
(Δy,h − 1)(Δx,h − 1)k(x, y).
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Proof. Suppose first that k is real-valued. For t and h small enough (and of the correct
sign if x or y are boundary points) that all relevant quantities are in I , define ϕ(t) =
k(x + t, y + h) − k(x + t, y). Then

δh(x, y) = k(x + h,y + h) − k(x + h,y) − k(x, y + h) + k(x, y)

= (Δy,h − 1)(Δx,h − 1)k(x, y)

= ϕ(h) − ϕ(0) (3.3)

with ϕ ∈ C1(Ih), where Ih is the compact interval of extremes 0 and h, since ∂k
∂x

(x, y) ∈
C1(I ). Hence δh(x, y) = ϕ′(θ1)h with |θ1| < |h| and

lim
h→0

δh(x, y)

h2
= lim

h→0

ϕ′(θ1)

h
= lim

h→0

1

h

(
∂k

∂x
(x + θ1, y + h) − ∂k

∂x
(x + θ1, y)

)
.

Since k1(x, y) = ∂2

∂y∂x
k(x, y) ∈ C(I 2), we have

∂k

∂x
(x + θ1, y + h) − ∂k

∂x
(x + θ1, y) = k1(x + θ1, y + θ2)h

(|θ2| < |h|),
and therefore

lim
h→0

δh(x, y)

h2
= lim

h→0
k1(x + θ1, y + θ2) = k1(x, y).

This concludes the proof in the case where k is real-valued. If k is complex-valued,
application of the above conclusions to its real and imaginary parts separately yields the
lemma. �
Proposition 3.5. Let I ⊂ R

2 be an interval and suppose k : I 2 → C is of class Sn(I
2).

Then, for every m1,m2 = 0, . . . , n,

∂m1+m2

∂ym2∂xm1
k(x, y) = lim

h→0

1

hm1+m2
(Δy,h − 1)m2(Δx,h − 1)m1k(x, y).

Proof. We first concentrate on the case m1 = m2 � n. For n = 0 the statement is empty;
n = 1 is the content of Lemma 3.4. We proceed by induction. Suppose that, for some
m < n,

km(x, y) = ∂2m

∂ym∂xm
k(x, y) = lim

h→0

1

h2m
(Δy,h − 1)m(Δx,h − 1)mk(x, y).

Clearly km(x, y) = ∂2m

∂ym∂xm k(x, y) satisfies the hypotheses of Lemma 3.4. Therefore

∂2(m+1)

∂ym+1∂xm+1
k(x, y) = ∂2

∂y∂x
km(x, y)

= lim
h→0

(Δy,h − 1)(Δx,h − 1)km(x, y)

h2

= lim
(Δy,h − 1)m+1(Δx,h − 1)m+1k(x, y)

2(m+1)
, (3.4)
h→0 h
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establishing the result for m1 + 1 = m2 + 1 � n.
Suppose now, without loss of generality, that m1 < m2 < n. A straightforward applica-

tion of the definition of derivative yields

∂m1+m2k

∂ym2∂xm1
k(x, y) = ∂m2−m1

∂ym2−m1
km1(x, y)

= lim
h→0

(Δy,h − 1)m2−m1km1(x, y)

hm2−m1

= lim
h→0

(Δy,h − 1)m2(Δx,h − 1)m1k(x, y)

hm1+m2
. (3.5)

The case m2 < m1 < n is completely analogous. This finishes the proof. �
Theorem 3.6. Let I ⊆ R be an interval and k(x, y) be a reproducing kernel of class
Sn(I

2). Then, for all 0 � m � n,

km(x, y) ≡ ∂2m

∂ym∂xm
k(x, y)

is a reproducing kernel of class Sn−m(I 2).

Proof. Since in the case n = 0 the statement is empty, we shall assume that n � 1. It is
immediate from Definition 3.2 that, if k is in class Sn(I

2), then km is in class Sn−m(I 2)

for 0 � m � n. Then, by Proposition 3.5, we have

km(x, y) = lim
h→0

∑m
p,q=0(−1)p+q

(
m
p

)(
m
q

)
k(x + ph,y + qh)

h2m

= lim
h→0

δmh(x, y)

h2m
, (3.6)

where the limit is to be understood as the appropriate one-sided limit if (x, y) ∈ ∂(I 2).
By Lemma 3.1, δmh is a reproducing kernel on I 2

mh. Then, for every positive integer l,
(x1, . . . , xl) ∈ int I l , (ξ1, . . . , ξl) ∈ C

l and sufficiently small |h| we have

l∑
i,j=1

km(xi, xj )ξiξj = lim
h→0

1

h2m

l∑
i,j=1

δmh(xi, xj )ξiξj � 0. (3.7)

By continuity of km, inequality (3.7) holds for boundary points in I 2 (if they exist) with
the interpretation of partial derivatives as appropriate one-sided limits. Thus inequality
(3.7) holds for all (x1, . . . , xl) ∈ I l and every choice of l and (ξ1, . . . , ξl) ∈ C

l . Therefore,
km(x, y) is by the Moore–Aronszajn theorem a reproducing kernel on I 2 for each m =
1, . . . , n. �
Corollary 3.7. Let I ⊆ R be an interval and k(x, y) be a reproducing kernel on I of class
Sn(I

2). Then for all x ∈ I and all 0 � m � n we have

∂2mk

∂ym∂xm
(x, x) � 0.
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Proof. Immediate from Theorem 3.6 and the diagonal dominance inequality for reproduc-
ing kernels. �
Theorem 3.8. Let I ⊆ R be an interval and k(x, y) be a reproducing kernel of class
Sn(I

2). Then, for every m1,m2 = 0,1, . . . , n and all x, y ∈ I we have∣∣∣∣ ∂m1+m2

∂ym2∂xm1
k(x, y)

∣∣∣∣
2

� ∂2m1

∂ym1∂xm1
k(x, x)

∂2m2

∂ym2∂xm2
k(y, y). (3.8)

Proof. For n = 0 the statement yields |k(x, y)|2 � k(x, x)k(y, y), which is the classical
diagonal dominance inequality for positive matrices in the sense of Moore. From here on
we assume that n � 1.

We start by showing the particular 1-parameter case of (3.8) corresponding to m1 =
m,m2 = 0. This corresponds to the statement that, for all x, y ∈ I and every 0 � m � n,∣∣∣∣ ∂m

∂xm
k(x, y)

∣∣∣∣
2

� ∂2m

∂ym∂xm
k(x, x)k(y, y). (3.9)

This inequality will in the end of the proof be extended to the general 2-parameter family
of inequalities (3.8).

Since k(x, y) is of class Sn(I
2), Proposition 3.5 with m1 = m2 = m implies that

∂2mk

∂ym∂xm
(x, x) = lim

h→0

1

h2m
(Δy,h − 1)m(Δx,h − 1)mk(x, x) (3.10)

and
∂mk

∂xm
(x, y) = lim

h→0

1

hm
(Δx,h − 1)mk(x, y) (3.11)

for every 0 � m � n.
Using (3.10) and (3.11) we may write

∂2mk

∂ym∂xm
(x, x)k(y, y) −

∣∣∣∣ ∂mk

∂xm
(x, y)

∣∣∣∣
2

= lim
h→0

1

h2m

([
(Δy,h − 1)m(Δx,h − 1)mk(x, x)

]
k(y, y)

− [
(Δx,h − 1)mk(x, y)

][
(Δx,h − 1)mk(x, y)

])
. (3.12)

We define the functions

Ψ (x, y,h) = [
(Δy,h − 1)m(Δx,h − 1)mk(x, x)

]
k(y, y), (3.13)

Φ(x,y,h) = [
(Δx,h − 1)mk(x, y)

][
(Δx,h − 1)mk(x, y)

]
. (3.14)

We now show that Ψ (x, y,h)−Φ(x,y,h) � 0 for all x, y,h where both quantities are de-
fined. This will imply that, for all x, y ∈ int I and sufficiently small |h| the finite increment
on the right-hand side of (3.12) is greater or equal than zero, which in turn implies, taking
the limit as h → 0, that (3.12) is greater or equal than zero, establishing inequality (3.9).
If x or y are boundary points of I the inequality follows from taking one-sided limits and
using continuity.
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Expanding (3.13) and (3.14) we obtain

Ψ (x, y,h)

=
[(

m∑
i=0

(−1)m−i

(
m

i

)
Δi

y,h

)(
m∑

j=0

(−1)m−j

(
m

j

)
Δ

j
x,h

)
k(x, x)

]
k(y, y)

=
(

m∑
i,j=0

(−1)2m−i−j

(
m

i

)(
m

j

)
Δi

y,hΔ
j
x,hk(x, x)

)
k(y, y)

=
(

m∑
i,j=0

(−1)i+j

(
m

i

)(
m

j

)
k(x + ih, x + jh)

)
k(y, y) (3.15)

and

Φ(x,y,h)

=
(

m∑
i=0

(−1)m−i

(
m

i

)
Δi

x,hk(x, y)

)(
m∑

j=0

(−1)m−j

(
m

j

)
Δ

j
x,hk(x, y)

)

=
m∑

i,j=0

(−1)2m−i−j

(
m

i

)(
m

j

)
Δi

x,hk(x, y)Δ
j
x,hk(x, y)

=
m∑

i,j=0

(−1)i+j

(
m

i

)(
m

j

)
k(x + ih, y)k(x + jh, y). (3.16)

Hence

Ψ (x, y,h) − Φ(x,y,h)

=
m∑

i,j=0

(−1)i+j

(
m

i

)(
m

j

)[
k(x + ih, x + jh)k(y, y) − k(x + ih, y)k(x + jh, y)

]
.

(3.17)

Using conjugate symmetry of k, we obtain

Ψ (x, y,h) − Φ(x,y,h)

=
m∑

i,j=0

(−1)i+j

(
m

i

)(
m

j

)[
k(x + ih, x + jh)k(y, y) − k(x + ih, y)k(y, x + jh)

]

=
m∑

i,j=0

(−1)i+j

(
m

i

)(
m

j

)
Aij , (3.18)

where the Aij are defined by

Aij = k(x + ih, x + jh)k(y, y) − k(x + ih, y)k(y, x + jh) (3.19)

for i, j = 0, . . . ,m.
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Consider the set of real numbers

X = {y, x, x + h, . . . , x + mh} = {y, x + ih: i = 0, . . . ,m}.
Define the Hermitian (m + 2) × (m + 2) matrix TX associated to X by

TX =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k(y, y) k(y, x) k(y, x + h) · · · k(y, x + mh)

k(x, y) k(x, x) k(x, x + h) k(x, x + mh)

k(x + h,y) k(x + h,x) k(x + h,x + h) · · · k(x + h,x + mh)

...
...

k(x + ih, y) · · · · · · · · · k(x + ih, x + mh)

...
...

k(x + mh,y) · · · · · · · · · k(x + mh,x + mh)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The fact that k is by hypothesis a positive definite matrix in the sense of Moore implies
that the matrix TX is positive semidefinite. Therefore, we may apply Proposition 2.2 to TX .
With the choices b = k(y, y), aij = k(x + ih, x +jh), di = k(x + ih, y), cj = k(y, x +jh)

for i, j = 0, . . . ,m, direct application of Proposition 2.2 implies that the matrix

[Aij ]mi,j=0 = [aij b − cidj ]mi,j=0

= [
k(x + ih, x + jh)k(y, y) − k(xi + h,y)k(y, x + jh)

]m
i,j=0 (3.20)

is positive semidefinite.
Finally, we show that Ψ (x, y,h)−Φ(x,y,h) � 0. Define ξi = (−1)i

(
m
i

)
for 0 � i � m.

Since A is positive definite we have by definition
m∑

i,j=0

Aij ξiξj =
m∑

i,j=0

(−1)i+j

(
m

i

)(
m

j

)
Aij � 0.

Hence, by (3.17) we have Ψ (x, y,h) − Φ(x,y,h) � 0.
This completes the proof of the 1-parameter family of inequalities (3.9). We next show

that this implies the full 2-parameter family of inequalities (3.8).
Since k is a reproducing kernel of class Sn(I

2), by Theorem 3.6 km is a reproducing
kernel of class Sn−m(I 2) for every 0 � m � n. Let 0 � m1 � m2 � n. Then km1(x, y) =

∂2m1

∂ym1 ∂xm1 k(x, y) is a reproducing kernel of class Sn−m1(I
2). We may write

∂m1+m2

∂ym2∂xm1
k(x, y) = ∂m2−m1

∂ym2−m1

∂2m1

∂ym1∂xm1
k(x, y) = ∂m2−m1

∂ym2−m1
km1(x, y). (3.21)

Since m2 − m1 � n − m1, application of (3.9) to km1 yields∣∣∣∣ ∂m2−m1

∂ym2−m1
km1(x, y)

∣∣∣∣
2

� km1(x, x)
∂2(m2−m1)

∂y(m2−m1)∂x(m2−m1)
km1(y, y).

Hence∣∣∣∣ ∂m2+m1

m2 m1
k(x, y)

∣∣∣∣
2

� ∂2m1

m1 m1
k(x, x)

∂2m2

m2 m2
k(y, y)
∂y ∂x ∂y ∂x ∂y ∂x
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as stated.
Finally, it is easily shown (e.g., [3, Lemma 2.3]) that if k(x, y) is a conjugate symmetric

function such that ∂m1+m2

∂ym2∂xm1 k(x, y) exists for all x, y ∈ I , then for all x, y ∈ I the partial

derivative ∂m1+m2

∂xm2 ∂ym1 k(y, x) exists and satisfies

∂m1+m2

∂ym2∂xm1
k(x, y) = ∂m1+m2

∂xm2∂ym1
k(y, x). (3.22)

The proof of the case 0 � m2 � m1 � n in (3.8) follows immediately from the case 0 �
m1 � m2 � n using (3.22). This completes the proof. �
Remark 3.9. Setting n = 0 in Theorem 3.8 yields the statement that if the reproducing
kernel k(x, y) is continuous then the basic diagonal dominance inequality |k(x, y)|2 �
k(x, x)k(y, y) holds. Even though continuity is not necessary, this means that the diagonal
dominance inequality for reproducing kernels may be thought of as the particular case
n = 0 in Theorem 3.8. In this precise sense, Theorem 3.8 yields a 2-parameter family
of inequalities which is the generalization of the basic diagonal dominance inequality for
(adequately) differentiable reproducing kernels.

Remark 3.10. It is enlightening to observe that Theorem 3.8 and the corresponding in-
equalities (3.8) have a straightforward interpretation within the general theory of repro-
ducing kernels. We next offer a brief sketch of the relevant constructions; for details on
what follows see, e.g., Krein [5] or Saitoh [9].

Given a reproducing kernel k : E × E → C, to each x ∈ E we associate an abstract
symbol ex . In the complex space of finite linear combinations of such symbols we introduce
an inner product defined by

〈ex, ey〉 ≡ k(x, y) (3.23)

for all x, y ∈ E. Identifying vectors of zero norm yields a pre-Hilbert space, the completion
of which is a Hilbert space Hk . This space is unique up to Hilbert space isomorphism and
is the Moore–Aronszajn reproducing kernel Hilbert space.

Let now E = I ⊂ R, and suppose that all the partial derivatives

∂m1+m2

∂ym2∂xm1
k(x, y)

exist and are continuous for all 0 � m1,m2 � n (this is precisely requiring that k be class
Sn(I

2); see Definition 3.2). It is then possible, although rather nontrivial, to show that
the corresponding Hilbert space representatives ex , ey have continuous Fréchet derivatives

e
(m)
x , e(m)

y . Also nontrivially, for each fixed 0 � m � n the span of {e(m)
x }x∈E is dense in Hk ,

thus providing a natural identification between these spaces.
Once these nontrivial facts are established, one may use the representation (3.23) to

obtain∣∣∣∣ ∂m1+m2

m2 m1
k(x, y)

∣∣∣∣
2

= ∣∣〈e(m1)
y , e(m2)

x

〉
Hk

∣∣2
∂y ∂x
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�
∥∥e(m1)

y

∥∥2
Hk

∥∥e(m2)
x

∥∥2
Hk

= 〈
e(m1)
y , e(m1)

y

〉
Hk

〈
e(m2)
x , e(m2)

x

〉
Hk

= ∂2m1

∂ym1∂xm1
k(y, y)

∂2m2

∂ym2∂xm2
k(x, x), (3.24)

which is inequality (3.8). In fact, due to the reproducing property (1.2) and (1.3) of k

in Hk , one may take in the previous argument the concrete representation ex = k(x, ·),
ey = k(y, ·); due to uniqueness of Hk up to isomorphism there is no loss of generality in
doing so.

Thus, from the abstract point of view of the general theory of reproducing kernels,
the 2-parameter family of diagonal dominance inequalities (3.8) is a consequence of the
Cauchy–Schwarz inequality in Hk . From what has been said it should be clear, however,
that there are some advantages in the direct algebraic-analytical proof constructed in Sec-
tion 3.

4. An application to integral operators

Throughout this section I ⊆ R will denote a closed, but not necessarily bounded, inter-
val. A linear integral operator K :L2(I ) → L2(I )

K(φ) =
∫
I

k(x, y)φ(y) dy

with kernel k(x, y) ∈ L2(I 2) is said to be positive if∫
I

∫
I

k(x, y)φ(x)φ(y) dx dy � 0 (4.1)

for all φ ∈ L2(I ). The corresponding kernel k(x, y) is an L2(I )-positive definite kernel.
A positive definite kernel is conjugate symmetric for almost all x, y ∈ I , so the associated
operator K is self-adjoint and consequently all its eigenvalues are real and non-negative.

Definition 4.1. A positive definite kernel k(x, y) in a closed interval I ⊆ R is said to be in
class A0(I ) if

(1) it is continuous in I 2,
(2) k(x, x) ∈ L1(I ),
(3) k(x, x) is uniformly continuous in I .

Remark 4.2. If I is compact the first condition trivially implies the other two, so A0(I )

coincides with the continuous functions C(I 2). Definition 4.1 is therefore especially mean-
ingful in the case where I is unbounded. It may be shown [2] that, if k is a positive definite
kernel in class A0(I ), then it satisfies Mercer’s theorem [7], irrespective of whether I is
bounded or unbounded. For this reason a positive definite kernel in class A0(I ) is some-
times called a Mercer-like kernel [3].
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The following summarizes the properties of positive definite kernels relevant for this
paper. If k(x, y) ∈ L2(I ) is a positive definite kernel, then K is a Hilbert–Schmidt operator;
in particular it is compact, so its eigenvalues have finite multiplicity and accumulate only
at 0. The spectral expansion

k(x, y) =
∑
i�1

λiφi(x)φi(y), (4.2)

holds, where the {φi}i�1 are an L2(I )-orthonormal set of eigenfunctions spanning the
range of K , the {λi}i�1 are the nonzero eigenvalues of K and convergence of the series
(4.2) is in L2(I ). If, in addition, k is in class A0(I ), then ∀x ∈ I k(x, x) � 0 and ∀x, y ∈ I

|k(x, y)|2 � k(x, x)k(y, y), eigenfunctions φi associated to nonzero eigenvalues are uni-
formly continuous on I , convergence of the series (4.2) is absolute and uniform on I , and
the operator K is trace class and satisfies the trace formula

∫
I
k(x, x) dx = ∑

i�1 λi. In
the case where I is compact, the last statements are the content of the classical theorem of
Mercer; for proofs see, e.g., [7] for compact I and [2] for noncompact I . Finally, it is not
difficult to show that positive definite kernels are reproducing kernels on I [3], so that the
results of Section 3 apply.

Definition 4.3. Let n � 1 be an integer and I ⊆ R. A positive definite kernel k : I 2 → C is
said to belong to class An(I ) if k ∈ Sn(I ) and

k(x, y),
∂2k

∂y∂x
(x, y), . . . ,

∂2nk

∂yn∂xn
(x, y)

are in class A0(I ).

Obviously An(I ) ⊂ An−1(I ) ⊂ · · · ⊂ A1(I ) ⊂ A0(I ). A positive definite kernel in
class An(I ) thus possesses a delicate mix of local (differentiability class Sn(I )) and global
properties (integrability and uniform continuity of each km, m = 0, . . . , n, along the diag-
onal y = x).

In what follows we suppose that k in class An(I ). Hn(I) denotes as usual the Sobolev
space Wn,2(I ) normed by ‖φ‖2

Hn(I) = ∑n
m=0 ‖φ(m)‖2

L2(I )
.

It is proved in [3] that, for k in class An(I ), every eigenfunction φi associated to a
nonzero eigenvalue is in Cn(I) ∩ Hn(I) and that, for each m = 0, . . . , n the expansion

km(x, y) = ∂2mk

∂ym∂xm
(x, y) =

∑
i�1

λiφ
(m)
i (x)φ

(m)
i (y) (4.3)

is uniformly and absolutely convergent in I 2. Note that for n � 1 this is, in general, not the
eigenfunction series corresponding to (4.2) for km. In the special case where n = 0 and I

is compact this result reduces to Mercer’s theorem.
For k in class An(I ), we set Km ≡ ∫

I
km(x, x) dx for each m = 0, . . . , n. From Theo-

rem 3.8 it follows that 0 � |km(x, y)|2 � km(x, x)km(y, y) for all x, y ∈ I . Thus for each
m = 0, . . . , n, Km > 0 unless km(x, y) is identically zero. We define

Cn = K1/2
0

(
n∑

Km

)1/2

. (4.4)

m=0
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Theorem 4.4. Let k(x, y) be a positive definite kernel in class An(I ), and let φi be an
eigenfunction of k(x, y) associated to a nonzero eigenvalue λi . Then φi is in Cn(I) ∩
Hn(I) and

‖φi‖Hn(I) � Cn

λi

‖φi‖L2(I ), (4.5)

where Cn is given by (4.4).

Theorem 4.4 is proved in [4] as a direct consequence of the general two-parameter
inequality (3.8) of Theorem 3.8 for positive definite kernels. As also shown in [4], Theo-
rem 4.4 is sharp: the bound it provides is optimal.

All these results—differentiability of eigenfunctions, uniform convergence of eigen-
series expansion, norm bounds in Sobolev space—depend critically on positive definite-
ness of the kernel k and are, in general, false if k is not a positive definite kernel.
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