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Abstract. The safe decomposition of a distributed program into communication closed layers is 

suggested as a superstructure of its decomposition into a collection of communicating processes. 

This decomposition may simplify the analysis of a distributed program, as is exemplified by 

examples of program verification. A programming language construct to enforce safety of a 

decomposition is introduced. The application to systematic construction of distributed programs 

is also shown. 

1. Introduction 

The traditional decomposition of a distributed program is into a collection of 

communicating processes (or tasks), where processes are either sequential or contain 

nested concurrency. This decomposition prevails in the existing languages for 

concurrent and distributed programming. It induces a natural two-level definition 

method of its semantics: an a priori semantics is given to whole processes, indepen- 

dently of each other, and then the separate process meanings are bound to a joint 

meaning. In a denotational semantics context this can be seen, e.g., in [14], or 

[6,8]. In the axiomatic context it can be observed in [15], [2], [12], or [3], and in 

a temporal context in [9]. An alternative approach defines the meaning of the 

whole program in the same level. This can be seen most often in the operational 

semantics, given by a centralized, non-deterministic interpreter, e.g., in [l], or in 

[4] in the context of weakest precondition semantics. 

In this paper we present a different approach, which suggests an alternative 

decomposition as a super structure over a decomposition into processes. 
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According to this decomposition, parts of processes that interact with each other 

(and are not interacting with other parts) are grouped together into layers. We 

introduce sufficient conditions under which the meaning of the program is such 

that it is equivalent to synchronizing all the processes in a given program at layer 

boundaries. 

Such a decomposition may simplify the analysis of distributed programs, as shown 

by examples considering formal program verification. The method is useful in many 

other contexts of program analysis, as well as for systematic construction of dis- 

tributed programs, as also shown by an example. Another attempt for the 

simplification of the analysis of concurrent programs (using shared variables) can 

be found in [13]. There, sufficient conditions are introduced to the equivalence of 

a concurrent program and its ‘reduction’, causing a program section to be executed 

atomically. The approach here is completely different, and is also used for (dis- 

tributed) program construction. 

We shall use the notation and terminology of CSP [ll] for the concreteness of 

the discussion. However, the approach is more general in its nature. 

The paper is organized as follows: In Section 2, we define the concepts related 

to the safe decomposition method and consider simple decompositions, which do 

not cross loop boundaries. In Section 3, we consider more complicated decomposi- 

tions, in which loops are also decomposed. In Section 4, we introduce a programming 

language construct for the enforcement of safety of a layer. Section 5 contains an 

example of using the concepts developed for a systematic construction of a dis- 

tributed program. 

2. Decomposition into simple communication-closed layers 

In this section, an alternative decomposition of a distributed program P = 

[PI11 . . . llPn] is suggested. We consider here decompositions called simple, which 

will not cross the boundaries of iterations. In Section 3, the decomposition is 

extended to loops also. 

We first define an equivalence relation which the new decomposition will be 

shown to preserve. We assume that a communication graph Gp underlies P, deter- 

mining potential communication capabilities among the processes of P, located at 

the nodes of Gp. The edges of Gp represent communication channels. For CSP, 

an edge connects Pi and Pi iff both contain matching i/o commands addressing 

each other. For simplicity, we assume all messages are of the same type. For Ada, 

an edge would connect Pi to Pi if one of them can call an entry in the other. Similar 

graphs can be constructed for any other language in which processes may com- 

municate. 

Two distributed programs P and P’ are said to be compatible if Gp = Gp.. The 

computations of a distributed program P can be characterized by their externally 

observable behavior, consisting of two elements: a (global) state transformation 
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relation RP (capturing also non-termination), and a set of communication histories 

HP, describing all the possible communications arising during the computation of 

P. The exact description of H depends on the communication primitives used. We 

shall take a communication history to be a sequence of triples (i, j, m>, where i, j 

are node indices in Gp, and m is a message transferred from node i to node j. 

Definition. Two compatible distributed programs P and P’ are equivalent, P = P’, 

iff Rp=Rp,. Thus, equivalent programs display identical state transformations, but 

may differ in their communication histories. 

2.1. Simple communication-closed layers 

In order to decompose a program P, we first represent each process Pi as 

Pi::S~~...;S~, i=l,. ..,n. 

Here, the Si’s are any program segments, including the empty segment, denoted 

by n. The introduction of A components allows for d to be uniform over all 

i=l,..., n. We call d the depth of the decomposition. This decomposition of a 

process is simple, since it does not cross the borders of compound statements, e.g., 

iterations, or even selections. 

Definition. (1) For 1 cj s d, the jth simple layer of P, denoted by Li, consists of 

Lj : : [Sf 11 . . . Ils;]. 
(2) The decomposition of P into simple layers (of depth d) is P’ :: LI; . . . ; Ld. 

Note that the communication graph of P’ is the union of the graphs of the layers. 

In the rest of this section, we shall use ‘layer’ to mean ‘simple layer’; more 

general layers are discussed in Section 3. 

Obviously, there exist many decompositions of a distributed program into layers. 

We shall be interested in such decompositions that preserve the state transformation 

behavior of the program, i.e., are equivalent to it. First, we note the following 

trivial fact, following immediately from the definitions above. 

Lemma. Every program P is compatible with all its decompositions into layers. 

Next, we define a sufficient condition for equivalence of such a decomposition 

to the original program. 

Definition. A layer Li of a distributed program P is communication-closed iff under 

no execution of P a communication command in some Si will communicate with 

a communication command in some Pi,, not belonging to Sit. 

In other words, in any communication in which one of the involved parties 

belongs to the considered layer, so does the second party. For readers familiar with 
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the terminology used in the axiomatic definition of CSP in [2], we mention an 

alternative equivalent formulation of the definition: no two syntactically matching 

commands not both belonging to a given layer Lj are semantically matching. 

Definition. A decomposition P’ of a distributed program P into layers is safe iff 

all the layers are communication-closed. 

Using these notions, we are now able to state a sufficient condition for the 

equivalence of a program to a decomposition of it into layers. 

Theorem. A distributed program P is equivalent to any of its safe decompositions 
into layers. 

Proof. By induction on d, the depth of the decomposition. 

The basic argument involves a detailed case analysis to establish the commutativ- 

ity of communications belonging to two different layers with disjoint source and 

target processes. Due to this commutativity, one reduces a safe decomposition of 

Pofdepthd,P’::Lr;.. . ; Ld to an equivalent safe decomposition of P of depth 

d - 1, given by 

P”::L1;...;id_l, where~d_l::[S~_l;S~JI...JIS~_l;S~], 

and this claim follows by the induction hypothesis. 0 

As an example to the commutativity, consider the simple CSP distributed program 

P :: [P, :: P*?x; P:!?xllPz :: P1!0; P1!111P3 :: P4?y(lP4 :: P3!2] 

and suppose the decomposition P’ is such that 

L1 :: [Pz?x; Pz?xllP1!O; PI!l]]A]]A] and L2 :: [A/AllP4?y\IP3!2]. 

Then, the history 

h = (2,1,0X4,3,2)(2,1,1) 

would belong to Hi,, but not to HL1;LZ, since the communication between P3 and 

P4, belonging to the second layer of P’, was interleaved between the two communica- 

tions between PI and Pz, both belonging to the first layer. However, I-IL,-,;.~ contains 

an equivalent history 

h’ = (2,1,0X2,1,1)(4,3,2) 

obtained from h by commuting the last two communications, which are independent. 

Other cases are treated similarly. Note that the equivalence implies also that P is 

deadlock-free iff all layers of P’ are deadlock-free. 

Our claim is that using such decompositions one could simplify various analysis 

methods of distributed programs, such as verification or testing, since less computa- 
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tions have to be considered. We exemplify such a simplification in the context of 

program verification in Section 2.2. 

2.2. Safe decomposition and program verification 

In this subsection, we show an application of safe decompositions to program 

verification. Several verification techniques for distributed programs expressed in 

CSP were suggested, among which [2] and [12] are state-assertional proof methods, 

using the usual {p}P{q} notation for partial correctness assertions. 

Assume any proof-system H in which partial correctness assertions can be 

derived. Let P :: [PI/. . . l/P,,] b e a distributed program, and let P’ :: L1;. . . ; Ld be 

a safe decomposition of P into layers. Then, we observe that by the theorem above 

the following rule is a sound enhancement of H: 

(SD) {qdLl{qd~ *. . > {qd-l}Ld{qd) 

kO}p{qd} ’ 

where each assertion {qj}Lj+l{qj+l}, 0 ~j <d, is provable in H. 

In this way the layer boundary points (corresponding to the sequential composi- 

tion of the layers) serve as natural synchronization points where an assertion must 

hold, even though in the ‘real’ computation it need not be the case that all the II 

controls reside simultaneously at a layer boundary. It is as if we are able to ‘freeze’ 

a local state at the boundary point and let an assertion hold only after all local 

states are ‘frozen’. 

We shall exemplify the use of the SD rule by verifying a variant of a distributed 

program to compute the minimum of n natural numbers al,. . . , a,,, taken from 

[12]. The underlying communication graph is the full graph over n vertices. Each 

element a, is located at the process M[i]. The overall structure of the program is 

MIN :: [M[l][J . . . IIM[n]J(R], w h ere R is a receiver process whose job is to accept 

m = mini,i,l, (a,). For brevity we omit all declarations in the following text for the 

program of M[i]. For clarity we subscript all variables with their process index, 

and introduce mnemonic labels to be able to refer to program sections by their name. 

M[i] : : 

hiti : my-mini := Ui ; Ci := 1; Senti := false ; 

findi:*[ q Ci<n; -Senti; M[j]! (my-m&, Ci) + Sf?nti := true 
j=l,n 

j#i 

0 

0 Ci<n 
j=l,n 
jti 

; -sent, ; M[j]?(their-mini, CCi) 

I; 

+ my-mini := min (my-mini, 

their-mini); Ci := Cj + CCi 
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fini: [senti + skip 
cl 

--senti -+ R!my_mini 

The details of R are also omitted, and we assume it has the corresponding M?m 

command. 

The ‘big box’ notation q i=l,n,i+i is an abbreviation for the expanded set of 

alternatives, where the case j = i is exluded. 

The intuitive explanation of the way the program acts is the following: Inductively, 

each process is responsible for maintaining the minimum of some non-empty subset 

Of{Ui,..., a,} of cardinality ci, so that these subsets form a partition. At any round 

in its main loop, a process may send its local minimum away (together with the 

corresponding count), to any other process and exit the loop, or receive a local 

minimum and a count from some process and update its own local minimum and 

local count to represent the minimum of the union of the two subsets. At the end, 

only one process remains, representing the minimum of the whole set (with count 

equal to n), sending it to R. The difference from the program in [12] is in the 

introduction of counts, to avoid termination depending on CSP’s distributed termi- 

nation convention. 

In the program text we appended labels to statements, anticipating the intended 

safe decomposition. We now define the following layers, using the mnemonic names 

derived from the corresponding labels. 

INIT :: [init,ll . . , jlinit,\lA], 

FIND :: @nd,\l . . . (Ifind,IjA], 

FIN :: Vinlll. . . Ilfin,,\iR]. 

Claim. The decomposition MIN’ : : INIT; FIND ; FIN is safe. 

Proof. Trivial (can be verified syntactically). 0 

In order to use the SD rule mentioned above, we annotate the layer boundaries 

with assertions as follows: 

{true} 
INIT ; 

{yin (my-mini) = ,Efnn(ai) A v Senti = false} 
1=l,n i=l,n 

FIND ; 
(3 1 G iO G n.senti” = false A Vl S i C n.i # iO 1 Senti = true 

A my-mini,, = iyf((ai)} 

FIN 

{m = mft(ai)l. 
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By applying the rule SD we can now deduce {true}M1N{m = min,=i,,(Ui)} which 

expresses the required correctness property of the program. 

That each layer satisfies the corresponding pre-post assertions relationship can 

be derived using the proof systems of [2] or [12], and is simpler than verifying the 

whole program within any of the two systems. For example, the proof is relieved 

from considering situations in which some processes are still initializing, while 

others already left their loop. In the case of [2], these situations would be reflected 

in a complicated global invariant. 

3. Decomposing loops 

In this section we consider more general decompositions into layers. We allow 

more complicated layers whose boundaries may cross those of loops. Thus, different 

traversals of the same loop may be placed in different layers. 

Let S be an iterative statement of the following form: 

b 
bk;Ck+Tk 

1 

which we also abbreviate as *[Gi 0 . . . 0 Gk]. 

Here bi,. . . , bk are the boolean parts of guards (ranging over variables local to 

the process in the case of CSP); cl, . . . , ck are the communication parts of guards 

(we take ci as ‘skip’ if not explicitly included); TI , . . . , Tk are any program segments 

and G, is an abbreviation for bi; ci + Ti, 1 s i d k. A guard b ; c is passable iff b is 

true and c matches a complementary i/o command in the process it is addressing. 

Also, denote by BS the selection constituting the body of the loop S. 

There seems to be a rather elaborate theory of ordinary ‘while-loops’, but not 

much about non-deterministic loops as considered here. Hence, we start by identify- 

ing several properties of such loops which will be used to describe our intended 

decompositions. Since most known programming languages do not contain the 

appropriate constructs that would be necessary in order to treat the most general 

case of loop decompositions, we shall isolate some simpler special cases and deal 

with them. 

Remark. In this section, we assume that the loops always terminate. Also, we 

disregard the CSP distributed termination convention, and assume that loops 

terminate only due to all boolean guards being false. 
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Definition. Let A ={il,. . . ,i,}c{l,. . . ,k}. An A-slice of S is 

SL a::Gi,O.. . 0 Gi,,,. The A-slice SLA is active if it contains a passable guard. 

In other words, an A-slice of a loop S is a fragment of the loop body, consisting 

of the collection of guards indexed by elements of A. Since A may be any subset, 

an A-slice is an arbitrary grouping of alternatives. We shall be interested in 

groupings which are not that arbitrary, and alternatives belonging to the same slice 

bear some logical relationship to each other. 

Definition. For an A-slice of a loop S, the A-induced loop is * [SL,]. 

Thus, the A-induced loop repeats executing alternatives of the corresponding 

A-slice only. 

Definition. Let d = (A,, . . . , Ad) be a partition of (1, . . . , k}, the set of guard 

indices of a loop S. We say that d is a faithful-slicing of S iff at every traversal 

of the loop, at most one Aj-slice is active, 1 <j G d, Aj E d. 

Thus, in a faithful slicing, it is never the case that two guards belonging to different 

slices are passable. Obviously, this is a semantic property of the loop S, and usually 

cannot be syntactically determined given the partition &. One well-known example 

of a faithful slicing occurs when the body of the loop is deterministic, i.e., the 

guards exclude each other, and d is the partition to singletons. 

Note that the alternative operator ‘Cl’ is both associative and commutative, and 

the ordering of the alternatives is immaterial. 

Definition. A loop S, faithfully sliced by d = (A 1, . . . , Ad) is called &-flattenable 

iff it is equivalent to the sequence of its Aj-induced loops, 1 G i cd, i.e., to 

S’ :: * [SL,,]; . . . ; * [SL,,]. 

Thus, in an .&flattenable loop, each slice is executed repeatedly as long as it is 

active, and never attempted anymore thereafter. 

We shall exemplify all these notions in the following example program, written 

in CSP. It describes a process D(istributor), that inputs from a process A a sequence 

of natural numbers, whose sum is accumulated in a local variable, s. The end of 

the sequence is sensed by inputing from A the special signal eos( ). The sum is 

distributed to all members of an array of processes B[i], i = 1, . . . , IV, in any order. 

Local flags, sent[i], i = 1, . . . , N are used to control the sending, avoiding no sending 

or double sending. The initial state satisfies: 

s = 0, more = true, sent[i] = true, i = 1, . . . , N. 
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The loop is given by 

S::*[more;A?a+s:=s+a 

0 
more ; A ?eos () + more := false ; for i := 1 to N do sent[i] := false 

0 

0 lsent[i]; B[i]!s +sent[i]:= true 
i=l.N 

I. 
We assume guards are numbered in order of appearance. A natural faithful 

slicing of S is according to the partition & = (A,, AZ), where A 1 = (1, 2), AZ = 

(3,. . . , N +2). It can be easily verified that S is equivalent to S’ :: *[SLA,]; 

* [SL,,]. Initially, r\r=, sent[i] holds, hence all the guards of SL,, are non-passable. 

In order to become passable, the second alternative, receiving eos() from A must 

be executed, which falsifies the flag more, and deactivates the Al-slice. This could 

be formally proven using the proof-systems in [2] or [12] for CSP. Hence this 

program is (A 1, A&flattenable. 

Thus, in the local analysis of S, an assertion to the effect that 

S = i: Uj A imore A A lsent[i] 
j=l i=l,N 

holds after some iterations in the loop. Obviously, this is not a loop invariant. 

We would like to capture a similar phenomenon in its full breadth, and find a 

global assertion to hold after every process executed some number of loop traversals. 

This, again, motivates the broader concept of a communication-free layer. 

Consider a distributed program P :: [PI/j . . . IlP,,], where some of the processes P, 

constitute flattenable loops for appropriate faithful slicings. By adding enough 

dummy statements, we can assume that all loops are flattened with the same number, 

d, of induced loops. 

We can now apply again the definition of a layer, this time taking Sj, the ith 

component in the jth layer, as the jth-induced loop in the flattening of the ith 

loop, if Pi happens to be a loop. In case such a decomposition is communication- 

closed, Theorem 1 can be proved for the non-simple decompositions similarly to 

the simple case, given the fact that we deal with loops that terminate and are 

flattenable. 

The intuitive interpretation of the boundary between successive layers is again 

a virtual synchronization point. The states of all the processes are ‘frozen’ at such 

a point, and may be shown to satisfy a given assertion. Since the layers are 

communication-closed, the ‘real’ execution, which does not synchronize at layer 

boundaries, is equivalent to the synchronized one. In particular, if a layer component 

is an induced loop, the original loop is ‘frozen’ after a number of traversals, though 

the ‘real’ execution might have proceeded to consecutive traversals. 

As an example to the application of this way of analysis of a distributed program, 

we shall consider a simple example, where we show how to abstract from a pipelining 
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effect. The interested reader is referred to [7] for examples of an attempt to verify 

directly a program containing pipelining effects, using (a generalization of) the 

cooperating-proof system of [2]. 

Example. A remote udder. Consider an array P[i], i = 1, . . . , n of processes. The 

process P[l] is a source, emitting the elements of a local array a [l, . . . , N]. The 

processes P[2], . . . , P[n -11 serve as elements of a pipeline, passing elements ‘from 

left to right’. Process P[n] is an adder, summing up all the elements received in a 

local variable, s. The ending is signalled by the special tagged message eos(), emitted 

by P[l] upon completion of emitting the elements of the array a. Every process 

receiving the eos() signal sends it to its right neighbor and halts. When the adder 

receives the eos () signal it also halts. Upon termination, the assertion s = Cr= 1 a [k] 

should hold. 

The special signal eos() is introduced to bypass the distributed termination 

convention of CSP, which we excluded here. For brevity, we include a ‘halt’ 

primitive statement, whose meaning is terminating the process activity. Following 

is the text of the full program: 

P :: [P[l](] . . . (IP[n]] where 
P[l] ::j:= 1; *[j=GN; P[2]!a[j]+j:=j+l 

0 

j >N; P[2]!eos()+ halt 

I? 
(l<i<n) P[i]:: f := true ; done := false ; 

*[ldone;f;P[i-l]?x-,f:=fulse 

II 
1 done ; f; P[i - l]?eos () + done := true 

cl 
idone; lf;P[i+l]!x+f:=true 

ci 

done ; P[i + l]!eos () + halt 

P[n]::s:=O;*[P[n-l]?x+s:=s+x 
cl 
P[n - l]?eos () + halt 

I. 

One natural way to reason intuitively about this program is to consider it in 

phases, where in the jth phase, the array element a[j] ‘travels’ all the way from 

P[l] to P[n] and is added to s, and only then is the next element of the array a 

starting its ‘travel’, in another phase. Then, after adding a[j] to s, the assertion 

s =I;=, a[k] would hold. 

However, s = C’,=, a[k] is not a (global) invariant (in the sense of [2]), since by 

the time a[jo] arrives to P[n], more elements might have been emitted into the 

pipeline, and j >jO would hold, falsifying the above assertion. 
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We could capture this intuitive understanding of the remote adder program by 

considering a safe decomposition of it, behaving as explained, where the phases 

are the execution of layers in the decompsotion, with virtual synchronization 

between phrases. 

The faithful slicing of P,, 1< i <n would be by the partition d = ((1, 2}, {3,4}), 

and we use SEND, RECEIVE as abbreviation for the slices. Thus 

RECEIVE, : : ldone ; f; P[i - l]?x + f := false 

0 

idone ; f; P[i - l]?eos () + done := true 

SENDi 1: idone; lf;P[i+l]!x+f:=true 

u 
done ; P[i + l]!eos() + halt 

Obviously, P[l] has only a SEND, slice, including the increment of j, while P[n] 

has only RECEIVE,, slice, including the addition to s. 

The faithfulness of this slicing can be easily verified. The following diagram shows 

the safe decomposition which can be easily seen to be equivalent to the original 

remote adder program. All the initializations are grouped into one layer, INIT. 

Thus, P’ : : INIT: P”, and 

PI’ : : L 1 : : [SEND] IIRECEIVE~IIA . . Ml 

Lz :: [AIISENDJRECEIVE,jIA . . . Ml 

. 
L, :: p/j. . . IlAllSEND,_,lJRECElVE”]. 

In order to give a syntactic expression of this decomposition, we have to para- 

metrize more than CSP allows. 

Define 

L[i] :: [AlI . . . IiAllSENDiIIRECEIVEi+IllAil. . . IIn]. 
r-l times n-1-itimes 

Then our program could be expressed as 

P” :: for i := 1 to n do L[i]. 

In order to prove the safety of this decomposition, one could use the [2] 

cooperating proofs, and show that the dynamic matching of i/o guards is as claimed. 

Thus, decompositions do not minimize the total effort of analysis, but modularize 

it by separation of concerns: 

(1) Show the safety of a decomposition (thus guaranteeing its equivalence to the 

original program), and 

(2) Reason about the virtual synchronization at layer boundaries, which is usually 

simpler than direct reasoning about the given program. 
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We applied this method successfully to some tree algorithms, with waves of 

communications (see, e.g., [lo]), where the distinguished phases of up-tree and 

down-tree can be easily expressed as layers. The construction of one such simple 

program is shown in Section 5. 

Obviously, one could extend these ideas to more elaborate decompostitions, not 

depending on flattenability, but most programming languages do not have the 

construct to express the resulting programs. 

While passing, we note that suitable safe decomposition could be used to force 

program behavior according to the MAX-semantics for concurrency as given in [17]. 

4. A language construct for enforcing safe decomposability 

In this section we suggest a programming language construct that could relieve 

the programmer from taking care of explicit synchronization to induce safety of 

an intended decomposition into layers. We start by an example which will motivate 

the need of that kind of a construct. 

Let us return to the example in Section 2, of computing the minimum of a set 

A={al,..., a,} of elements. Suppose now that we are interested in computing 

repetitively the minimum of k > 1 such sets Aj = {a<, . . . , a’,}, 1 <j < k. 
An immediate solution would be to repeat the program MIN of Section 2 k 

times, each time with the elements of a new set Ai, by nesting MIN in for-loop: 

forj := 1 to k dr,MIN :: [M[l]]] . . . IIM[n]\lZ?]. 

This certainly constitutes a correct solution, but an inefficient one in terms of 

processor utilization. The reason for the inefficiency is again the over-synchroniz- 

ation: a computation of Min(Aj+l) cannot start until that of ibEn is ended! 

However, one certaintly sees that a more loose synchronization would suffice, 

enabling a process that has finished its part in the computation of Aj to proceed 

to its part in the computation in Aj+l . 
In the other extreme, one could consider embedding R and each M[i] in a loop: 

M’[i] : : for j := 1 to k do M[i], and then let 

MIN’ :: [M’[l]l] . . . jIM’[n]1jR’]. 

The solution has no synchronization at all, but is incorrect since it does not 

guarantee that when M’[iJ and M’[iJ communicate, they refer to elements of the 

same Aj; this would be the case if these two corresponding communication requests 

were at the same jth iteration of the corresponding local loops. 

Thus, the ultimate solution is obtained by inserting some synchronization that 

guarantees that whenever M’[iJ and M’[iJ communicate, they are synchronized 

to the same Aj, i.e., are both in their jth iteration of their local loop. We shall not 

bother here with a detailed programming of a specific synchronization method (a 

recent suggestion for such a method appears in [16]). Rather, we observe that its 
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effect could be interpreted as rendering each activation of MIN as a communication 

closed layer! 

By adding to the programming language a means for declaring this intention, 

the compiler could automatically generate the required synchronization code to 

enforce the safety of the layering. 

Thus, one would like to describe the solution as 

M_MIN :: [MM[1]11. . . @4M[n]@D7], where 

MM[i] : : for j := 1 to kdo 

layer(j): begin . . . code of M’[i] . . . end layer(j) 

od. 

Therefore, the programmer is free to write down the unsynchronized version, 

and a layer(j) declaration that tells the compiler to generate the required synchroniz- 

ation code that enforces every two processes to be in the same iteration when 

communicating. 

This solution achieves both the efficiency of letting processes ‘run forward’ 

whenever possible, and also the ease of expressibility, shifting the generation of 

synchronization overhead from a programmer to a compiler, who might do it well 

enough by using optimization techniques. 

As far as program analysis is concerned, obviously the program can be analyzed 

in terms of its enforced decomposition and all the advantages mentioned above 

again apply. 

Since, in general, the automatic deduction of a safe-layer structure of an arbitrary 

distributed program is impossible, we believe that a language construct indicating 

and enforcing such a structure may turn to be an important control structure, 

enhancing better structured concurrent programming. 

5. Using communication-closed layers in constructing distributed programs 

While in the previous sections we concentrated on the analytic approach, whereby 

distributed programs were analyzed in terms of their safe decompositions, we take 

a more synthetic approach in this section by considering communication-closed 

layers as a tool for the systematic construction of distributed programs. 

We propose the following methodology: 

(a) Starting with a specification of a whole distributed program, refine this 

specification into a sequence of layers specifications. 

(b) Implement each layer separately by using any stepwise refinement method 

available for concurrent and distributed programming. 

(c) Compose the layers into a whole program, preserving their communication- 

closeness. 

Obviously, the outcome of applying this methodology is a program that is naturally 

amendable to safe decompositions. It gives the programmer the usual benefits of 

separation of concerns as it is a ‘divide and conquer’ method. 
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Since formal specifications of distributed programs and formal manipulation of 

such specifications are not advanced enough at the current state of art, we shall 

apply step (a) in an informal way. The suggested method may gain much in its 

effectiveness once such formal tools will be available. In the following example, 

we are not so much interested in the algorithmic consideration of a solution, e.g., 

its efficiency, as we are in the steps involved in its construction. Thus, a straightfor- 

ward algorithm is chosen. 

Example. Constructing a distributed program to determine the size of a tree. 

Problem specification (informal): Suppose we are given a dynamic binary tree of 

processes, with a root process R, some intermediate node processes I,, k E K, and 

leaf processes L,, q E Q. 

Here K and Q are two finite, non-empty index sets. We assume that each process 

‘knows’ the identity of its parent and two descendants. 

Furthermore, assume that we are guaranteed that the tree structure is fixed 

throughout the duration of the algorithm. Design a distributed TCOUNT program 

(initiated by the root), to compute the size (i.e., the number of nodes) of the tree. 

We assume the following naming convention. The root process R and every 

intermediate node process I communicate with their offspring nodes process 

through channels 1 and r. Also, each leaf process L and intermediate node process 

I communicates with their parent node through a channel u. 

We next derive the specifications of two layers, to be called UP and DOWN, 

each implementing a communication pattern known as a (unidirectional) wave [lo]. 

A natural straightforward solution to a problem is obtained by an upgoing wave 

of communication, in which each process communicates to its parent the size of 

the subtree of which it is the root. However, since the root is the algorithm initiator, 

the leaves have to be notified when to start firing. Thus, the upward wave mentioned 

above is preceded by a downward wave in which each process notifies its descendants 

to initiate counting the subtree which they root. 

As a consequence, we get the following two layers specifications: 

DOWN- send a count signal in a wave from the root to leaves, 

UP - accumulate sizes of subtrees from the leaves to the root. 

Thus, the program TCOUNT will be safely decomposable as 

TCOUNT :: DOWN; UP. 

Had this been the ‘real’ structure, it would be over-synchronized, since no leaf 

would start its second, upward wave until all leaves finished the downward wave, 

which is not necessary. The final program will loosen this over-synchronization by 

taking care of behaving in an equivalent way. 

We now proceed in further refining each layer. 

In order to achieve the specification of DOWN, assuming the depth of the tree 

to be d, a sequence of d layers D1: . . . ; Dd can be designed. In layer Dj, 1 <j < d, 
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every node of depth j receives a counting signal from its parent. As for Di, it 

consists of R sending the count signal spontaneously to its two descendants; layer 

Dd consist of all leaves of level d receiving the counting signal. 

A similar refinement applies to UP. To achieve its specification d layers 

ui;...; Ud can be designed. In layer Vi, 1 G j cd, every node of depth d + 1 -j 

sends the sizes of the subtree rooted by it to its parent. The size is 1 for a leaf and 

1 +size(l) +size(r), where size(l) and size(r) are the sizes of the subtrees rooted 

by its descendants received in the previous layer. At layer Ud, the root, having 

received the sizes of the subtrees of its two descendants, terminates by determining 

the size of the whole tree. 

At this stage, we obtained specifications that are directly implementable. Again, 

we choose CSP (with the extension to dynamic target determination [5]) as the 

programming language for expressing the constructed program. Up to this stage, 

the design was basically language-independent. 

For a layer Dj, i <j < d, we have 

D, :: [ . . . IISEND-SGkll , . . IIRCV_SG,J . . . 1. 

Here Pk is at depth j and is not a leaf (including the root), and Pp is at depth 

j + 1. A leaf of depth j has A, the empty program, at that layer, as do all processes 

at a level different than j and j + 1. Following is the CSP code for these program 

sections: 

SENDSGk :: I-sendk := true ; r-sendk := true ; 

* [1-sendk ; Pl,k,!count( ) + I_sendk := false 

cl 

r_sendk ; P,,k,!count( ) + r_sendk := false 

J. 

A nondeterministic loop is used to enable a process not to commit itself in 

advance to the order in which it communicates with its two descendants. This is a 

‘typical’ CSP programming style. For clarity, we subscript variable names with the 

index of the process to which they belong. 

RCV-SGkt : : u_receivedkr := false ; 

*[ lu-receivedkc; P,,(k,,?count( )+ u_receivedks := true]. 

The reason for having a loop here will become apparent after proceeding to the 

composition stage. Similarly, for a layer Uj, 1 <j G d, we have 

u, :: [ . . . jIRCV_C7’,jl. . . IISEND_CT~/~ . . . ] 

where Pk is at depth d + 1 -j and Pkf is at depth d -j. The code sections are given 

by 
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SEND_CTk 1: u-sendk := true ; 

* [usendk ; Pu(k)!sk + u-sendk := fake]. 

At layer Ur , for the root process R, the SEND-CT section is A, as are the sections 

in Vi for processes not at level d + 1 -j or d -j. 

Again, the reason for having a loop (executed once) is explained below. 

Remarks. (1) We use the same variables of program sections in different layers. 

Had the layers been sequentially composed, this would not work, since the variables 

would become local to the concurrent command, i.e., the layer containing them. 

However, we already anticipate the next step of creating a process from the 

composition of the corresponding sections in each layer, thus variables become 

local to a process, and carry their value from one layer to the next. 

(2) As the construction of this example is presented, it apparently depends on 

preassigning depths to the various processes. This, however, is not so, since the 

depth is reflected in the number of A sections ‘padding’ the real code. By correctly 

composing layer sections to processes, preserving the communication-closeness, all 

the A and the dependence on depth become implicit. 

We now turn to the final stage of the suggested methodology, and compose 

processes out of layer sections, keeping in mind that we have to preserve communi- 

cation closeness. 

There are two natural ways of composing processes. The more straightforward 

one will sequentially compose corresponding sections. This approach would yield, 

after some further simplifications, the following program for an I-process 

I:: P,[~]?count( ); [P~[~jcount( )IIP,[~j!count( )]; 

[P,[l]!slllP,[l]?sr]; P,l,j!sl tsr + 1. 

Although being simpler than the other solution we derive, it has the drawback 

of having insistent communication (i.e., having no possibility of an alternative in 

case the partner is not ready to communicate). We would rather choose a somewhat 

more interesting solution (though more complicated) having the same functionality, 

but having indulgent communications (i.e., having the ability to do something else 

if the partner is busy, coming back later to the communication). The reader 

interested in the difference between insistant and indulgent computation may 

consult [lo]. Besides, the other approach exemplifies folding the whole structure 

into a loop, appropriately sliced. This is the reason for introducing loops, known 

to be traversed once only, in some sections above. 

Actually, in this example the communication closeness is being taken care of 

almost automatically. Given that the root, which has to be known, starts the 

algorithm, though all other processes wait to receive to count( ) signal, only its two 
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descendants will have communication request that will match the roots, by our 

naming convention. Thus, the wave will advance as if level by level. 

By first folding the Dj section with the Dj+l section, we get, for Pk, an I node 

process. 

D k ’ ’ /_Sendk := true ; r_Sendk := true ; U_tX?Ct?iVedk := f&Z ; . . 
* [ 7 u-receivedk ; P,,(k]?count( ) + u-receivedk := true 

u_receivedk ; I_sendk ; &)!count( ) + sendk := false 

0 
u-receivedk ; r_sendk ; Pr(k)!count( ) + r-sendk := false 

It is easy to see that the partition {l}, {2,3} is flattenable faithful slicing. Initially, 

the first guard is enabled while the two others are disabled. After one execution 

of the first alternative, it is now disabled, while the other two become enabled, and 

finally, after one execution of each of the alternatives (2, 3}, the whole loop 

terminates. 

For Pk in L, i.e., a leaf, we obtain a simplified loop, without the two last 

alternatives. 

One can see that a similar procedure yields, for the U-sections andPk an 1 process, 

uk : : kreceivek := true ; r_receivek I= true ; U_Sendk := trUe ; Sk := 1; 

* [I_receivek ; PI(k)?& + Sk := Sk + s/k ; I-receivek := false 

0 

r_receivek ; Pr(k)?srk + sk := sk + srk ; r_receivek := false 
0 

7 /_receiuek ; 7r_receivek ; U_sendk ; Pu(k)!sk + U-Sendk := false 

Again, it is easy to verify that the natural slicing is faithful and flattenable. 

Finally, by merging Dk; uk into one loop, we obtain, for an intermediate node 

process the following program: 

I : : l-send := true ; r-send := true ; u-received := false ; 

I-receive := true ; r-receive := true ; u-send := true ; s := 1; next := false ; 

*[lu_received; P,C1,? count( ) + u-received := true 

cl 

u-received; l-send ; P,(lj!count ( ) + I-send := false 

0 
u-received; r-send; P,,,,!count( )+ r-send := false 

0 
1 next ; 1 l-send ; -I r-send + next := true 

0 

next; l-receive ; Pi,l,?sl + s := s + sl; I-receive := false 
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next; r-receive ; P,(I) ?sr + s := s f sr; r-receive := false 

0 

next; 1 l-receive ; lr_receive ; u-send; P,(I)!s + u-send := false 

1. 

Note the new boolean variable next, added for the sake of making the (U,D) 

slicing faithful. Some of the flag manipulation can be simplified, but we do not 

bother with it here. 

By similar considerations, one gets the following programs for the root R and 

leaf processes L: 

R : : l-send := true ; r-send := true ; 

l-receive := true ; r-receive := true ; s := 1; next := false ; 

* [l-send; PI(~)! count( ) + l-send := false 

Cl 

r-send; PICRj! count( ) + r-send := false 

0 

7 next ; 1 l-send ; 1 r-send + next := true 

cl 

next; l-receive ; PiCR ,?sl + s := s + sl; l-receive := false 

next ; r-receive ; Pr(~ j?sr + s := s + sr; r-receive := false 

0 
next; 7 l-receive ; 7 r-receive + HALT 

1 

Actually, upon encountering HALT, the root R should send towards the 

leaves another communication wave, causing all of them to halt, to have a properly 

terminating program. We skip the details of this extra wave, which are similar to 

the DOWN wave. 

Finally, the program for a leaf process is the following: 

L : : u-received := false ; u-send := true ; next := false ; 

* [ 1 u-received; PuCL, ?count( ) + u-received := true 

0 
1 next; u-received + next := true 

cl 

next; u-send; PUCLj! l--, u-send := false 

I. 

Note again that in this program, two nodes in the tree can be busy in the upward 

wave, while in another part of the tree the downward wave is still ongoing. The 

design assures us of the correct synchronization. 

Had we available the language construct described in the previous section, much 

of the work done in this construction could be done by a compiler. 
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