
Stochastic Processes and their Applications 119 (2009) 2598–2624
www.elsevier.com/locate/spa

Quenched convergence of a sequence of superprocesses
in Rd among Poissonian obstacles

Amandine Véber∗
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Abstract

We prove a convergence theorem for a sequence of super-Brownian motions moving among hard
Poissonian obstacles, when the intensity of the obstacles grows to infinity but their diameters shrink to
zero in an appropriate manner. The superprocesses are shown to converge in probability for the law P
of the obstacles, and P-almost surely for a subsequence, towards a superprocess with underlying spatial
motion given by Brownian motion and (inhomogeneous) branching mechanism ψ(u, x) of the form
ψ(u, x) = u2

+ κ(x)u, where κ(x) depends on the density of the obstacles. This work draws on similar
questions for a single Brownian motion. In the course of the proof, we establish precise estimates for
integrals of functions over the Wiener sausage, which are of independent interest.
c© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Superprocesses in random media

The purpose of this article is to investigate the behaviour of super-Brownian motion among
random obstacles, when the density of these obstacles grows to infinity but their diameter shrinks
to zero in an appropriate manner. More precisely, let us fix d ≥ 2 and a domain D of Rd , and
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let c : Rd
→ [0,∞) be a bounded measurable function. For every ε ∈ (0, 1

2 ), let us define an
obstacle configuration by

Γε =
⋃

x∈Pε

B(x, ε),

where Pε is a Poisson point process on Rd with intensity log(ε−1)c(x)dx if d = 2 and
ε2−dc(x)dx if d ≥ 3, and B(x, ε) denotes the closed ball of radius ε centered at x . This Poisson
point process is defined on a probability space (Ω,F ,P). On a different probability space, let
us also consider a superprocess {Xεt , t ∈ [0,∞)} with critical branching mechanism ψ(u) = u2

and underlying spatial motion given by Brownian motion killed when entering Dc
∪ Γε. Thus,

for each ε, the superprocess Xε can be seen as evolving in a random medium given by Γε. A
realization of {Γε, ε ∈ (0, 1/2)} will be called an environment.

We wish to understand the behaviour of Xε when ε tends to zero. As in most works about
random media, two points of view can be adopted: either we fix an environment (quenched
approach), or we average over the possible realizations of

⋃
ε>0 Γε (annealed approach).

Although the results of this paper are set in the quenched framework, the main ingredients of their
proofs are “annealed-type” calculations. Moreover, the latter approach is also useful in obtaining
a better understanding of where the scaling comes from and of what the limiting process might be.
To simplify the analysis, let us first assume that D = Rd and let us consider a single Brownian
motion ξ , independent of the obstacles. Denote by Px the probability measure under which ξ
starts from x . Let us define the random time Tε as the entrance time of ξ into the set Γε, that is

Tε := inf{t ≥ 0 : ξt ∈ Γε}.

In addition, for all 0 ≤ s ≤ t , we denote by Sε(s, t) the Wiener sausage of radius ε along the
time interval [s, t], defined as

Sε(s, t) = {y ∈ Rd
: inf

s≤r≤t
|ξr − y| ≤ ε} =

⋃
r∈[s,t]

(
ξr + B(0, ε)

)
.

The probability that the Brownian motion ξ hits Γε before time t is equal to the probability
that the center of one of the obstacles lies in Sε(0, t). These centers are given by the Poisson
point process Pε and so, by averaging over the random obstacles and using Fubini’s theorem, we
obtain

E [P0[Tε > t]] = E0
[
P[Pε

∩ Sε(0, t) = ∅]
]
= E0

[
exp−sd(ε)

∫
Sε(0,t)

c(x)dx

]
, (1)

where

sd(ε) =

{
log(ε−1) if d = 2,
ε2−d if d ≥ 3.

In the case c = ν, the integral in (1) is just ν times the volume λ (Sε(0, t)) of the Wiener sausage,
whose asymptotics have been well studied owing to their connections with physical problems
(see e.g. the introduction of [1,2] or [3]). Note that the large-t asymptotics of λ (Sε(0, t)) are
essentially equivalent to its small-ε asymptotics thanks to the equality in law:

λ (S1(0, t))
(d)
= td/2λ

(
St−1/2(0, 1)

)
.
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A classical result of Kesten, Spitzer and Whitman (cf. [4], p.253) states that, if d ≥ 3,

lim
ε→0

sd(ε)λ (Sε(0, t)) = kd t a.s., (2)

where kd = (d − 2)πd/2/Γ (d/2) (k3 = 2π ) is the Newtonian capacity of the unit ball. The
Kesten–Spitzer–Whitman convergence result was in fact stated for the large-time asymptotics
of λ (Sε(0, t)), but a scaling argument gives the previous statement, at least in the sense of
convergence in probability. The convergence in (2) also holds if d = 2 (see [5]), with k2 = π .

It is not hard to deduce from the preceding result that, at least when the function c is
continuous,

lim
ε→0

sd(ε)

∫
Sε(0,t)

c(y)dy = kd

∫ t

0
c(ξs)ds a.s. (3)

It then follows from (1) that

lim
ε→0

E [P0[Tε > t]] = E0

[
exp−kd

∫ t

0
c(ξs)ds

]
.

This argument, which is due to Kac [6], can be interpreted in the following way. When ε tends
to zero, the obstacles become dense in Rd (at least if the function c is everywhere positive), and
the Brownian motion ξt gets absorbed in the obstacles at rate kdc(ξt ).

Going back to our initial problem about killed superprocesses, the result for a single Brownian
particle suggests that the sequence Xε should converge to the superprocess X∗ with branching
mechanism ψ(u, x) = u2

+ kdc(x)u and underlying spatial motion given by Brownian motion.
We shall establish in this work that the distribution of X∗ is, indeed, the limit of the distribution
of Xε as ε tends to 0, in P-probability. Here, the distribution of Xε is a probability measure on the
Skorokhod space DM f (Rd )([0,∞)) of all càdlàg paths with values in M f (Rd) (the space of all

finite measures on Rd ) and the preceding limit is in the sense of weak convergence. A stronger
statement can be made, but only for subsequences: if the sequence εn decreases to 0 fast enough,

Xεn
(d)
→ X∗ as n→∞, P-a.s.

Here,
(d)
→ denotes convergence in distribution. Let us emphasize the meaning of this result: except

for a set of zero P-measure, if we fix an environment, then the sequence of superprocesses Xεn

evolving among these fixed obstacles converges in law to X∗. Theorem 1 and Corollary 1 are
stated in a more general setting, allowing the superprocesses to reside only within a domain D
of Rd .

The question we address in this paper was motivated by analogous works on Brownian motion.
An extensive literature is already available on this topic, reviewed for example in [7]. Owing to
the well-known properties of Poisson point processes, they seem to be a natural way to encode
traps and have been frequently exploited in investigations of the behaviour of Brownian motion
moving among “hard” obstacles, where the particle is killed instantaneously when hitting an
obstacle as described above, or among “soft” obstacles, within which the Brownian particle is
killed at a certain rate. Our approach is close to ideas developed by Kac in [6], whose probabilistic
method differs from the analytic method used by Papanicolaou and Varadhan [8] in a similar
context. Both derive the convergence in the L2(P)-norm of the semigroup of Brownian motion
among random obstacles when the number of obstacles tends to infinity but their diameters tend
to 0 (recall that P denotes the probability measure on the space where the obstacles are defined).
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Subsequently, Brownian motion among traps was studied in different settings, in particular by
Sznitman, who devised the powerful method of enlargement of obstacles (see [7]).

The problem of super-Brownian motion or branching Brownian motion among random
obstacles was addressed recently by Engländer in [9–11], the latter paper dealing with soft
obstacles. However, Engländer considers the supercritical case (instead of critical super-
Brownian motion as we do) and keeps the sizes of obstacles fixed. Within the obstacles, a
particle does not die but branches at a slower rate. His interest is in the long-time asymptotics
of the process and, in particular, the survival probability and the growth rate of the support. His
techniques are mostly analytic, in contrast with the probabilistic tools of the present work.

1.2. Statement of the main result

Let us first introduce some notation and construct the sequence of superprocesses Xε from
the historical superprocess corresponding to a super-Brownian motion on Rd , independent of the
obstacles. We refer to [12] for more details on historical superprocesses and their applications. If
E is a topological space, M f (E) stands for the space of all finite Borel measures on E .

The (Brownian) historical superprocess can be defined as follows. Let W be the set of all
finite continuous paths in Rd , and note that Rd can be viewed as a subset of W by identifying x
with the path of length zero and initial point x . Then, let ξ̃ be the continuous Markov process in
W whose transition kernel is described as follows: If ξ̃0 = (w(r), 0 ≤ r ≤ s) ∈ W , the law of ξ̃t
is the law under Pw(s) of the concatenation of the paths (w(r), 0 ≤ r ≤ s) and (ξr , 0 ≤ r ≤ t).
The historical superprocess H is defined as the superprocess on W with branching mechanism
ψ(u) = u2 and underlying spatial motion given by ξ̃ . Thus, H takes values in M f (W). The
super-Brownian motion X0 on Rd , starting at µ ∈ M f (Rd), can then be recovered from the
historical superprocess starting at µ (which is viewed as a finite measure on the paths of length
zero) through the formula

〈X0
t , f 〉 =

∫
W

Ht (dw) f (w(t))

for all f bounded and measurable and all t ≥ 0. Here, 〈ν, f 〉 denotes the integral of f against
the measure ν.

We exploit this correspondence between the historical superprocess and super-Brownian
motion further to construct the sequence of killed superprocesses which is of interest in this
work. Let E be an open subset of Rd , and recall the definition of the obstacle configuration Γε.
For every ε > 0, the superprocess {Xε,Et , t ∈ [0,∞)} is defined from the historical superprocess
H via the formula

〈Xε,Et , f 〉 =
∫

W
Ht (dw) f (w(t)) I{∀s∈[0,t], w(s)∈E∩Γ c

ε }
,

for all f bounded and measurable, and all t ≥ 0. It is straightforward to verify that Xε,E is
itself a super-Brownian motion with critical branching mechanism ψ(u) = u2 and underlying
spatial motion given by Brownian motion killed when entering Ec

∪ Γε. Furthermore, Xε,E0 is
the restriction of µ to E ∩ Γ c

ε .
Recall that we defined k2 = π and kd =

d−2
Γ (d/2)π

d/2 for d ≥ 3. We also introduce another

superprocess X∗,E , with branching mechanism ψ(u, x) = u2
+ kdc(x)u and underlying spatial

motion given by Brownian motion killed when it exits E .
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In practice, E will be either D or a bounded open subset of D. When there is no ambiguity,
we shall suppress the dependence on E in the notation. We choose a sequence εn such that∑

n | log εn|
−1 <∞ if d = 2, and

∑
n εn| log εn| <∞ if d ≥ 3. For instance, we may fix α > 1

and set εn = exp(−nα) if d = 2 and εn = n−α if d ≥ 3.
We will use the following notation.

• Pµ is the (quenched) probability measure under which H starts at µ ∈ M f (Rd) ⊂ M f (W).
By the preceding correspondence, each superprocess Xε,E then starts under Pµ from the
restriction of µ to E ∩ Γ c

ε . It will be convenient to assume that X∗,E is also defined under Pµ
and starts from the restriction of µ to E .
• To simplify notation, X (n),E will be a shorthand for the killed superprocess with parameter
εn , and P(n),Eµ will be its law under Pµ. Likewise, Pε,Eµ (resp. P∗,Eµ ) will be the law of Xε,E

(resp. X∗,E ) under Pµ.
• For all t ≥ 0 and x ∈ Rd , Pt,x will be a probability measure under which a Brownian motion
ξ on Rd , independent of the obstacles, starts from x at time t .
• T E

:= inf{t ≥ 0 : ξt ∈ Ec
}, Tε := inf{t ≥ 0 : ξt ∈ Γε} and T(n) = Tεn .

We can now state our main result.

Theorem 1. For every µ ∈ M f (D), P-a.s.

P(n),Dµ ⇒ P∗,Dµ as n→∞,

where the symbol⇒ refers to the weak convergence of probability measures.

As an immediate corollary, we also have:

Corollary 1. For every µ ∈ M f (D), the sequence Pε,Dµ converges in P-probability to P∗,Dµ as ε
tends to zero. In other words, for every δ > 0, there exists ε0 > 0 such that for all 0 < ε ≤ ε0,

P
[
d
(
Pε,Dµ ,P∗,Dµ

)
> δ

]
< δ,

where d is the Prohorov metric on M1(DM f (D)[0,∞)) (here, M1(DM f (D)[0,∞)) is the space
of all probability measures on DM f (D)[0,∞)).

The rest of the paper is devoted to the proofs of Theorem 1 and Corollary 1. In Section 2,
we prove certain estimates for the rate of convergence in (3), which are of independent interest.
These estimates are a key ingredient of the proof of Lemma 2 in Section 3. Then, we fix a
bounded open subset B of D and prove the almost sure convergence of the distribution of X (n),B

in two steps. First, we show in Section 3 that to each k-tuple (t1, . . . , tk), there corresponds a set
of P-measure zero outside which (X (n),Bt1 , . . . , X (n),Btk )n≥1 converges in law to (X∗,Bt1 , . . . , X∗,Btk ).
Second, we prove in Section 4 that, with P-probability 1, the sequence of superprocesses X (n),B

is tight in DM f (D)[0,∞). In Section 5, we complete the proof for a general domain D. Starting
with a bounded subset of D is required for technical reasons, to ensure the finiteness of certain
integrals which appear in the proof.

2. Some estimates for the Wiener sausage

Let us define the set B1 as the set of all bounded Borel measurable functions c on Rd such that
‖c‖ ≤ 1, where ‖c‖ denotes the supremum norm of c. We have the following result (we write
Ex for E0,x in the rest of the section).
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Proposition 1. For every t ≥ 0, there exists a constant C = C(t) such that for every ε ∈ (0, 1
2 ],

if d = 2,

sup
c∈B1

sup
x∈R2

Ex

[(
| log ε|

∫
Sε(0,t)

c(y)dy − π
∫ t

0
c(ξs)ds

)2
]
≤

C

| log ε|2
,

and if d ≥ 3,

sup
c∈B1

sup
x∈Rd

Ex

[(
ε2−d

∫
Sε(0,t)

c(y)dy − kd

∫ t

0
c(ξs)ds

)2
]
≤ Cε2

| log ε|2.

Remark 1. In the case c = 1, the bounds of Proposition 1 follow from the known results for
the fluctuations of the volume of the Wiener sausage [13]. However, it does not seem easy to
derive Proposition 1 from the special case c = 1. Note that the latter case suggests that the bound
Cε2
| log ε|2 could be replaced by Cε2

| log ε| if d = 3 and by Cε2 if d ≥ 4. These refinements
will not be needed in our applications.

Proof of Proposition 1 (For d ≥ 3). To simplify notation, we prove the desired bound only for
t = 1. A scaling argument then gives the result for any t ≥ 0. Let us set

h(ε) = sup
c∈B1

sup
x∈Rd

Ex

(ε2−d
∫

Sε(0,1)
c(y)dy − kd

∫ 1

0
c(ξs)ds

)2
 .

As a first step, let us notice that∫
Sε(0,1)

c(y)dy =
∫

Sε(0,1/2)
c(y)dy +

∫
Sε(1/2,1)

c(y)dy −
∫

Sε(0,1/2)∩Sε(1/2,1)
c(y)dy.

Also,

ε2−d
∫

Sε(0,1/2)
c(y)dy − kd

∫ 1/2

0
c(ξs)ds

= ε2−d2−d/2
∫

S̃
ε
√

2(0,1)
c

(
z
√

2

)
dz −

kd

2

∫ 1

0
c

(
ξ̃s
√

2

)
ds,

where ξ̃s =
√

2 ξs/2 for all s ≥ 0 and S̃ε(a, b) is the Wiener sausage associated to ξ̃ . Since the

function c̃(z) = c
(

z
√

2

)
also belongs to B1, we obtain that

Ex

(ε2−d
∫

Sε(0,1/2)
c(y)dy − kd

∫ 1/2

0
c(ξs)ds

)2
 ≤ 1

4
h(ε
√

2).

Likewise, using the Markov property at time 1
2 and the preceding argument, we have

Ex

(ε2−d
∫

Sε(1/2,1)
c(y)dy − kd

∫ 1

1/2
c(ξs)ds

)2
 ≤ 1

4
h(ε
√

2).

On the other hand, we have λ (Sε(0, 1/2) ∩ Sε(1/2, 1)) = λ
(
S′ε(0, 1/2) ∩ S′′ε (0, 1/2)

)
, where

ξ ′t = ξ1/2−t − ξ1/2 and ξ ′′t = ξ1/2+t − ξ1/2 for every t ∈ [0, 1/2], and S′ε(0, 1/2), resp.
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S′′ε (0, 1/2), denotes the Wiener sausage with radius ε associated to ξ ′, resp. ξ ′′, along the time
interval [0, 1/2]. Since ξ ′ and ξ ′′ are independent Brownian motions, we can use the following
consequence of Corollary 3-2 in [5], and of [13], p.1012: There exists a constant K1(d) > 0 such
that for every ε ∈ (0, 1/2]

E
[
λ (Sε(0, 1/2) ∩ Sε(1/2, 1))2

]
≤


K1ε

4, d = 3
K1ε

8
| log ε|2, d = 4

K1ε
2d , d ≥ 5.

Coming back to the definition of h(ε), and using the triangle inequality in L2, the fact that

Ex

[(∫
Sε(0,1/2)∩Sε(1/2,1)

c(y)dy

)2
]
≤ E

[
λ (Sε(0, 1/2) ∩ Sε(1/2, 1))2

]
and the preceding inequalities, we obtain

h(ε) ≤ sup
c∈B1

sup
x∈Rd

Ex

(ε2−d
∫

Sε(0,1/2)
c(y)dy

+ ε2−d
∫

Sε(1/2,1)
c(y)dy − kd

∫ 1

0
c(ξs)ds

)2
1/2

+Ex

[
ε4−2d

(∫
Sε(0,1/2)∩Sε(1/2,1)

c(y)dy

)2
]1/2


2

≤

{(
1
2

h(ε
√

2)+ 2u(ε)

)1/2

+ K ′1ψd(ε)

}2

, (4)

where ψd(ε) = ε (resp. ε2
| log ε|, resp. ε2) if d = 3 (resp. d = 4, resp. d ≥ 5) and

u(ε) = sup
c∈B1

sup
x∈Rd

∣∣∣∣∣Ex

[(
ε2−d

∫
Sε(0,1/2)

c(y)dy − kd

∫ 1/2

0
c(ξs)ds

)

×

(
ε2−d

∫
Sε(1/2,1)

c(y)dy − kd

∫ 1

1/2
c(ξs)ds

)]∣∣∣∣∣ .
Applying the Markov property at time 1

2 , we have

u(ε) = sup
c∈B1

sup
x∈Rd

∣∣∣∣∣Ex

[(
ε2−d

∫
Sε(0,1/2)

c(y)dy − kd

∫ 1/2

0
c(ξs)ds

)
v(ε, ξ1/2)

]∣∣∣∣∣ ,
where

v(ε, z) = Ez

[
ε2−d

∫
Sε(0,1/2)

c(y)dy − kd

∫ 1/2

0
c(ξs)ds

]
.

We now use the following lemma.
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Lemma 1. There exists a constant K2 > 0 such that for all z ∈ Rd , ε ∈ (0, 1
2 ] and c ∈ B1

|v(ε, z)| ≤ K2 ε.

We postpone the proof of Lemma 1 and complete the case d ≥ 3 of the Proposition. By Lemma 1,
we have

|u(ε)| ≤ K2 ε sup
c∈B1

sup
x∈Rd

Ex

(ε2−d
∫

Sε(0,1/2)
c(y)dy − kd

∫ 1/2

0
c(ξs)ds

)2
1/2

≤
K2

2
εh(ε
√

2)1/2.

From (4), we obtain for every ε ∈ (0, 1
2 ]

h(ε) ≤

((
1
2

h(ε
√

2)+ K2εh(ε
√

2)1/2
)1/2

+ K ′1ψd(ε)

)2

.

Let us set g(ε) = ε−1h(ε)1/2. We thus have for ε ∈ (0, 1
2 ]:

g(ε) ≤
(

g(ε
√

2)2 +
√

2K2g(ε
√

2)
)1/2
+ K ′1ε

−1ψd(ε). (5)

Fix r ∈ (1/4, 1/2] and set un = g(r2−n/2) for every integer n ≥ 0. Rewriting (5) in terms of un
and noting that ε−1ψd(ε) = 1 if d = 3 and ε−1ψd(ε) = o(1) as ε→ 0 if d ≥ 4, we obtain for a
constant K ′′1 > 0 (independent of n)

un+1 ≤ (u
2
n +
√

2K2un)
1/2
+ K ′′1 = un

(
1+

√
2K2

un

)1/2

+ K ′′1 ≤ un +

√
2K2

2
+ K ′′1 .

It follows that un ≤ u0 + n
(
K22−1/2

+ K ′′1
)

for every n ≥ 0, from which we can conclude that
there exists a constant K3 such that for all ε ∈ (0, 1/2],

g(ε) ≤ K3| log ε|

and thus

h(ε) ≤ K 2
3ε

2
| log ε|2. �

Proof of Lemma 1. We may assume that z = 0, and we fix c ∈ B1 (the constant K2 will not
depend on c). First, we have

E0

[
kd

∫ 1/2

0
c(ξs)ds

]
= kd

∫
Rd

dyc(y)
∫ 1/2

0

ds

(2πs)d/2
exp

(
−
|y|2

2s

)
. (6)

Let us define the random times τε(y) and Lε(y) for all ε > 0 and y ∈ Rd by

τε(y) = inf{t ≥ 0 : |ξt − y| ≤ ε},

Lε(y) = sup{t ≥ 0 : |ξt − y| ≤ ε},
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with the conventions that inf∅ = +∞ and sup∅ = 0. We thus have

E0

[∫
Sε(0, 1

2 )

c(y)dy

]
=

∫
Rd

dyc(y)P0

[
τε(y) ≤

1
2

]
=

∫
Rd

dyc(y)P0

[
0 < Lε(y) ≤

1
2

]
+

∫
Rd

dyc(y)P0

[
τε(y) ≤

1
2
< Lε(y)

]
. (7)

On the one hand,∣∣∣∣∫ dyc(y)P0

[
τε(y) ≤

1
2
< Lε(y)

]∣∣∣∣ ≤ ∫ dyP0

[
τε(y) ≤

1
2
≤ Lε(y)

]
.

We have∫
dyP0

[
τε(y) ≤

1
2
≤ Lε(y)

]
= E0 [λ (Sε (0, 1/2) ∩ Sε (1/2,∞))]

= E0
[
λ
(
Sε (0, 1/2) ∩ S′ε (0,∞)

)]
,

where S′ε denotes the Wiener sausage associated to a Brownian motion ξ ′ independent of ξ and
also started from 0 under P0. If d = 3, it is easily checked that

E0
[
λ
(
Sε (0, 1/2) ∩ S′ε (0,∞)

)]
= O(ε2) (8)

(use the fact that P0
[
y ∈ S′ε(0,∞)

]
=

ε
|y| ∧ 1, together with the bound (3.d) in [13]). If d ≥ 4,

E0
[
λ
(
Sε (0, 1/2) ∩ S′ε (0,∞)

)]
= εdE0

[
λ
(

S1

(
0, ε−2/2

)
∩ S′1 (0,∞)

)]
=

{
O(ε4
| log ε|), if d = 4,

O(εd), if d ≥ 5
(9)

by [13], p. 1010.
Let νε,y(dz) denote the equilibrium measure of the ball B(y, ε), that is the unique finite

measure on the sphere ∂B(y, ε) such that for every x with |x − y| > ε,

Px [τε(y) <∞] =
∫
νε,y(dz)G(z − x),

where G(z) =
∫
∞

0 (2πs)−d/2 exp(−|z|2/2s)ds = cd |y|2−d is the Green function of d-
dimensional Brownian motion (cd is a constant depending only on d). By a classical formula
of probabilistic potential theory (see [14], p. 61–62) we have

P0

[
0 < Lε(y) ≤

1
2

]
=

∫ 1/2

0
ds
∫
νε,y(dz)

1

(2πs)d/2
exp

(
−
|z|2

2s

)
.

It is well known that νε,y = kdε
d−2πε,y , where πε,y denotes the uniform distribution on the

sphere of radius ε centered at y. Recalling (6)–(9), we can write

|v(ε, z)| =

∣∣∣∣∣kd

∫
Rd

dyc(y)
∫ 1/2

0

ds

(2πs)d/2

{∫
πε,y(dz)

(
e−|z|

2/2s
− e−|y|

2/2s
)}∣∣∣∣∣

+ O(φd(ε))
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≤ kd

∫
Rd

dy
∫ 1/2

0

ds

(2πs)d/2

{∫
πε,y(dz)

∣∣∣e−|z|2/2s
− e−|y|

2/2s
∣∣∣}+ O(φd(ε))

where φd(ε) = ε (resp. ε2
| log ε|, resp. ε2) if d = 3 (resp. d = 4, resp. d ≥ 5). It follows that∫

|y|≤10ε
dy
∫ 1/2

0

ds

(2πs)d/2

∫
πε,y(dz)

∣∣∣e−|z|2/2s
− e−|y|

2/2s
∣∣∣

≤ 2
∫
|z|≤11ε

dz
∫ 1/2

0

ds

(2πs)d/2
e−|z|

2/2s
≤ 2

∫
|z|≤11ε

dz G(z) = O(ε2).

On the other hand, we can find constants C and C ′ such that if |y| > 10ε and |z − y| = ε,∣∣∣∣exp
(
−
|z|2

2s

)
− exp

(
−
|y|2

2s

)∣∣∣∣ ≤ C

∣∣∣∣ |z|2 − |y|2s

∣∣∣∣ exp
(
−
|y|2

4s

)
≤ C ′ε

|y|

s
exp

(
−
|y|2

4s

)
.

Thus, with a constant K which may vary from line to line, we have∫
|y|>10ε

dy
∫ 1/2

0

ds

(2πs)d/2

∫
πε,y(dz)

∣∣∣∣exp
(
−
|z|2

2s

)
− exp

(
−
|y|2

2s

)∣∣∣∣
≤ K ε

∫
|y|>10ε

dy|y|
∫ 1/2

0
dss−d/2−1 exp

(
−
|y|2

4s

)
= K ε

∫
|y|>10ε

dy|y|1−d
∫ 1/(2|y|2)

0
ds′s′−d/2−1e−1/4s′

≤ K ε.

Combining the above, the proof of Lemma 1 is complete. �

Proof of Proposition 1 (For d = 2). Let us define

h(ε) = sup
c∈B1

sup
x∈Rd

E

(| log ε|
∫

Sε(0,1)
c(y)dy − π

∫ 1

0
c(ξs)ds

)2
 .

By Corollary 3-2 in [5], we have

E

[
λ

(
Sε

(
0,

1
2

)
∩ Sε

(
1
2
, 1
))2

]
≤

K1

| log ε|4
.

The same technique as in the previous case yields

h(ε) ≤

(1
2

h(ε
√

2)+ h(ε
√

2)1/2 sup
c∈B1

sup
x∈R2
|v(ε, z)|

)1/2

+

√
K1

| log ε|

2

, (10)

where

v(ε, z) = Ez

[
| log ε|

∫
Sε(0,1/2)

c(y)dy − π
∫ 1/2

0
c(ξs)ds

]
.
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We now use the following result, whose rather technical proof is deferred to the Appendix: There
exists a constant K2 such that, for ε ∈ (0, 1/2],

sup
c∈B1

sup
z∈Rd
|v(ε, z)| ≤

K2

| log ε|
. (11)

Hence, if g(ε) = | log ε|h(ε)1/2, we have for ε ∈ (0, 1/2],

g(ε) ≤

(
1
2

(log ε)2

(log ε
√

2)2
g(ε
√

2)2 + K2
| log ε|

| log ε
√

2|
g(ε
√

2)
)1/2

+

√
K1. (12)

From (12), we can use arguments similar to the case d ≥ 3 to infer that the function g(ε) is
bounded over (0, 1/2]. Thus, there exists a constant K3 such that for all ε ∈ (0, 1/2],

h(ε) ≤
K3

| log ε|2
. �

3. Almost sure convergence of the finite-dimensional distributions of X(n),B

In the following, we fix a bounded open subset B of D and consider only the superprocesses
killed outside B. We therefore suppress the dependence on B in the notation. In particular,
T = T B .

The following proposition is the first step in the proof of Theorem 1.

Proposition 2 (Convergence of the Finite-dimensional Distributions). Let µ ∈ M f (B), p ∈ N
and t1 < · · · < tp ∈ [0,∞). Then, under Pµ

(X (n)t1 , . . . , X (n)tp
)
(d)
→ (X∗t1 , . . . , X∗tp

)

as n→∞, on a set of P-probability 1.

Proof of Proposition 2. We fix an environment. Let p ∈ N, 0 ≤ t1 < · · · < tp and
f1, . . . , f p ∈ Bb+(Rd) be measurable, nonnegative and bounded functions. In the following,
we shall denote (t1, . . . , tp) by t and ( f1, . . . , f p) by f.

Let µ ∈ M f (B). Following the notation in [15], we have:

Eµ

[
exp−

p∑
i=1

〈Xεti , fi 〉

]
= exp−〈µ,wε0〉,

Eµ

[
exp−

p∑
i=1

〈X∗ti , fi 〉

]
= exp−〈µ,w∗0〉,

where wε = (wεt (x); t ≥ 0, x ∈ B) and w∗ = (w∗t (x); t ≥ 0, x ∈ B) are the unique
nonnegative solutions to the following integral equations: for all x ∈ B and t ≥ 0,

wεt (x)+ Et,x

[∫
∞

t
dswεs (ξs)

2I{s<T∧Tε}

]
=

p∑
i=1

Et,x
[

fi (ξti )I{ti<T∧Tε}
]
, (13)

w∗t (x)+ Et,x

[∫
∞

t
ds
(
w∗s (ξs)

2
+ kdc(ξs)w

∗
s (ξs)

)
I{s<T }

]
=

p∑
i=1

Et,x
[

fi (ξti )I{ti<T }
]
,

(14)
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where by convention Et,x [ f (ξs)] = 0 if s < t . By the standard argument of the proof of the
Feynman–Kac formula, the integral equation (14) for w∗ is equivalent to

w∗t (x)+ Et,x

[∫
∞

t
dsw∗s (ξs)

2e−kd
∫ s

t c(ξu)du I{s<T }

]
=

p∑
i=1

Et,x

[
fi (ξti )e

−kd
∫ ti

t c(ξu)duI{ti<T }

]
. (15)

The equivalence of the two integral equations (14) and (15) corresponds to the well-known fact
that super-Brownian motion with branching mechanism ψ(u, x) = u2

+ kdc(x)u can also be
constructed as the superprocess with branching mechanism ψ(u) = u2 and underlying spatial
motion given by Brownian motion killed at rate kdc(x).

Remark 2. Since wε and w∗ are nonnegative, (13) and (14) imply that w∗t and wεt are equal to
zero whenever t > tp (recall that by convention, the right-hand side of (13) or (14) is zero when
t > tp). Likewise, wεt (x) = 0 if x ∈ Γε ∩ B, for every t ≥ 0.

By integrating over B the difference between (13) and (15), we obtain:∫
B

dx |wεt (x)− w
∗
t (x)| ≤

∫
B

dx

∣∣∣∣∣
p∑

i=1

Et,x

[
fi (ξti )I{ti<T }

(
I{ti<Tε} − e−kd

∫ ti
t c(ξu)du

)]∣∣∣∣∣
+

∫
B

dx

∣∣∣∣Et,x

[∫
∞

t
dsI{s<T }

(
I{s<Tε} − e−kd

∫ s
t c(ξu)du

)
wεs (ξs)

2
]∣∣∣∣

+

∫
B

dx

∣∣∣∣Et,x

[∫
∞

t
dse−kd

∫ s
t c(ξu)duI{s<T }(w

∗
s (ξs)

2
− wεs (ξs)

2)

]∣∣∣∣ . (16)

Let us start with the third term in the right-hand side of (16). The functions wε and w∗ are
bounded by Cf :=

∑p
i=1 ‖ fi‖, hence bounding I{s<T } by IB(ξs) and e−kd

∫ s
t c(ξu)du by 1 yields∫

B
dx

∣∣∣∣Et,x

[∫
∞

t
dse−kd

∫ s
t c(ξu)duI{s<T }(w

∗
s (ξs)

2
− wεs (ξs)

2)

]∣∣∣∣
≤ 2Cf

∫
B

dxEt,x

[∫
∞

t
dsIB(ξs)|w

∗
s (ξs)− w

ε
s (ξs)|

]
= 2Cf

∫
∞

t
ds
∫

B×B
dxdz |w∗s (z)− w

ε
s (z)|ps−t (x, z)

≤ 2Cf

∫
∞

t
ds
∫

B
dz|w∗s (z)− w

ε
s (z)|. (17)

In the preceding estimates, pr (·, ·) denotes the transition density at time r of d-dimensional
Brownian motion. The last inequality stems from the observation that

∫
B ps−t (x, z)dx =∫

B ps−t (z, x)dx ≤ 1.
We next show that the first two terms of (16) converge towards 0 P-a.s. The key ingredient is

the following result.

Lemma 2. Let t1 ∈ [0,∞) and let f ∈ Bb+(Rd) be a bounded nonnegative measurable
function. Then, there exists a constant K = K (c, t1, d) such that, for every t ∈ [0,∞), x ∈ B



2610 A. Véber / Stochastic Processes and their Applications 119 (2009) 2598–2624

and ε ∈ (0, 1/2), if d = 2

E
[

Et,x

[
f (ξt1)I{t1<T }

(
I{t1<Tε} − e−π

∫ t1
t c(ξu)du

)]2
]
≤ K‖ f ‖2

1
| log ε|

,

and if d ≥ 3,

E
[

Et,x

[
f (ξt1)I{t1<T }

(
I{t1<Tε} − e−kd

∫ t1
t c(ξu)du

)]2
]
≤ K ‖ f ‖2 ε| log ε|.

The proof of Lemma 2 is postponed until the end of the section. Let us temporarily fix
t ∈ [0, tp]. Applying the lemma with ε = εn , we obtain for every δ > 0 and every i ∈ {1, . . . , p}

P
[∫

B

∣∣∣Et,x

[
fi (ξti )I{ti<T }(I{ti<T(n)} − e−kd

∫ ti
t c(ξu)du)

]∣∣∣ dx > δ

]
≤

1

δ2 E

[(∫
B

∣∣∣Et,x

[
fi (ξti )I{ti<T }(I{ti<T(n)} − e−kd

∫ ti
t c(ξu)du)

]∣∣∣ dx

)2
]

≤
λ(B)

δ2

∫
B

E
[

Et,x

[
fi (ξti )I{ti<T }(I{ti<T(n)} − e−kd

∫ ti
t c(ξu)du)

]2
]

dx

≤

{
λ(B)2 K ‖ fi‖

2δ−2
| log εn|

−1 if d = 2,
λ(B)2 K ‖ fi‖

2δ−2 εn| log εn| if d ≥ 3,

which is summable by our assumptions on (εn)n≥1. Hence, by the Borel–Cantelli lemma,

P-a.s.,
∫

B

∣∣∣Et,x

[
fi (ξti )I{ti<T }(I{ti<T(n)} − e−kd

∫ ti
t c(ξu)du)

]∣∣∣ dx → 0

as n tends to infinity. The first term of (16) is bounded above by a finite sum of such terms,
therefore it converges to 0 P-a.s, for each fixed t ∈ [0, tp].

Let us set

Af,t :=

{
(ω, t) ∈ Ω × [0, tp] :

∫
B

dx

∣∣∣∣∣Et,x

[
p∑

i=1

fi (ξti )I{ti<T }(I{ti<T(n)}

−e−kd
∫ ti

t c(ξu)du)

]∣∣∣∣∣→ 0

}
.

If λ1 denotes the Lebesgue measure on R, we have by Fubini’s theorem P ⊗ λ1(Ac
f,t) =∫ tp

0 dtP
(
{ω : (ω, t) ∈ Ac

f,t}
)
= 0, which gives (i) in the following lemma:

Lemma 3. (i) There exists a measurable subset Ω̃f,t of Ω , with P(Ω̃f,t) = 0, such that for every
ω ∈ Ω \ Ω̃f,t,∫

B

∣∣∣∣∣Et,x

[
p∑

i=1

fi (ξti )I{ti<T }

(
I{ti<T(n)} − e−kd

∫ ti
t c(ξu)du

)]∣∣∣∣∣ dx → 0 as n→∞

for all t ≥ 0, except for t belonging to a Lebesgue null subset T̃f,t,ω of R+.
(ii) There exists also a measurable subset Ω̂f,t of Ω , with P(Ω̂f,t) = 0, such that for every

ω ∈ Ω \ Ω̂f,t,
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∞

0
ds
∫

B
dx
∣∣∣E0,x

[
I{s<T }

(
I{s<T(n)} − e−kd

∫ s
0 c(ξu)du

)
w
(n)
s+t (ξs)

2
]∣∣∣→ 0 as n→∞

for all t ≥ 0, except on a Lebesgue null subset T̂f,t,ω of R+. Here, w(n) = wεn is the function
given by (13) corresponding to the superprocess X (n).
(iii) Finally, for all x ∈ B there exists a negligible set Ωf,t,0(x) outside which∣∣∣∣∣E0,x

[
p∑

i=1

fi (ξti )I{ti<T }

(
I{ti<T(n)} − e−kd

∫ ti
0 c(ξu)du

)]∣∣∣∣∣
and ∣∣∣∣E0,x

[∫
∞

0
dsI{s<T }

(
I{s<T(n)} − e−kd

∫ s
0 c(ξu)du

)
w(n)s (ξs)

2
]∣∣∣∣

converge to 0 as n→∞.

Both (ii) and (iii) can be obtained from Lemma 2 in a way similar to the derivation of (i). Note
that in (ii), we may replace the integral over [0,∞) by the integral over [0, tp] (since w(n)r ≡ 0 if

r ≥ tp) and that the functions w(n)r are uniformly bounded by Cf.
The first term of the right-hand side of (16), with ε = εn , converges to 0 as n→∞ provided

that ω 6∈ Ω̃f,t and t 6∈ T̃f,t,ω, by Lemma 3 (i). For the second term, we have∫
B

dx

∣∣∣∣ Et,x

[∫
∞

t
dsI{s<T }

(
I{s<T(n)} − e−kd

∫ s
t c(ξu)du

)
w(n)s (ξs)

2
]∣∣∣∣

=

∫
B

dx

∣∣∣∣ E0,x

[∫
∞

0
dsI{s<T }

(
I{s<T(n)} − e−kd

∫ s
0 c(ξu)du

)
w
(n)
s+t (ξs)

2
]∣∣∣∣

≤

∫
∞

0
ds
∫

B
dx
∣∣∣E0,x

[
I{s<T }

(
I{s<T(n)} − e−kd

∫ s
0 c(ξu)du

)
w
(n)
s+t (ξs)

2
]∣∣∣ , (18)

which converges to 0 as n→∞ by Lemma 3 (ii), if ω 6∈ Ω̂f,t and t 6∈ T̂f,t,ω.

Finally, for ω ∈
(
Ω̃f,t ∪ Ω̂f,t

)c
and t ∈

(
T̃f,t,ω ∪ T̂f,t,ω

)c
, the first two terms of the right-hand

side of (16) converge to 0 as n→∞. Recalling (17), we obtain∫
B

dx |w(n)t (x)− w∗t (x)| ≤ bn(t)+ 2Cf

∫ tp

t
ds
∫

B
dz |w(n)t (z)− w∗t (z)|,

where bn(t)→ 0 as n→∞ provided ω and t are as above. Besides, for every t ,

|bn(t)| ≤ 2λ(B)(1+ tp)(Cf + C2
f ). (19)

Set for every t ∈ [0, tp],

Gn(t) :=
∫

B
dx |w(n)tp−t (x)− w

∗
tp−t (x)|.

Then,

Gn(t) ≤ bn(tp − t)+ Kf

∫ t

0
ds Gn(s),

where Kf := 2Cf. By iterating this inequality as in the proof of Gronwall’s lemma, we obtain for
all k ≥ 1, n ≥ 1 and t ∈ [0, tp]
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Gn(t) ≤ bn(tp − t)+
k−2∑
i=0

K i+1
f

∫ t

0
ds1

∫ s1

0
ds2 . . .

∫ si

0
dsi+1 bn(tp − si+1)

+ K k
f

∫ t

0
ds1

∫ s1

0
ds2 . . .

∫ sk−1

0
dsk Gn(sk)

≤ bn(tp − t)+
k−2∑
i=0

K i+1
f

∫ t

0
ds1

∫ s1

0
ds2 . . .

∫ si

0
dsi+1 bn(tp − si+1)

+ λ(B)K k+1
f

tk
p

k!
.

Fix ε > 0 and let k ≥ 2 be such that λ(B)K k+1
f

tk
p

k! ≤
ε
2 . For ω 6∈

(
Ω̃f,t ∪ Ω̂f,t

)
, bn(r) converges

to 0 as n→∞ except on a Lebesgue null set of values of r , and thus by dominated convergence∫ t

0
ds1

∫ s1

0
ds2 . . .

∫ si

0
dsi+1 bn(tp − si+1)→ 0

for every t ∈ [0, tp] and i ∈ {0, . . . , k− 2}. In particular, for such ω and for every t ∈ [0, tp], we
have

K i+1
f

∫ t

0
ds1

∫ s1

0
ds2 . . .

∫ si

0
dsi+1 bn(tp − si+1) ≤

ε

2k

for all n sufficiently large. If moreover t is such that tp− t ∈
(

T̃f,t,ω ∪ T̂f,t,ω

)c
, then we have also

bn(tp − t) ≤ ε
2k if n is large. Hence, we have Gn(t) ≤ ε when n is large. Since ε was arbitrary,

we can conclude that for all ω and t as specified above, Gn(t) converges to 0. Equivalently, for

all ω ∈
(
Ω̃f,t ∪ Ω̂f,t

)c
and t ∈

(
T̃f,t,ω ∪ T̂f,t,ω

)c
,

lim
n→∞

∫
B

dx |w(n)t (x)− w∗t (x)| = 0. (20)

We next consider the asymptotic behaviour of |w(n)0 (x)− w∗0(x)|. In the same way as in (16)
but now without integrating over B, we have for every x ∈ B

|w
(n)
0 (x)− w∗0(x)| ≤

∣∣∣∣∣E0,x

[
p∑

i=1

fi (ξti )I{ti<T }

(
I{ti<T(n)} − e−kd

∫ ti
0 c(ξu)du

)]∣∣∣∣∣
+

∣∣∣∣E0,x

[∫
∞

0
dsI{s<T }

(
I{s<T(n)} − e−kd

∫ s
0 c(ξu)du

)
w(n)s (ξs)

2
]∣∣∣∣

+ 2CfE0,x

[∫
∞

0
dsIB(ξs)|w

∗
s (ξs)− w

(n)
s (ξs)|

]
. (21)

Let us fix x ∈ B. By Lemma 3 (iii), there exists a P-negligible set Ωf,t,0(x) outside which the
first two terms in the right-hand side of (21) converge to 0. Besides, for any δ > 0,

E0,x

[∫
∞

0
dsIB(ξs)|w

∗
s (ξs)− w

(n)
s (ξs)|

]
=

∫
∞

0
ds
∫

B
dz ps(x, z)|w∗s (z)− w

(n)
s (z)|

≤ 2Cfδ +
1

(2πδ)d/2

∫
∞

δ

ds
∫

B
dz |w∗s (z)− w

(n)
s (z)|,



A. Véber / Stochastic Processes and their Applications 119 (2009) 2598–2624 2613

using the bound ps(x, z) ≤ (2πδ)−d/2 if s ≥ δ. If in addition ω ∈
(
Ω̃f,t ∪ Ω̂f,t

)c
, then by (20)

and dominated convergence (recall that w∗s and w(n)s vanish for s > tp),∫
∞

δ

ds
∫

B
dz |w∗s (z)− w

(n)
s (z)| → 0

and so lim sup |w(n)0 (x) − w∗0(x)| ≤ 2Cfδ. Since δ was arbitrary, it follows that lim |w(n)0 (x) −
w∗0(x)| = 0.

To summarize, for all x ∈ B and ω ∈
(
Ω̃f,t ∪ Ω̂f,t ∪ Ωf,t,0(x)

)c
(of P-probability 1),

lim
n→∞
|w
(n)
0 (x)− w∗0(x)| = 0.

From the latter result, we can obtain the convergence of the finite-dimensional distributions

of X (n) towards the corresponding ones for X∗. For all x ∈ B, P
[
w
(n)
0 (x)→ w∗0(x)

]
= 1, so by

applying once again Fubini’s theorem, we have

P-a.s., µ-a.e., w
(n)
0 (x)→ w∗0(x) as n→∞. (22)

Since the w(n) are bounded by Cf, dominated convergence and (22) give

exp−〈µ,w(n)0 (·)〉 → exp−〈µ,w∗0(·)〉.

Our construction from the historical superprocess makes it obvious that X (n) is stochastically
bounded by X0. It follows that the sequence of the distributions of {(X (n)t1 , . . . , X (n)tp

), n ∈ N}
is relatively compact. Therefore, if we choose a countable set of p-tuples ( f1, . . . , f p) such
that the corresponding family of maps (µ1, . . . , µp) 7→ exp−

∑p
i=1〈µi , fi 〉 is convergence

determining, we obtain that (X (n)t1 , . . . , X (n)tp
) converges in distribution to (X∗t1 , . . . , X∗tp

) on a
set of P-probability 1 (which a priori depends on (t1, . . . , tp)). This completes the proof of
Proposition 2. �

Proof of Lemma 2. The quantity of interest vanishes if t > t1, and so we need only consider the
case t ≤ t1. In that case,

E
[(

Et,x

[
f (ξt1)I{t1<T }

(
I{t1<Tε} − e−kd

∫ t1
t c(ξu)du

)])2
]

= E
[
Et,x

[
I{t1<T }I{t1<T ′} f (ξt1) f (ξ ′t1)

(
I{t1<Tε}I{t1<T ′ε } − I{t1<Tε}e

−kd
∫ t1

t c(ξ ′u)du

− I{t1<T ′ε }e
−kd

∫ t1
t c(ξu)du

+ e−kd
∫ t1

t (c(ξu)+c(ξ ′u))du
)]]

, (23)

where ξ ′ is another Brownian motion, independent of ξ , T ′ and T ′ε are defined in an obvious way
and we have kept the notation Pt,x for the probability measure under which the two Brownian
motions start from x at time t . Recall that Sε(s, t) denotes the Wiener sausage of radius ε along
the time interval [s, t] associated to ξ , and define S′ε(s, t) in a similar way. Then,

E
[
I{t1<Tε}I{t1<T ′ε }

]
= P

[
Pε
∩ (Sε(t, t1) ∪ S′ε(t, t1)) = ∅

]
= exp

{
−sd(ε)

∫
Sε(t,t1)∪S′ε(t,t1)

c(y)dy

}
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and similarly

E
[
I{t1<Tε}

]
= exp

{
−sd(ε)

∫
Sε(t,t1)

c(y)dy

}
.

Set t̃1 = t1 − t . By Fubini’s theorem and a simple symmetry argument, the quantity in (23) is
equal to

Et,x

[
I{t1<T }I{t1<T ′} f (ξt1) f (ξ ′t1)

{
2e−kd

∫ t1
t c(ξ ′u)du

(
e−kd

∫ t1
t c(ξ ′u)du

− e−sd (ε)
∫

Sε(t,t1)
c(y)dy

)
+ e−sd (ε)

∫
Sε(t,t1)∪S′ε(t,t1)

c(y)dy
− e−kd

∫ t1
t (c(ξu)+c(ξ ′u))du

}]
≤ 2‖ f ‖2Et,x

[∣∣∣e−kd
∫ t1

t c(ξ ′u)du
− e−sd (ε)

∫
Sε(t,t1)

c(y)dy
∣∣∣]

+‖ f ‖2Et,x

[∣∣∣e−sd (ε)
∫

Sε(t,t1)∪S′ε(t,t1)
c(y)dy

− e−kd
∫ t1

t (c(ξu)+c(ξ ′u))du
∣∣∣]

≤ 2‖ f ‖2E0,x

[∣∣∣∣∣kd

∫ t̃1

0
c(ξu)du − sd(ε)

∫
Sε(0,t̃1)

c(y)dy

∣∣∣∣∣
]

+‖ f ‖2E0,x

[∣∣∣∣∣sd(ε)

∫
Sε(0,t̃1)

c(y)dy + sd(ε)

∫
S′ε(0,t̃1)

c(y)dy

− sd(ε)

∫
Sε(0,t̃1)∩S′ε(0,t̃1)

c(y)dy − kd

∫ t̃1

0
c(ξu)du − kd

∫ t̃1

0
c(ξ ′u)du

∣∣∣∣∣
]

≤ 4‖ f ‖2E0,x

[∣∣∣∣∣ kd

∫ t̃1

0
c(ξu)du − sd(ε)

∫
Sε(0,t̃1)

c(y)dy

∣∣∣∣∣
]

+‖ f ‖2‖c‖sd(ε)E0,x
[
λ
(
Sε(0, t̃1) ∩ S′ε(0, t̃1)

)]
, (24)

where in the second inequality we used the bound |e−x
− e−y

| ≤ |x − y| for x, y ≥ 0.
On the one hand, by [5] (d = 2, 3) and [13], p. 1009–1010 (d ≥ 4), we have

| log ε| E0,x
[
λ
(
Sε(0, t̃1) ∩ S′ε(0, t̃1)

)]
= O(| log ε|−1) if d = 2, (25)

ε−1E0,x
[
λ
(
Sε(0, t̃1) ∩ S′ε(0, t̃1)

)]
= O(ε) if d = 3,

ε2−dE0,x
[
λ
(
Sε(0, t̃1) ∩ S′ε(0, t̃1)

)]
= O(ε2

| log ε|) if d ≥ 4.

On the other hand,

E0,x

[∣∣∣∣∣ kd

∫ t̃1

0
c(ξu)du − sd(ε)

∫
Sε(0,t̃1)

c(y)dy

∣∣∣∣∣
]

≤ E0,x

( kd

∫ t̃1

0
c(ξu)du − sd(ε)

∫
Sε(0,t̃1)

c(y)dy

)2
1/2

. (26)

Proposition 1 ensures that the right-hand side of (26) is bounded by K‖c‖ | log ε|−1 if d = 2 and
by K‖c‖ ε| log ε| if d ≥ 3. Together with (24) and (25), this completes the proof of Lemma 2.

�
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4. Tightness of the sequence X(n),B

Let C2
+(Rd) denote the set of all nonnegative functions of class C2 on Rd . By Theorem II.4.1

in [16], the tightness of the sequence of the laws of the superprocesses X (n),B will follow if
we can prove that the sequence of the laws of 〈X (n),B, φ〉 is tight, for every φ ∈ C2

+(Rd) with
compact support. Note that condition (i) in Theorem II.4.1 of [16] holds thanks to the domination
X (n),B ≤ X0. Recall that X0 is the usual super-Brownian motion without obstacles.

Let us first introduce the P-negligible set Θ ⊂ Ω outside which the desired tightness will
hold.

Definition 1 (Good environments). Let Θ be the union over all choices of the integer p ≥
1 and of the rational numbers q1, . . . , qp of the P-negligible sets on which the sequence

(X (n)q1 , . . . , X (n)qp ) does not converge in distribution to (X∗q1
, . . . , X∗qp

) as n → ∞. We call good
environment any environment which does not belong to Θ .

To simplify notation, we again write X (n) for X (n),B (as in the last section, B is fixed) and
prove tightness only on the time interval [0, 1]. Let us fix φ ∈ C2

+(Rd) with compact support.
The tightness of the sequence 〈X (n), φ〉 is a consequence of the following lemma.

Lemma 4. If ω 6∈ Θ , then for every ε > 0 there exist k = k(ε) ≥ 1 and n0 = n0(ω, ε, k) such
that for all n ≥ n0,

Pµ

k−1⋃
i=0

 sup
i
k≤t≤ i+1

k

∣∣∣∣〈X (n)t , φ〉 − 〈X (n)i
k
, φ〉

∣∣∣∣ > ε


 < ε.

Lemma 4 easily implies that the sequence 〈X (n), φ〉 is tight. Indeed, let us fix a good
environment and η > 0. By Lemma 4, there exist k(η) and n0(ω, η, k) such that for all n ≥ n0,

Pµ

k−1⋃
i=0

 sup
i
k≤t≤ i+1

k

∣∣∣∣〈X (n)t , φ〉 − 〈X (n)i
k
, φ〉

∣∣∣∣ > η

3


 < η. (27)

If n ≥ n0 is fixed, on the complement of the event considered in (27), we have for every
s, t ∈ [0, 1]

|t − s| ≤
1
k
⇒

∣∣∣〈X (n)t , φ〉 − 〈X (n)s , φ〉

∣∣∣ ≤ η
and thereforew(〈X (n), φ〉, 1

k , 1) ≤ η, using the notation of Ethier and Kurtz [17] for the modulus
of continuity of the process 〈X (n), φ〉. Thus, for all n ≥ n0,

Pµ
[
w

(
〈X (n), φ〉,

1
k
, 1
)
≤ η

]

≥ Pµ

k−1⋃
i=0

 sup
i
k≤t≤ i+1

k

∣∣∣∣〈X (n)t , φ〉 − 〈X (n)i
k
, φ〉

∣∣∣∣ > η

3


c ≥ 1− η.

In addition, φ is bounded so that the first condition of Theorem 3.7.2 in [17] is trivially fulfilled,
hence Corollary 3.7.4 of [17] implies that for any good environment, the sequence of the laws of
〈X (n), φ〉 under Pµ is tight.
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Let us now turn to the proof of Lemma 4.

Proof of Lemma 4. We fix a good environment. Let ε > 0. The process (〈X∗t , φ〉)t≥0 is
continuous, therefore there exists k0(ε) such that for all k ≥ k0,

Pµ

[
sup

0≤i≤k−1

∣∣∣∣〈X∗i+1
k
, φ〉 − 〈X∗i

k
, φ〉

∣∣∣∣ ≥ ε

2

]
<
ε

3
. (28)

There exists K = K (ε) ≥ 1 such that

Pµ

[
sup

0≤t≤1
〈X0

t , 1〉 ≥ K

]
<
ε

3
. (29)

By a trivial domination argument, the bound (29) remains valid if we replace X0 by X (n) (in fact
for any environment). In the following, we fix the constant K ≥ 1 such that (29) holds.

We now have the following result:

Lemma 5. There exists a constant C = C(φ, K ) such that for every integer k ≥ 1 and every
measure γ ∈ M f (Rd) satisfying 〈γ, 1〉 ≤ K ,

Pγ

 sup
0≤s≤ 1

k

∣∣∣〈X0
s , φ〉 − 〈X

0
0, φ〉

∣∣∣ > ε

2

 ≤ C

k2 .

The proof of Lemma 5 is deferred to the end of the section. Let us define

An =

{
sup

0≤t≤1
〈X (n)t , 1〉 ≥ K

}
.

Then,

Pµ

k−1⋃
i=0

 sup
i
k≤t≤ i+1

k

∣∣∣∣〈X (n)t , φ〉 − 〈X (n)i
k
, φ〉

∣∣∣∣ > ε




≤ Pµ[An] + Pµ

[
sup

0≤i≤k−1

∣∣∣∣〈X (n)i+1
k
, φ〉 − 〈X (n)i

k
, φ〉

∣∣∣∣ > ε

2

]

+Pµ

Ac
n ∩

 sup
0≤i≤k−1

 sup
i
k≤t≤ i+1

k

(
〈X (n)t , φ〉 − 〈X (n)i

k
, φ〉

) > ε




+Pµ

Ac
n ∩

 sup
0≤i≤k−1

 sup
i
k≤t≤ i+1

k

(
〈X (n)i

k
, φ〉 − 〈X (n)t , φ〉

) > ε


∩

{
sup

0≤i≤k−1

∣∣∣∣〈X (n)i+1
k
, φ〉 − 〈X (n)i

k
, φ〉

∣∣∣∣ ≤ ε

2

}
= an + bn + cn + dn .
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From (29), we have

an <
ε

3
.

Moreover, from the definition of a good environment, if k ≥ k0,

lim sup
n→∞

bn ≤ Pµ

[
sup

0≤i≤k−1

∣∣∣∣〈X∗i+1
k
, φ〉 − 〈X∗i

k
, φ〉

∣∣∣∣ ≥ ε

2

]
<
ε

3
,

by (28). Thus if k ≥ k0, there exists n0(ω, ε, k) such that for all n ≥ n0, bn(k) ≤ ε
3 . Then,

cn ≤

k−1∑
i=0

Pµ

〈X (n)i
k
, 1〉 ≤ K ; sup

i
k≤t≤ i+1

k

(
〈X (n)t , φ〉 − 〈X (n)i

k
, φ〉

)
> ε


=

k−1∑
i=0

Eµ

I{
〈X (n)i

k
,1〉≤K

} P
X (n)i

k

 sup
0≤t≤ 1

k

(
〈X (n)t , φ〉 − 〈X (n)0 , φ〉

)
> ε

 .
The last equality is obtained by applying the Markov property to X (n) at time i

k . By a domination
argument, we have for all γ ∈ M f (Rd) such that 〈γ, 1〉 ≤ K ,

Pγ

 sup
0≤t≤ 1

k

(
〈X (n)t , φ〉 − 〈X (n)0 , φ〉

)
> ε

 ≤ Pγ

 sup
0≤t≤ 1

k

(
〈X0

t , φ〉 − 〈X
0
0, φ〉

)
> ε


≤

C

k2

by Lemma 5. It follows that

cn ≤ k ·
C

k2 =
C

k
<
ε

6
if k ≥ k1(ε). Finally,

dn ≤

k−1∑
i=0

Pµ

 sup
i
k≤t≤ i+1

k

〈X (n)t , 1〉 ≤ K ; sup
i
k≤t≤ i+1

k

(
〈X (n)i

k
, φ〉 − 〈X (n)t , φ〉

)
> ε;

sup
0≤i≤k−1

∣∣∣∣〈X (n)i+1
k
, φ〉 − 〈X (n)i

k
, φ〉

∣∣∣∣ ≤ ε

2

 .
We fix i ∈ {0, . . . , k − 1} and consider the stopping time

Ti := inf
{

t ≥
i

k
: 〈X (n)t , φ〉 ≤ 〈X (n)i

k
, φ〉 − ε

}
.

Then, the i th term of the previous sum is bounded by

Pµ

 Ti ≤
i + 1

k
, 〈X (n)Ti

, 1〉 ≤ K , sup
Ti≤t≤Ti+

1
k

(
〈X (n)t , φ〉 − 〈X (n)Ti

, φ〉
)
≥
ε

2


= Eµ

I{
Ti≤

i+1
k ,〈X (n)Ti

,1〉≤K
} P

X (n)Ti

 sup
0≤t≤ 1

k

(
〈X (n)t , φ〉 − 〈X (n)0 , φ〉

)
≥
ε

2
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by the strong Markov property at time Ti . Using Lemma 5 once again, we see that this quantity
is bounded by C/k2, hence for k ≥ k1(ε),

dn ≤
C

k
≤
ε

6
.

Combining the preceding estimates, we obtain that for k = k0(ε) ∨ k1(ε), and every n ≥
n0(ω, ε, k),

Pµ

k−1⋃
i=0

 sup
i
k≤t≤ i+1

k

∣∣∣∣〈X (n)t , φ〉 − 〈X (n)i
k
, φ〉

∣∣∣∣ > ε


 < ε.

This completes the proof of Lemma 4. �

Proof of Lemma 5. Let γ ∈ M f (Rd) be such that |γ | := 〈γ, 1〉 ≤ K . Recall that the
process (〈X0

t , 1〉)t≥0 is a martingale. From the maximal inequality applied to the nonnegative
submartingale (〈X0

t , 1〉 − |γ |)4,

Pγ

 sup
0≤t≤ 1

k

〈X0
t , 1〉 > 2K

 ≤ 1

(2K − |γ |)4
Eγ

[(
〈X0

1
k
, 1〉 − |γ |

)4
]
.

We claim that

Eγ

[(
〈X0

1
k
, 1〉 − |γ |

)4
]
=

24

k3 |γ | +
12

k2 |γ |
2. (30)

To prove this claim, recall that Yt = 〈X0
t , 1〉 is a Feller diffusion, whose semigroup Laplace

transform is given by

E
[
exp−λYt | Y0 = y

]
= exp

(
−

λy

1+ λt

)
,

for λ ≥ 0. Thus,

E
[
exp−λ(Yt − y)| Y0 = y

]
= exp

(
λ2t y

1+ λt

)
= 1+ λ2t y − λ3t2 y + λ4t3 y +

λ4t2 y2

2
+ o(λ4),

as λ→ 0. From this expansion of the Laplace transform, we derive that

E
[
(Yt − y)4 |Y0 = y

]
= 24t3 y + 12t2 y2,

which proves our claim (30). It follows that

Pγ

 sup
0≤t≤ 1

k

〈X0
t , 1〉 > 2K

 ≤ 12|γ |(|γ | + 2)

(2K − |γ |)4 k2 .

Let us denote by AK ,k the event
{

sup0≤t≤ 1
k
〈X0

t , 1〉 > 2K
}

and by BK ,k the event{
sup0≤t≤ 1

k

∣∣〈X0
t , φ〉 − 〈X

0
0, φ〉

∣∣ > ε
2

}
. Then,

Pγ [BK ,k] ≤ Pγ [AK ,k] + Pγ [Ac
K ,k ∩ BK ,k] ≤

c0

k2 + Pγ [Ac
K ,k ∩ BK ,k], (31)
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where c0 is a constant depending on K .
In addition, Mt := 〈X0

t , φ〉 − 〈X
0
0, φ〉 −

∫ t
0 dr〈X0

r ,
1
21φ〉 is a continuous martingale

with quadratic variation 2
∫ t

0 dr〈X0
r , φ

2
〉. By the Dubins–Schwarz theorem (see Theorem V.1.7

in [18]), there exists a standard one-dimensional Brownian motion W such that Mt = W〈M〉t for
all t ≥ 0 a.s. On the event Ac

K ,k , we have∣∣∣∣∫ t

0
dr

〈
X0

r ,
1
2
1φ

〉∣∣∣∣ ≤ t‖1φ‖K ≤
c1

k
if t ∈ [0, k−1

]

and

〈M〉t ≤
4‖φ‖2 K

k
=

c2

k
if t ∈ [0, k−1

],

where c1 and c2 are constants depending on φ and on K . Choose k0 such that c1k−1 < 1
4ε for

every k ≥ k0. Then for all k ≥ k0,

Pγ [Ac
K ,k ∩ BK ,k] = Pγ

[
Ac

K ,k ∩

{
sup

0≤t≤1/k

∣∣∣∣Mt +

∫ t

0
dr

〈
X0

r ,
1
2
1φ

〉∣∣∣∣ > ε

2

}]

≤ Pγ

[
Ac

K ,k ∩

{
sup

0≤t≤1/k
|Mt | >

ε

4

}]

≤ P

[
sup

0≤t≤(c2/k)
|Wt | >

ε

4

]
≤

c3

k2 ,

where c3 is a constant depending on φ, K and ε. Together with (31), this completes the proof of
Lemma 5. �

5. Proofs of Theorem 1 and Corollary 1

The proof of Theorem 1 in the case when D is bounded is easily obtained from the results
of the previous sections. Let us take B = D and let E denote the union of the P-negligible set
on which there exist rational numbers t1, . . . , tp such that (X (n)t1 , . . . , X (n)tp

) does not converge to

(X∗t1 , . . . , X∗tp
) and of the P-negligible set on which the sequence X (n),B is not tight. The set E is

also P-negligible and on E c, Theorem 3.7.8 of [17] allows us to conclude that X (n)
(d)
→ X∗ when

n→∞.
We can now use the previous result to complete the proof of Theorem 1 when D is a domain

of Rd which is not necessarily bounded.

Proof of Theorem 1 (For a general domain D). Let µ be a finite measure on D and suppose first
that the support of µ is bounded. Under Pµ, the superprocesses X (n) are stochastically dominated
by the superprocess X0, whose range

R(X0) =
⋃
t≥0

supp X0
t
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is almost surely compact since its initial value has compact support. Consequently, for every
ε > 0, there exists a bounded open subset B of D containing the support of µ such that, for
every environment and every n ≥ 1,

Pµ[R(X (n),D) ⊂ B] ≥ 1− ε

and

Pµ[R(X∗,D) ⊂ B] ≥ 1− ε.

From these inequalities, we can deduce that

d(P(n),Dµ ,P(n),Bµ ) ≤ 2ε, n ≥ 1; (32)

d(P∗,Dµ ,P∗,Bµ ) ≤ 2ε, (33)

where d is the Prohorov metric on M1(DM f (D)[0,∞)). By the results of the last two sections,
with P-probability 1 there exists an integer n0(ω) such that for all n ≥ n0,

d(P(n),Bµ ,P∗,Bµ ) ≤ ε.

Together with (32) and (33), this yields

d(P(n),Dµ ,P∗,Dµ ) ≤ 5ε for all n ≥ n0(ω),

hence we can conclude that P(n),Dµ converges towards P∗,Dµ on a set of P-probability 1.
Finally, if the support of µ is unbounded, we can replace µ by the measure µ̃ defined as the

restriction of µ to a large ball centered at the origin. Using once again the domination of X (n),D

(for all n ≥ 1) and of X∗,D by X0, the law of X (n),D under Pµ can be approximated uniformly
in n by the law of X (n),D under Pµ̃, and similarly for X∗,D . The desired result then follows from
the bounded support case. We leave the details to the reader. �

We end this section with the proof of Corollary 1.

Proof of Corollary 1. Let us argue by contradiction and suppose that there exist δ > 0 and a
sequence {εk, k ∈ N} decreasing to zero such that for all k ≥ 1,

P
[
d
(
Pεk ,D
µ ,P∗,Dµ

)
> δ

]
≥ δ. (34)

By extracting a subsequence, we can always choose εk such that

∞∑
k=1

| log εk |
−1 <∞ if d = 2,

or
∞∑

k=1

εk | log εk | <∞ if d ≥ 3.

But the latter condition is the only requirement for the sequence of superprocesses Xεk ,D to
converge in distribution to X∗,D with P-probability 1, yielding a contradiction with (34). �



A. Véber / Stochastic Processes and their Applications 119 (2009) 2598–2624 2621

Acknowledgements

The author would like to thank her supervisor Jean-François Le Gall for many helpful
discussions about this work and detailed comments on earlier drafts of this paper, and the referee
for valuable suggestions to improve the presentation of the paper.

Appendix. Proof of (11)

The bound (11) is a consequence of the following lemma.

Lemma 6. There exists a function ϕ : R2
→ [0,∞] such that

∫
R2 dyϕ(y) < ∞ and for every

y ∈ R2 and ε ∈ (0, 1
2 ),∣∣∣∣∣P0 [y ∈ Sε(0, 1)]−

π

| log ε|

∫ 1

0
dsps(y)

∣∣∣∣∣ ≤ ϕ(y)

| log ε|2
,

where ps(y) = (2πs)−1 exp
{
−|y|2/(2s)

}
is the Brownian transition density.

Remark 3. The convergence of | log ε|P0[y ∈ Sε(0, 1)] towards π
∫ 1

0 dsps(y) as ε tends to 0
was first obtained by Spitzer [19]. See also [5,20] for related results.

Before proving Lemma 6, let us use it to derive (11). If c is a bounded nonnegative measurable
function on R2 such that ‖c‖ ≤ 1, then for every ε ∈ (0, 1

2 ] and z ∈ R2,∣∣∣∣∣Ez

[
| log ε|

∫
Sε(0,1)

c(y)dy − π
∫ 1

0
c(ξs)ds

]∣∣∣∣∣
=

∣∣∣∣∣
∫

dyc(z + y)

(
| log ε|P0 [y ∈ Sε(0, 1)]− π

∫ 1

0
dsps(y)

)∣∣∣∣∣
≤ | log ε|−1

∫
dyϕ(y),

which is the desired result.
Let us hence establish Lemma 6. The following proof is due to J.-F. Le Gall (personal

communication).

Proof of Lemma 6. If |y| ≤ 10ε, simple estimates show that the bound of Lemma 6 holds with
ϕ(y) = C

(
(log |y|)2 + 1

)
for a suitable constant C . So we assume that |y| > 10ε. We put

τε(y) = inf {t ≥ 0 : |ξt − y| ≤ ε}

in such a way that {y ∈ Sε(0, 1)} = {τε(y) ≤ 1}. Let aε be an arbitrary point of the circle of
radius ε centered at the origin, and

f (ε) = Eaε

[∫ 1

0
dsI{|ξs |≤ε}

]
.

A straightforward calculation gives

f (ε) = ε2
| log ε| + O(ε2) (35)
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as ε→ 0.
Lower bound. An application of the strong Markov property at time τε(y) shows for every
u ∈ (0, 1], that

E0

[∫ u

0
dsI{|ξs−y|≤ε}

]
≤ P0 [τε(y) ≤ u] f (ε).

On the other hand,

E0

[∫ u

0
dsI{|ξs−y|≤ε}

]
=

∫ u

0
ds
∫
|z−y|≤ε

dz ps(z),

and thus∣∣∣∣E0

[∫ u

0
dsI{|ξs−y|≤ε}

]
− πε2

∫ u

0
dsps(y)

∣∣∣∣
≤

∫ u

0

ds

2πs

∫
|z−y|≤ε

dz

∣∣∣∣exp
{
−
|z|2

2s

}
− exp

{
−
|y|2

2s

}∣∣∣∣
≤

∫ u

0

ds

2πs

∫
|z−y|≤ε

dz exp
{
−
|y|2

4s

} ∣∣∣∣ |z|2 − |y|22s

∣∣∣∣
≤
ε3

2
|y|
∫ u

0

ds

s2 exp
{
−
|y|2

4s

}
≤ ε3 Ψ1(y), (36)

where the function

Ψ1(y) = |y|
∫ 1

0

ds

s2 exp
{
−
|y|2

4s

}
is easily seen to be integrable over R2.

By combining the preceding estimates, we arrive at

P0 [τε(y) ≤ u] ≥
πε2

f (ε)

∫ u

0
dsps(y)−

ε3

f (ε)
Ψ1(y) (37)

and using (35) it readily follows that

P0 [y ∈ Sε(0, 1)]−
π

| log ε|

∫ 1

0
dsps(y) ≥

ϕ1(y)

| log ε|2

with a nonnegative function ϕ1 such that
∫

dyϕ1(y) <∞.
Upper bound. This part is a little more delicate. We rely on the same idea of applying the strong
Markov property at time τε(y), but we need to be more careful in our estimates. For every v > 0,
we have

E0

[∫ 1+v

0
dsI{|ξs−y|≤ε}

]
= E0

[
I{τε(y)≤1+v}Eξτε(y)

[∫ s

0
dr I{|ξr−y|≤ε}

]
s=1+v−τε(y)

]

= E0

[
I{τε(y)≤1+v}

∫ 1+v−τε(y)

0
drPaε [|ξr | ≤ ε]

]
,
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where aε is as previously a fixed point of the circle of radius ε centered at the origin. We can
rewrite the previous expression as

E0

[∫ 1+v

0
dr I{τε(y)≤1+v−r}Paε [|ξr | ≤ ε]

]

=

∫ 1+v

0
dr P0 [τε(y) ≤ 1+ v − r ] Paε [|ξr | ≤ ε] .

We apply this calculation with v = vε = | log ε|−1. For r ∈ [0, vε], P0 [τε(y) ≤ 1+ vε − r ] is
bounded from below by P0 [τε(y) ≤ 1], and thus

P0 [τε(y) ≤ 1]
∫ vε

0
drPaε [|ξr | ≤ ε]

≤ E0

[∫ 1+vε

0
dsI{|ξs−y|≤ε}

]
−

∫ 1+vε

vε

drPaε [|ξr | ≤ ε] P0 [τε(y) ≤ 1+ vε − r ] .

From the bound (36), we have

E0

[∫ 1+vε

0
dsI{|ξs−y|≤ε}

]
≤ πε2

∫ 1

0
dsps(y)+ ε

3Ψ1(y)+ vεε
2e−|y|

2/10.

On the other hand, by (37),∫ 1+vε

vε

drPaε [|ξr | ≤ ε] P0 [τε(y) ≤ 1+ vε − r ]

≥

∫ 1+vε

vε

drPaε [|ξr | ≤ ε]
ε2

f (ε)

(
π

∫ 1+vε−r

0
dsps(y)− εΨ1(y)

)

=
πε2

f (ε)

(∫ 1+vε

vε

drPaε [|ξr | ≤ ε]

)(∫ 1

0
dsps(y)−

ε

π
Ψ1(y)

)

−
πε2

f (ε)

(∫ 1+vε

vε

drPaε [|ξr | ≤ ε]
∫ 1

1+vε−r
dsps(y)

)
.

Straightforward estimates give∫ 1+vε

vε

drPaε [|ξr | ≤ ε] = ε2
(

1
2

log | log ε| + O(1)
)

and ∫ 1+vε

vε

drPaε [|ξr | ≤ ε]
∫ 1

1+vε−r
dsps(y) ≤ ε

2Ψ2(y),

where

Ψ2(y) =
∫ 1

0
ds log

(
1

1− s

)
ps(y)

is integrable over R2. Summarizing, we have

P0 [τε(y) ≤ 1]
∫ vε

0
drPaε [|ξr | ≤ ε]
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≤

(
πε2

∫ 1

0
dsps(y)

)
×

1−

(
1
2 log | log ε| − K

)
ε2

f (ε)


+

(
ε3
+ O

(
ε3 log | log ε|
| log ε|

))
Ψ1(y)+ vεε

2e−|y|
2/10
+
πε4

f (ε)
Ψ2(y).

Finally, it is easy to verify that

g(ε) ≡
∫ vε

0
drPaε [|ξr | ≤ ε] ≥ ε2

(
| log ε| −

1
2

log | log ε| − K ′
)
,

and so by dividing the two sides of the previous inequality by g(ε), we obtain

P0 [τε(y) ≤ 1] ≤
π

| log ε|

∫ 1

0
dsps(y)+

ϕ2(y)

| log ε|2
,

with a function ϕ2 such that
∫
ϕ2(y)dy <∞. This completes the proof of Lemma 6. �
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