
Science of Computer Programming 2 (1982) 155-173

North-Holland

DECOMPOSITION OF DISTRIBUTED PROGRAMS INTO
COMMUNICATION-CLOSED LAYERS

Tzilla ELRAD*

Illinois Institute of Technology, Chicago, IL 60616, U.S.A.

Nissim FRANCEZ**
Mathematical Sciences Department, IBM T. J. Watson Research Center, Yorktown Heights, NY
10598. U.S. A.

Communicated by M. Sintzoff

Received December 1982

Revised February 1983

Abstract. The safe decomposition of a distributed program into communication closed layers is

suggested as a superstructure of its decomposition into a collection of communicating processes.

This decomposition may simplify the analysis of a distributed program, as is exemplified by

examples of program verification. A programming language construct to enforce safety of a

decomposition is introduced. The application to systematic construction of distributed programs

is also shown.

1. Introduction

The traditional decomposition of a distributed program is into a collection of

communicating processes (or tasks), where processes are either sequential or contain

nested concurrency. This decomposition prevails in the existing languages for

concurrent and distributed programming. It induces a natural two-level definition

method of its semantics: an a priori semantics is given to whole processes, indepen-

dently of each other, and then the separate process meanings are bound to a joint

meaning. In a denotational semantics context this can be seen, e.g., in [14], or

[6,8]. In the axiomatic context it can be observed in [15], [2], [12], or [3], and in

a temporal context in [9]. An alternative approach defines the meaning of the

whole program in the same level. This can be seen most often in the operational

semantics, given by a centralized, non-deterministic interpreter, e.g., in [l], or in

[4] in the context of weakest precondition semantics.

In this paper we present a different approach, which suggests an alternative

decomposition as a super structure over a decomposition into processes.

* Work was partially supported by NSF Grant MCS-80-17577 at Syracuse University.

** World Trade Visiting Scientist at IBM T.J. Watson Research Center, on sabbatical leave from

Technion, Haifa, Israel.

0167-6423/82/$2.75 @ 1982, Elsevier Science Publishers B.V. (North-Holland)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82311765?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

156 Tz. Elrad, N. France2

According to this decomposition, parts of processes that interact with each other

(and are not interacting with other parts) are grouped together into layers. We

introduce sufficient conditions under which the meaning of the program is such

that it is equivalent to synchronizing all the processes in a given program at layer

boundaries.

Such a decomposition may simplify the analysis of distributed programs, as shown

by examples considering formal program verification. The method is useful in many

other contexts of program analysis, as well as for systematic construction of dis-

tributed programs, as also shown by an example. Another attempt for the

simplification of the analysis of concurrent programs (using shared variables) can

be found in [13]. There, sufficient conditions are introduced to the equivalence of

a concurrent program and its ‘reduction’, causing a program section to be executed

atomically. The approach here is completely different, and is also used for (dis-

tributed) program construction.

We shall use the notation and terminology of CSP [ll] for the concreteness of

the discussion. However, the approach is more general in its nature.

The paper is organized as follows: In Section 2, we define the concepts related

to the safe decomposition method and consider simple decompositions, which do

not cross loop boundaries. In Section 3, we consider more complicated decomposi-

tions, in which loops are also decomposed. In Section 4, we introduce a programming

language construct for the enforcement of safety of a layer. Section 5 contains an

example of using the concepts developed for a systematic construction of a dis-

tributed program.

2. Decomposition into simple communication-closed layers

In this section, an alternative decomposition of a distributed program P =

[PI11 . . . llPn] is suggested. We consider here decompositions called simple, which

will not cross the boundaries of iterations. In Section 3, the decomposition is

extended to loops also.

We first define an equivalence relation which the new decomposition will be

shown to preserve. We assume that a communication graph Gp underlies P, deter-

mining potential communication capabilities among the processes of P, located at

the nodes of Gp. The edges of Gp represent communication channels. For CSP,

an edge connects Pi and Pi iff both contain matching i/o commands addressing

each other. For simplicity, we assume all messages are of the same type. For Ada,

an edge would connect Pi to Pi if one of them can call an entry in the other. Similar

graphs can be constructed for any other language in which processes may com-

municate.

Two distributed programs P and P’ are said to be compatible if Gp = Gp.. The

computations of a distributed program P can be characterized by their externally

observable behavior, consisting of two elements: a (global) state transformation

Communication-closed layers in distributed programs 157

relation RP (capturing also non-termination), and a set of communication histories

HP, describing all the possible communications arising during the computation of

P. The exact description of H depends on the communication primitives used. We

shall take a communication history to be a sequence of triples (i, j, m>, where i, j

are node indices in Gp, and m is a message transferred from node i to node j.

Definition. Two compatible distributed programs P and P’ are equivalent, P = P’,

iff Rp=Rp,. Thus, equivalent programs display identical state transformations, but

may differ in their communication histories.

2.1. Simple communication-closed layers

In order to decompose a program P, we first represent each process Pi as

Pi::S~~...;S~, i=l,. ..,n.

Here, the Si’s are any program segments, including the empty segment, denoted

by n. The introduction of A components allows for d to be uniform over all

i=l,..., n. We call d the depth of the decomposition. This decomposition of a

process is simple, since it does not cross the borders of compound statements, e.g.,

iterations, or even selections.

Definition. (1) For 1 cj s d, the jth simple layer of P, denoted by Li, consists of

Lj : : [Sf 11 . . . Ils;].
(2) The decomposition of P into simple layers (of depth d) is P’ :: LI; . . . ; Ld.

Note that the communication graph of P’ is the union of the graphs of the layers.

In the rest of this section, we shall use ‘layer’ to mean ‘simple layer’; more

general layers are discussed in Section 3.

Obviously, there exist many decompositions of a distributed program into layers.

We shall be interested in such decompositions that preserve the state transformation

behavior of the program, i.e., are equivalent to it. First, we note the following

trivial fact, following immediately from the definitions above.

Lemma. Every program P is compatible with all its decompositions into layers.

Next, we define a sufficient condition for equivalence of such a decomposition

to the original program.

Definition. A layer Li of a distributed program P is communication-closed iff under

no execution of P a communication command in some Si will communicate with

a communication command in some Pi,, not belonging to Sit.

In other words, in any communication in which one of the involved parties

belongs to the considered layer, so does the second party. For readers familiar with

158 Tz. Elrad, N. France2

the terminology used in the axiomatic definition of CSP in [2], we mention an

alternative equivalent formulation of the definition: no two syntactically matching

commands not both belonging to a given layer Lj are semantically matching.

Definition. A decomposition P’ of a distributed program P into layers is safe iff

all the layers are communication-closed.

Using these notions, we are now able to state a sufficient condition for the

equivalence of a program to a decomposition of it into layers.

Theorem. A distributed program P is equivalent to any of its safe decompositions
into layers.

Proof. By induction on d, the depth of the decomposition.

The basic argument involves a detailed case analysis to establish the commutativ-

ity of communications belonging to two different layers with disjoint source and

target processes. Due to this commutativity, one reduces a safe decomposition of

Pofdepthd,P’::Lr;.. . ; Ld to an equivalent safe decomposition of P of depth

d - 1, given by

P”::L1;...;id_l, where~d_l::[S~_l;S~JI...JIS~_l;S~],

and this claim follows by the induction hypothesis. 0

As an example to the commutativity, consider the simple CSP distributed program

P :: [P, :: P*?x; P:!?xllPz :: P1!0; P1!111P3 :: P4?y(lP4 :: P3!2]

and suppose the decomposition P’ is such that

L1 :: [Pz?x; Pz?xllP1!O; PI!l]]A]]A] and L2 :: [A/AllP4?y\IP3!2].

Then, the history

h = (2,1,0X4,3,2)(2,1,1)

would belong to Hi,, but not to HL1;LZ, since the communication between P3 and

P4, belonging to the second layer of P’, was interleaved between the two communica-

tions between PI and Pz, both belonging to the first layer. However, I-IL,-,;.~ contains

an equivalent history

h’ = (2,1,0X2,1,1)(4,3,2)

obtained from h by commuting the last two communications, which are independent.

Other cases are treated similarly. Note that the equivalence implies also that P is

deadlock-free iff all layers of P’ are deadlock-free.

Our claim is that using such decompositions one could simplify various analysis

methods of distributed programs, such as verification or testing, since less computa-

Communication-closed layers in distributed programs 159

tions have to be considered. We exemplify such a simplification in the context of

program verification in Section 2.2.

2.2. Safe decomposition and program verification

In this subsection, we show an application of safe decompositions to program

verification. Several verification techniques for distributed programs expressed in

CSP were suggested, among which [2] and [12] are state-assertional proof methods,

using the usual {p}P{q} notation for partial correctness assertions.

Assume any proof-system H in which partial correctness assertions can be

derived. Let P :: [PI/. . . l/P,,] b e a distributed program, and let P’ :: L1;. . . ; Ld be

a safe decomposition of P into layers. Then, we observe that by the theorem above

the following rule is a sound enhancement of H:

(SD) {qdLl{qd~ *. . > {qd-l}Ld{qd)

kO}p{qd} ’

where each assertion {qj}Lj+l{qj+l}, 0 ~j <d, is provable in H.

In this way the layer boundary points (corresponding to the sequential composi-

tion of the layers) serve as natural synchronization points where an assertion must

hold, even though in the ‘real’ computation it need not be the case that all the II

controls reside simultaneously at a layer boundary. It is as if we are able to ‘freeze’

a local state at the boundary point and let an assertion hold only after all local

states are ‘frozen’.

We shall exemplify the use of the SD rule by verifying a variant of a distributed

program to compute the minimum of n natural numbers al,. . . , a,,, taken from

[12]. The underlying communication graph is the full graph over n vertices. Each

element a, is located at the process M[i]. The overall structure of the program is

MIN :: [M[l][J . . . IIM[n]J(R], w h ere R is a receiver process whose job is to accept

m = mini,i,l, (a,). For brevity we omit all declarations in the following text for the

program of M[i]. For clarity we subscript all variables with their process index,

and introduce mnemonic labels to be able to refer to program sections by their name.

M[i] : :

hiti : my-mini := Ui ; Ci := 1; Senti := false ;

findi:*[q Ci<n; -Senti; M[j]! (my-m&, Ci) + Sf?nti := true
j=l,n

j#i

0

0 Ci<n
j=l,n
jti

; -sent, ; M[j]?(their-mini, CCi)

I;

+ my-mini := min (my-mini,

their-mini); Ci := Cj + CCi

160 Tz. Elrad, N. Francez

fini: [senti + skip
cl

--senti -+ R!my_mini

The details of R are also omitted, and we assume it has the corresponding M?m

command.

The ‘big box’ notation q i=l,n,i+i is an abbreviation for the expanded set of

alternatives, where the case j = i is exluded.

The intuitive explanation of the way the program acts is the following: Inductively,

each process is responsible for maintaining the minimum of some non-empty subset

Of{Ui,..., a,} of cardinality ci, so that these subsets form a partition. At any round

in its main loop, a process may send its local minimum away (together with the

corresponding count), to any other process and exit the loop, or receive a local

minimum and a count from some process and update its own local minimum and

local count to represent the minimum of the union of the two subsets. At the end,

only one process remains, representing the minimum of the whole set (with count

equal to n), sending it to R. The difference from the program in [12] is in the

introduction of counts, to avoid termination depending on CSP’s distributed termi-

nation convention.

In the program text we appended labels to statements, anticipating the intended

safe decomposition. We now define the following layers, using the mnemonic names

derived from the corresponding labels.

INIT :: [init,ll . . , jlinit,\lA],

FIND :: @nd,\l . . . (Ifind,IjA],

FIN :: Vinlll. . . Ilfin,,\iR].

Claim. The decomposition MIN’ : : INIT; FIND ; FIN is safe.

Proof. Trivial (can be verified syntactically). 0

In order to use the SD rule mentioned above, we annotate the layer boundaries

with assertions as follows:

{true}
INIT ;

{yin (my-mini) = ,Efnn(ai) A v Senti = false}
1=l,n i=l,n

FIND ;
(3 1 G iO G n.senti” = false A Vl S i C n.i # iO 1 Senti = true

A my-mini,, = iyf((ai)}

FIN

{m = mft(ai)l.

Communication-closed layers in distributed programs 161

By applying the rule SD we can now deduce {true}M1N{m = min,=i,,(Ui)} which

expresses the required correctness property of the program.

That each layer satisfies the corresponding pre-post assertions relationship can

be derived using the proof systems of [2] or [12], and is simpler than verifying the

whole program within any of the two systems. For example, the proof is relieved

from considering situations in which some processes are still initializing, while

others already left their loop. In the case of [2], these situations would be reflected

in a complicated global invariant.

3. Decomposing loops

In this section we consider more general decompositions into layers. We allow

more complicated layers whose boundaries may cross those of loops. Thus, different

traversals of the same loop may be placed in different layers.

Let S be an iterative statement of the following form:

b
bk;Ck+Tk

1

which we also abbreviate as *[Gi 0 . . . 0 Gk].

Here bi,. . . , bk are the boolean parts of guards (ranging over variables local to

the process in the case of CSP); cl, . . . , ck are the communication parts of guards

(we take ci as ‘skip’ if not explicitly included); TI , . . . , Tk are any program segments

and G, is an abbreviation for bi; ci + Ti, 1 s i d k. A guard b ; c is passable iff b is

true and c matches a complementary i/o command in the process it is addressing.

Also, denote by BS the selection constituting the body of the loop S.

There seems to be a rather elaborate theory of ordinary ‘while-loops’, but not

much about non-deterministic loops as considered here. Hence, we start by identify-

ing several properties of such loops which will be used to describe our intended

decompositions. Since most known programming languages do not contain the

appropriate constructs that would be necessary in order to treat the most general

case of loop decompositions, we shall isolate some simpler special cases and deal

with them.

Remark. In this section, we assume that the loops always terminate. Also, we

disregard the CSP distributed termination convention, and assume that loops

terminate only due to all boolean guards being false.

162 Tz. Elrad, N. France2

Definition. Let A ={il,. . . ,i,}c{l,. . . ,k}. An A-slice of S is

SL a::Gi,O.. . 0 Gi,,,. The A-slice SLA is active if it contains a passable guard.

In other words, an A-slice of a loop S is a fragment of the loop body, consisting

of the collection of guards indexed by elements of A. Since A may be any subset,

an A-slice is an arbitrary grouping of alternatives. We shall be interested in

groupings which are not that arbitrary, and alternatives belonging to the same slice

bear some logical relationship to each other.

Definition. For an A-slice of a loop S, the A-induced loop is * [SL,].

Thus, the A-induced loop repeats executing alternatives of the corresponding

A-slice only.

Definition. Let d = (A,, . . . , Ad) be a partition of (1, . . . , k}, the set of guard

indices of a loop S. We say that d is a faithful-slicing of S iff at every traversal

of the loop, at most one Aj-slice is active, 1 <j G d, Aj E d.

Thus, in a faithful slicing, it is never the case that two guards belonging to different

slices are passable. Obviously, this is a semantic property of the loop S, and usually

cannot be syntactically determined given the partition &. One well-known example

of a faithful slicing occurs when the body of the loop is deterministic, i.e., the

guards exclude each other, and d is the partition to singletons.

Note that the alternative operator ‘Cl’ is both associative and commutative, and

the ordering of the alternatives is immaterial.

Definition. A loop S, faithfully sliced by d = (A 1, . . . , Ad) is called &-flattenable

iff it is equivalent to the sequence of its Aj-induced loops, 1 G i cd, i.e., to

S’ :: * [SL,,]; . . . ; * [SL,,].

Thus, in an .&flattenable loop, each slice is executed repeatedly as long as it is

active, and never attempted anymore thereafter.

We shall exemplify all these notions in the following example program, written

in CSP. It describes a process D(istributor), that inputs from a process A a sequence

of natural numbers, whose sum is accumulated in a local variable, s. The end of

the sequence is sensed by inputing from A the special signal eos(). The sum is

distributed to all members of an array of processes B[i], i = 1, . . . , IV, in any order.

Local flags, sent[i], i = 1, . . . , N are used to control the sending, avoiding no sending

or double sending. The initial state satisfies:

s = 0, more = true, sent[i] = true, i = 1, . . . , N.

Communication-closed layers in distributed programs 163

The loop is given by

S::*[more;A?a+s:=s+a

0
more ; A ?eos () + more := false ; for i := 1 to N do sent[i] := false

0

0 lsent[i]; B[i]!s +sent[i]:= true
i=l.N

I.
We assume guards are numbered in order of appearance. A natural faithful

slicing of S is according to the partition & = (A,, AZ), where A 1 = (1, 2), AZ =

(3,. . . , N +2). It can be easily verified that S is equivalent to S’ :: *[SLA,];

* [SL,,]. Initially, r\r=, sent[i] holds, hence all the guards of SL,, are non-passable.

In order to become passable, the second alternative, receiving eos() from A must

be executed, which falsifies the flag more, and deactivates the Al-slice. This could

be formally proven using the proof-systems in [2] or [12] for CSP. Hence this

program is (A 1, A&flattenable.

Thus, in the local analysis of S, an assertion to the effect that

S = i: Uj A imore A A lsent[i]
j=l i=l,N

holds after some iterations in the loop. Obviously, this is not a loop invariant.

We would like to capture a similar phenomenon in its full breadth, and find a

global assertion to hold after every process executed some number of loop traversals.

This, again, motivates the broader concept of a communication-free layer.

Consider a distributed program P :: [PI/j . . . IlP,,], where some of the processes P,

constitute flattenable loops for appropriate faithful slicings. By adding enough

dummy statements, we can assume that all loops are flattened with the same number,

d, of induced loops.

We can now apply again the definition of a layer, this time taking Sj, the ith

component in the jth layer, as the jth-induced loop in the flattening of the ith

loop, if Pi happens to be a loop. In case such a decomposition is communication-

closed, Theorem 1 can be proved for the non-simple decompositions similarly to

the simple case, given the fact that we deal with loops that terminate and are

flattenable.

The intuitive interpretation of the boundary between successive layers is again

a virtual synchronization point. The states of all the processes are ‘frozen’ at such

a point, and may be shown to satisfy a given assertion. Since the layers are

communication-closed, the ‘real’ execution, which does not synchronize at layer

boundaries, is equivalent to the synchronized one. In particular, if a layer component

is an induced loop, the original loop is ‘frozen’ after a number of traversals, though

the ‘real’ execution might have proceeded to consecutive traversals.

As an example to the application of this way of analysis of a distributed program,

we shall consider a simple example, where we show how to abstract from a pipelining

164 Tz. Elrad, N. Francez

effect. The interested reader is referred to [7] for examples of an attempt to verify

directly a program containing pipelining effects, using (a generalization of) the

cooperating-proof system of [2].

Example. A remote udder. Consider an array P[i], i = 1, . . . , n of processes. The

process P[l] is a source, emitting the elements of a local array a [l, . . . , N]. The

processes P[2], . . . , P[n -11 serve as elements of a pipeline, passing elements ‘from

left to right’. Process P[n] is an adder, summing up all the elements received in a

local variable, s. The ending is signalled by the special tagged message eos(), emitted

by P[l] upon completion of emitting the elements of the array a. Every process

receiving the eos() signal sends it to its right neighbor and halts. When the adder

receives the eos () signal it also halts. Upon termination, the assertion s = Cr= 1 a [k]

should hold.

The special signal eos() is introduced to bypass the distributed termination

convention of CSP, which we excluded here. For brevity, we include a ‘halt’

primitive statement, whose meaning is terminating the process activity. Following

is the text of the full program:

P :: [P[l](] . . . (IP[n]] where
P[l] ::j:= 1; *[j=GN; P[2]!a[j]+j:=j+l

0

j >N; P[2]!eos()+ halt

I?
(l<i<n) P[i]:: f := true ; done := false ;

*[ldone;f;P[i-l]?x-,f:=fulse

II
1 done ; f; P[i - l]?eos () + done := true

cl
idone; lf;P[i+l]!x+f:=true

ci

done ; P[i + l]!eos () + halt

P[n]::s:=O;*[P[n-l]?x+s:=s+x
cl
P[n - l]?eos () + halt

I.

One natural way to reason intuitively about this program is to consider it in

phases, where in the jth phase, the array element a[j] ‘travels’ all the way from

P[l] to P[n] and is added to s, and only then is the next element of the array a

starting its ‘travel’, in another phase. Then, after adding a[j] to s, the assertion

s =I;=, a[k] would hold.

However, s = C’,=, a[k] is not a (global) invariant (in the sense of [2]), since by

the time a[jo] arrives to P[n], more elements might have been emitted into the

pipeline, and j >jO would hold, falsifying the above assertion.

Communication-closed layers in distributed programs 165

We could capture this intuitive understanding of the remote adder program by

considering a safe decomposition of it, behaving as explained, where the phases

are the execution of layers in the decompsotion, with virtual synchronization

between phrases.

The faithful slicing of P,, 1< i <n would be by the partition d = ((1, 2}, {3,4}),

and we use SEND, RECEIVE as abbreviation for the slices. Thus

RECEIVE, : : ldone ; f; P[i - l]?x + f := false

0

idone ; f; P[i - l]?eos () + done := true

SENDi 1: idone; lf;P[i+l]!x+f:=true

u
done ; P[i + l]!eos() + halt

Obviously, P[l] has only a SEND, slice, including the increment of j, while P[n]

has only RECEIVE,, slice, including the addition to s.

The faithfulness of this slicing can be easily verified. The following diagram shows

the safe decomposition which can be easily seen to be equivalent to the original

remote adder program. All the initializations are grouped into one layer, INIT.

Thus, P’ : : INIT: P”, and

PI’ : : L 1 : : [SEND] IIRECEIVE~IIA . . Ml

Lz :: [AIISENDJRECEIVE,jIA . . . Ml

.
L, :: p/j. . . IlAllSEND,_,lJRECElVE”].

In order to give a syntactic expression of this decomposition, we have to para-

metrize more than CSP allows.

Define

L[i] :: [AlI . . . IiAllSENDiIIRECEIVEi+IllAil. . . IIn].
r-l times n-1-itimes

Then our program could be expressed as

P” :: for i := 1 to n do L[i].

In order to prove the safety of this decomposition, one could use the [2]

cooperating proofs, and show that the dynamic matching of i/o guards is as claimed.

Thus, decompositions do not minimize the total effort of analysis, but modularize

it by separation of concerns:

(1) Show the safety of a decomposition (thus guaranteeing its equivalence to the

original program), and

(2) Reason about the virtual synchronization at layer boundaries, which is usually

simpler than direct reasoning about the given program.

166 Tz. Elrad, N. Francez

We applied this method successfully to some tree algorithms, with waves of

communications (see, e.g., [lo]), where the distinguished phases of up-tree and

down-tree can be easily expressed as layers. The construction of one such simple

program is shown in Section 5.

Obviously, one could extend these ideas to more elaborate decompostitions, not

depending on flattenability, but most programming languages do not have the

construct to express the resulting programs.

While passing, we note that suitable safe decomposition could be used to force

program behavior according to the MAX-semantics for concurrency as given in [17].

4. A language construct for enforcing safe decomposability

In this section we suggest a programming language construct that could relieve

the programmer from taking care of explicit synchronization to induce safety of

an intended decomposition into layers. We start by an example which will motivate

the need of that kind of a construct.

Let us return to the example in Section 2, of computing the minimum of a set

A={al,..., a,} of elements. Suppose now that we are interested in computing

repetitively the minimum of k > 1 such sets Aj = {a<, . . . , a’,}, 1 <j < k.
An immediate solution would be to repeat the program MIN of Section 2 k

times, each time with the elements of a new set Ai, by nesting MIN in for-loop:

forj := 1 to k dr,MIN :: [M[l]]] . . . IIM[n]\lZ?].

This certainly constitutes a correct solution, but an inefficient one in terms of

processor utilization. The reason for the inefficiency is again the over-synchroniz-

ation: a computation of Min(Aj+l) cannot start until that of ibEn is ended!

However, one certaintly sees that a more loose synchronization would suffice,

enabling a process that has finished its part in the computation of Aj to proceed

to its part in the computation in Aj+l .
In the other extreme, one could consider embedding R and each M[i] in a loop:

M’[i] : : for j := 1 to k do M[i], and then let

MIN’ :: [M’[l]l] . . . jIM’[n]1jR’].

The solution has no synchronization at all, but is incorrect since it does not

guarantee that when M’[iJ and M’[iJ communicate, they refer to elements of the

same Aj; this would be the case if these two corresponding communication requests

were at the same jth iteration of the corresponding local loops.

Thus, the ultimate solution is obtained by inserting some synchronization that

guarantees that whenever M’[iJ and M’[iJ communicate, they are synchronized

to the same Aj, i.e., are both in their jth iteration of their local loop. We shall not

bother here with a detailed programming of a specific synchronization method (a

recent suggestion for such a method appears in [16]). Rather, we observe that its

Communication-closed layers in distributed programs 167

effect could be interpreted as rendering each activation of MIN as a communication

closed layer!

By adding to the programming language a means for declaring this intention,

the compiler could automatically generate the required synchronization code to

enforce the safety of the layering.

Thus, one would like to describe the solution as

M_MIN :: [MM[1]11. . . @4M[n]@D7], where

MM[i] : : for j := 1 to kdo

layer(j): begin . . . code of M’[i] . . . end layer(j)

od.

Therefore, the programmer is free to write down the unsynchronized version,

and a layer(j) declaration that tells the compiler to generate the required synchroniz-

ation code that enforces every two processes to be in the same iteration when

communicating.

This solution achieves both the efficiency of letting processes ‘run forward’

whenever possible, and also the ease of expressibility, shifting the generation of

synchronization overhead from a programmer to a compiler, who might do it well

enough by using optimization techniques.

As far as program analysis is concerned, obviously the program can be analyzed

in terms of its enforced decomposition and all the advantages mentioned above

again apply.

Since, in general, the automatic deduction of a safe-layer structure of an arbitrary

distributed program is impossible, we believe that a language construct indicating

and enforcing such a structure may turn to be an important control structure,

enhancing better structured concurrent programming.

5. Using communication-closed layers in constructing distributed programs

While in the previous sections we concentrated on the analytic approach, whereby

distributed programs were analyzed in terms of their safe decompositions, we take

a more synthetic approach in this section by considering communication-closed

layers as a tool for the systematic construction of distributed programs.

We propose the following methodology:

(a) Starting with a specification of a whole distributed program, refine this

specification into a sequence of layers specifications.

(b) Implement each layer separately by using any stepwise refinement method

available for concurrent and distributed programming.

(c) Compose the layers into a whole program, preserving their communication-

closeness.

Obviously, the outcome of applying this methodology is a program that is naturally

amendable to safe decompositions. It gives the programmer the usual benefits of

separation of concerns as it is a ‘divide and conquer’ method.

168 Tz. Elrad, N. France2

Since formal specifications of distributed programs and formal manipulation of

such specifications are not advanced enough at the current state of art, we shall

apply step (a) in an informal way. The suggested method may gain much in its

effectiveness once such formal tools will be available. In the following example,

we are not so much interested in the algorithmic consideration of a solution, e.g.,

its efficiency, as we are in the steps involved in its construction. Thus, a straightfor-

ward algorithm is chosen.

Example. Constructing a distributed program to determine the size of a tree.

Problem specification (informal): Suppose we are given a dynamic binary tree of

processes, with a root process R, some intermediate node processes I,, k E K, and

leaf processes L,, q E Q.

Here K and Q are two finite, non-empty index sets. We assume that each process

‘knows’ the identity of its parent and two descendants.

Furthermore, assume that we are guaranteed that the tree structure is fixed

throughout the duration of the algorithm. Design a distributed TCOUNT program

(initiated by the root), to compute the size (i.e., the number of nodes) of the tree.

We assume the following naming convention. The root process R and every

intermediate node process I communicate with their offspring nodes process

through channels 1 and r. Also, each leaf process L and intermediate node process

I communicates with their parent node through a channel u.

We next derive the specifications of two layers, to be called UP and DOWN,

each implementing a communication pattern known as a (unidirectional) wave [lo].

A natural straightforward solution to a problem is obtained by an upgoing wave

of communication, in which each process communicates to its parent the size of

the subtree of which it is the root. However, since the root is the algorithm initiator,

the leaves have to be notified when to start firing. Thus, the upward wave mentioned

above is preceded by a downward wave in which each process notifies its descendants

to initiate counting the subtree which they root.

As a consequence, we get the following two layers specifications:

DOWN- send a count signal in a wave from the root to leaves,

UP - accumulate sizes of subtrees from the leaves to the root.

Thus, the program TCOUNT will be safely decomposable as

TCOUNT :: DOWN; UP.

Had this been the ‘real’ structure, it would be over-synchronized, since no leaf

would start its second, upward wave until all leaves finished the downward wave,

which is not necessary. The final program will loosen this over-synchronization by

taking care of behaving in an equivalent way.

We now proceed in further refining each layer.

In order to achieve the specification of DOWN, assuming the depth of the tree

to be d, a sequence of d layers D1: . . . ; Dd can be designed. In layer Dj, 1 <j < d,

Communication-closed layers in distributed programs 169

every node of depth j receives a counting signal from its parent. As for Di, it

consists of R sending the count signal spontaneously to its two descendants; layer

Dd consist of all leaves of level d receiving the counting signal.

A similar refinement applies to UP. To achieve its specification d layers

ui;...; Ud can be designed. In layer Vi, 1 G j cd, every node of depth d + 1 -j

sends the sizes of the subtree rooted by it to its parent. The size is 1 for a leaf and

1 +size(l) +size(r), where size(l) and size(r) are the sizes of the subtrees rooted

by its descendants received in the previous layer. At layer Ud, the root, having

received the sizes of the subtrees of its two descendants, terminates by determining

the size of the whole tree.

At this stage, we obtained specifications that are directly implementable. Again,

we choose CSP (with the extension to dynamic target determination [5]) as the

programming language for expressing the constructed program. Up to this stage,

the design was basically language-independent.

For a layer Dj, i <j < d, we have

D, :: [. . . IISEND-SGkll , . . IIRCV_SG,J . . . 1.

Here Pk is at depth j and is not a leaf (including the root), and Pp is at depth

j + 1. A leaf of depth j has A, the empty program, at that layer, as do all processes

at a level different than j and j + 1. Following is the CSP code for these program

sections:

SENDSGk :: I-sendk := true ; r-sendk := true ;

* [1-sendk ; Pl,k,!count() + I_sendk := false

cl

r_sendk ; P,,k,!count() + r_sendk := false

J.

A nondeterministic loop is used to enable a process not to commit itself in

advance to the order in which it communicates with its two descendants. This is a

‘typical’ CSP programming style. For clarity, we subscript variable names with the

index of the process to which they belong.

RCV-SGkt : : u_receivedkr := false ;

*[lu-receivedkc; P,,(k,,?count()+ u_receivedks := true].

The reason for having a loop here will become apparent after proceeding to the

composition stage. Similarly, for a layer Uj, 1 <j G d, we have

u, :: [. . . jIRCV_C7’,jl. . . IISEND_CT~/~ . . .]

where Pk is at depth d + 1 -j and Pkf is at depth d -j. The code sections are given

by

170 Tz. Elrad, N. France2

SEND_CTk 1: u-sendk := true ;

* [usendk ; Pu(k)!sk + u-sendk := fake].

At layer Ur , for the root process R, the SEND-CT section is A, as are the sections

in Vi for processes not at level d + 1 -j or d -j.

Again, the reason for having a loop (executed once) is explained below.

Remarks. (1) We use the same variables of program sections in different layers.

Had the layers been sequentially composed, this would not work, since the variables

would become local to the concurrent command, i.e., the layer containing them.

However, we already anticipate the next step of creating a process from the

composition of the corresponding sections in each layer, thus variables become

local to a process, and carry their value from one layer to the next.

(2) As the construction of this example is presented, it apparently depends on

preassigning depths to the various processes. This, however, is not so, since the

depth is reflected in the number of A sections ‘padding’ the real code. By correctly

composing layer sections to processes, preserving the communication-closeness, all

the A and the dependence on depth become implicit.

We now turn to the final stage of the suggested methodology, and compose

processes out of layer sections, keeping in mind that we have to preserve communi-

cation closeness.

There are two natural ways of composing processes. The more straightforward

one will sequentially compose corresponding sections. This approach would yield,

after some further simplifications, the following program for an I-process

I:: P,[~]?count(); [P~[~jcount()IIP,[~j!count()];

[P,[l]!slllP,[l]?sr]; P,l,j!sl tsr + 1.

Although being simpler than the other solution we derive, it has the drawback

of having insistent communication (i.e., having no possibility of an alternative in

case the partner is not ready to communicate). We would rather choose a somewhat

more interesting solution (though more complicated) having the same functionality,

but having indulgent communications (i.e., having the ability to do something else

if the partner is busy, coming back later to the communication). The reader

interested in the difference between insistant and indulgent computation may

consult [lo]. Besides, the other approach exemplifies folding the whole structure

into a loop, appropriately sliced. This is the reason for introducing loops, known

to be traversed once only, in some sections above.

Actually, in this example the communication closeness is being taken care of

almost automatically. Given that the root, which has to be known, starts the

algorithm, though all other processes wait to receive to count() signal, only its two

Communication-closed layers in distributed programs 171

descendants will have communication request that will match the roots, by our

naming convention. Thus, the wave will advance as if level by level.

By first folding the Dj section with the Dj+l section, we get, for Pk, an I node

process.

D k ’ ’ /_Sendk := true ; r_Sendk := true ; U_tX?Ct?iVedk := f&Z ; . .
* [7 u-receivedk ; P,,(k]?count() + u-receivedk := true

u_receivedk ; I_sendk ; &)!count() + sendk := false

0
u-receivedk ; r_sendk ; Pr(k)!count() + r-sendk := false

It is easy to see that the partition {l}, {2,3} is flattenable faithful slicing. Initially,

the first guard is enabled while the two others are disabled. After one execution

of the first alternative, it is now disabled, while the other two become enabled, and

finally, after one execution of each of the alternatives (2, 3}, the whole loop

terminates.

For Pk in L, i.e., a leaf, we obtain a simplified loop, without the two last

alternatives.

One can see that a similar procedure yields, for the U-sections andPk an 1 process,

uk : : kreceivek := true ; r_receivek I= true ; U_Sendk := trUe ; Sk := 1;

* [I_receivek ; PI(k)?& + Sk := Sk + s/k ; I-receivek := false

0

r_receivek ; Pr(k)?srk + sk := sk + srk ; r_receivek := false
0

7 /_receiuek ; 7r_receivek ; U_sendk ; Pu(k)!sk + U-Sendk := false

Again, it is easy to verify that the natural slicing is faithful and flattenable.

Finally, by merging Dk; uk into one loop, we obtain, for an intermediate node

process the following program:

I : : l-send := true ; r-send := true ; u-received := false ;

I-receive := true ; r-receive := true ; u-send := true ; s := 1; next := false ;

*[lu_received; P,C1,? count() + u-received := true

cl

u-received; l-send ; P,(lj!count () + I-send := false

0
u-received; r-send; P,,,,!count()+ r-send := false

0
1 next ; 1 l-send ; -I r-send + next := true

0

next; l-receive ; Pi,l,?sl + s := s + sl; I-receive := false

172 Tz. Elrad, N. France2

next; r-receive ; P,(I) ?sr + s := s f sr; r-receive := false

0

next; 1 l-receive ; lr_receive ; u-send; P,(I)!s + u-send := false

1.

Note the new boolean variable next, added for the sake of making the (U,D)

slicing faithful. Some of the flag manipulation can be simplified, but we do not

bother with it here.

By similar considerations, one gets the following programs for the root R and

leaf processes L:

R : : l-send := true ; r-send := true ;

l-receive := true ; r-receive := true ; s := 1; next := false ;

* [l-send; PI(~)! count() + l-send := false

Cl

r-send; PICRj! count() + r-send := false

0

7 next ; 1 l-send ; 1 r-send + next := true

cl

next; l-receive ; PiCR ,?sl + s := s + sl; l-receive := false

next ; r-receive ; Pr(~ j?sr + s := s + sr; r-receive := false

0
next; 7 l-receive ; 7 r-receive + HALT

1

Actually, upon encountering HALT, the root R should send towards the

leaves another communication wave, causing all of them to halt, to have a properly

terminating program. We skip the details of this extra wave, which are similar to

the DOWN wave.

Finally, the program for a leaf process is the following:

L : : u-received := false ; u-send := true ; next := false ;

* [1 u-received; PuCL, ?count() + u-received := true

0
1 next; u-received + next := true

cl

next; u-send; PUCLj! l--, u-send := false

I.

Note again that in this program, two nodes in the tree can be busy in the upward

wave, while in another part of the tree the downward wave is still ongoing. The

design assures us of the correct synchronization.

Had we available the language construct described in the previous section, much

of the work done in this construction could be done by a compiler.

Communication-closed layers in distributed programs 173

References

[l] K.R. Apt, Formal justification of a proof system for communicating sequential processes, J. ACM

30(1)(1983).
[2] K.R. Apt, N. Francez and W.P. de Roever, A proof system for communicating sequential processes,

ACM-TOPLAS 2(3) (1980).
[3] K.M. Chandy and J. Misra, Proofs of networks of processes, IEEE Trans. Software Engrg. 7(4)

(1981).
[4] Tz. Elrad and N. Francez, Weakest precondition semantics for communicating processes, Proc.

5th International Symposium on Programming, Torino, Lecture Notes in Computer Science 137

(Springer, Berlin, 1982); to appear in Theoret. Comput. Sci.
[5] N. Francez, Extended naming conventions for communicating processes, Proc. 9th ACM-POPL

Symposium, Albuquerque (1982).

[6] N. Francez, C.A.R. Hoare, D.J. Lehmann and W.P. de Roever, Semantics of nondeterminism,

concurrency and communication, J. Comput. System Sci. 19(3) (1979).

[7] N. France2 and S. Katz, Distributed implementation and verification of abstract data types, IBM

Israel Scientific Center Report No. 79 (1980), revised (1982).

[8] N. Francez, D.J. Lehmann and A. Pnueli, A linear history semantics for distributed languages,

Proc. FOCS Conference, Syracuse (1980).
[9] N. Francez and A. Pnueli, A proof method for cyclic programs, Acta Znformar. 9 (1978).
lo] N. Francez and M. Rodeh, Distributed termination without freezing, IEEE Trans. Soffware Engrg.

SE-8, No. 2, May 1982.

1 l] C.A.R. Hoare, Communicating sequential processes, Comm. ACM 21(8) (1978).

[12] G. Levin and D. Gries, A proof technique for communicating sequential process, Acta Informat.
15 (1981).

[13] R.J. Lipton, Reduction: A method of proving properties of parallel programs, Comm. ACM 18(12)

(1975).

[14] R. Milner, A Calculus for Communicating Processes, Lecture Notes in Computer Science 92

(Springer, Berlin, 1980).

[15] S.S. Owicki and D. Gries, An axiomatic proof technique for parallel programs I, Acta Informal.
6 (1976).

[16] F.B. Schneider, Synchronization in distributed programs, ACM-TOPLAS 4(2) (1982).
[17] A. Salwicki and T. Mulder, On algorithmic properties of concurrent programs, manuscript,

Mathematical Institute, Polish Academy of Sciences (1981).

