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Electron–positron pair production by the Breit–Wheeler process embedded in a strong laser pulse 
is analyzed. The transverse momentum spectrum displays prominent peaks which are interpreted as 
caustics, the positions of which are accessible by the stationary phases. Examples are given for the 
superposition of an XFEL beam with an optical high-intensity laser beam. Such a configuration is 
available, e.g., at LCLS at present and at European XFEL in near future. It requires a counter propagating 
probe photon beam with high energy which can be generated by synchronized inverse Compton 
backscattering.
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1. Introduction

Pair production processes in electromagnetic interactions are of 
permanent interest due to fundamental aspects to be addressed 
up to technological relevance for material investigations. The basic 
process of two-photon conversion into a pair of electron (e−) +
positron (e+), symbolically X ′ + X → e+ + e− as 2 → 2 reac-

tion of photons with four-momenta kX ′,X ∼ (ωX ′,X , kX ′,X ) has been 
evaluated by Breit and Wheeler [1] within a framework which is 
called nowadays perturbative quantum electro dynamics (pQED). 
It is a t-channel process in lowest order pQED. There are many 
other elementary processes with emerging pairs which are acces-
sible theoretically by pQED, for instance such ones with μ+ + μ−
in the final state [2], or even with ν̄ + ν [3].

Pair production is a threshold process, meaning that a certain 
minimum energy must be provided in the entrance channel to 
have e+ + e− with energy > 2m in the exit channel (m is the elec-
tron rest mass). This implies that the energies of the X ′ and X
photons must be sufficiently large to overcome the threshold, i.e. 
sX ′ X = (kX ′ + kX )2 = 2ωX ′ωX (1 − cos θX ′ X ) > 4m2 ≡ sthr, where the 
relative angle θX ′ X of both beams is π for head-on collisions. In 
the considered 2 → 2 scattering process, sX ′ X equals the invariant 
mass of the produced electron–positron pair.
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In case the initial center-of-mass energy is below the produc-
tion threshold of the 2 → 2 process, sX ′ X < sthr, pairs can still 
be produced via multi-photon effects. This particularly interesting 
process has been investigated in the SLAC experiment E-144 [4,5], 
where a high-energy photon (several GeV) was colliding with an 
intense optical laser pulse (L). While the 2 → 2 reaction was kine-
matically forbidden, the multi-photon channels X + nL → e+ + e−
with n > 1 had sufficient center-of-mass energy sX,nL = (kX +nkL)

2

to overcome the pair production threshold. This process is called 
laser-induced multi-photon Breit–Wheeler pair production. In fact 
the high-energy photon was produced via Compton backscattering 
of laser light on 46.6 GeV electrons in the same laser focal spot. 
(For a recent theoretical re-analysis see e.g. Ref. [6].) The multi-
photon channels only have a considerable probability if the laser 
pulse is sufficiently intense.

The laser intensity parameter a0 = |e|E L/mωL (with −|e| as the 
electron charge, and E L and ωL refer to the field strength and fre-
quency of the laser) delineates the non-relativistic domain, a0 < 1, 
and the relativistic domain, where a0 > 1 [7]. Moreover, a0 quanti-
fies the relevance of multi-photon effects; it is the inverse Keldysh 
adiabaticity parameter of the process. Another important param-
eter that classifies the pair production is the non-linear quantum 
parameter χγ = 1

2 a0sX,1L/sthr that combines a0 and the kinemat-
ics of the process. For a0 � 1 and χγ � 1 only a few multi-photon 
channels contribute, and the probability for the nth (open) chan-
nel behaves roughly as Wn ∼ a2n

0 . For a0 � 1 and χγ � 1 (i.e. the 
2 → 2 process is extremely deep below the threshold and huge 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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amounts of laser photons are required) the probability behaves 
semi-classically [8]. The formation region of the pair becomes 
much shorter than the laser cycle, ∝ 1/a0, and the process takes 
place instantaneously as it were in a local constant crossed field. 
For χγ 	 1 the Breit–Wheeler pair production probability is expo-
nentially suppressed in the semi-classical regime, W ∼ e−8/3χγ [9], 
with the same functional dependence on the electric field strength 
as Schwinger pair production [10–14]. (For Schwinger pair pro-
duction, the impact of an assisting high-frequency field has been 
studied, e.g. in [15–17].)

The laser-induced multi-photon Breit–Wheeler process has 
been investigated exhaustively (see e.g. Refs. [9,10,18]) for long-
duration pulses of the laser beam. The process becomes markedly 
modified for ultra-short laser pulses: The temporal pulse structure, 
even in the plane-wave limit, gives a dominating impact specific 
for the pulse shape [19–24]. In a finite pulse of the laser beam 
there are several interfering effects: finite bandwidth (i.e. ωL is 
the central frequency and higher and lower frequencies contribute 
to the power spectrum), multi-photon effects (i.e. the above men-
tioned higher harmonics) and the intensity-dependent threshold 
shifts [25,26].

Due to the small frequency of optical lasers, ωL =O(1 eV), the 
parameter χγ is very small unless the frequency of the collid-
ing photon X is very high – on the order of several GeV. This 
makes the non-linear Breit–Wheeler pair production exceedingly 
small in pure optical laser–laser collisions unless both lasers have 
ultra-high intensities (of the order of the Sauter Schwinger field 
4 × 1029 W/cm2) [10–12,18]. With the advent of X-ray free elec-
tron lasers (XFELs) that can provide photons with ωX =O(10 keV)

at high intensities, the gap to the threshold is diminished, but 
still fairly large, unless ωX ′ = O(50 MeV). Therefore, one can ask 
whether the assistance of an ultra-high intensity laser beam L en-
ables pair production if sX ′ X is in the sub-threshold region. Clearly, 
also here, very strong non-linear effects due to an ultra-high in-
tensity laser beam are required for enabling this laser-assisted 
Breit–Wheeler pair production. A related issue is the modification 
of the Breit–Wheeler process by an assisting laser beam above the 
threshold.

To attempt a description of this latter process, we consider 
here the reaction X ′ + (X + L) → e+ + e− , that is the laser as-
sisted linear Breit–Wheeler process, where sX ′ X > sthr and X is a 
weak field in the sense of aX 	 1 for the above defined inten-
sity parameter a0 transferred here to the other individual fields; 
the probe photon field is anyhow considered as weak, aX ′ 	 1, 
i.e. only one photon from the field X ′ participates in a single pair 
production event. We have in mind the combination of an XFEL 
beam X with a synchronized, co-propagating laser beam L which 
may be strong. To be specific, the intensity parameter of X is less 
than aX = O(10−2) according to [27], and for the L beam from 
a PW-class laser we let be aL = O(1). Note that aX,L depend on 
the size of the actual focal spots. Our considerations below ap-
ply to the homogeneity region where a plane-wave approximation 
holds, but we include for the first time the temporal pulse shapes 
as an essential element in combination with the large frequency 
ratio ωX/ωL ≡ η−1 � 1. Considering the European XFEL beam, 
under construction (and near to completion) in Hamburg/DESY 
[28], in the HIBEF project [29] with ωX = 6 keV, the counter-
propagating beam X ′ must have about ωX ′ = 60 MeV F (accessible, 
for instance, by suitable inverse Compton back-scattering of laser 
light off laser-accelerated electrons [30–35]) to allow for the linear 
Breit–Wheeler process. In the equal-momentum frame, kX ′ = −kX , 
we have ωX ′ = ωX = 600 keV as geometric mean of the laboratory 
frequencies and sX ′ X/sthr = 1.38. For the assisting laser field we as-
sume an UV laser frequency of 10 eV in the laboratory frame, i.e. 
ωL = 1 keV in the equal-momentum frame. In this set-up, the pairs 
cannot be produced by the X ′ − L collisions alone: This process 
is extremely below the threshold and, thus, extremely suppressed 
since sX ′L/sthr = 0.002 and χγ = 0.001aL .

Our analysis in some aspects parallels [36,37], where the laser 
assisted Compton process is analyzed. This cross channel enjoys 
some remarkable features: The spectrum of Compton scattered 
X-ray photons off an electron moving in an accelerated manner in 
an external laser pulse displays, besides the well-known Compton 
line at fixed observation angle, a number of prominent peaks, and 
the complicated spectral distribution exhibits distinct regions with 
changing patterns. The striking finding in [37] is the interpretation 
of the prominent peaks as spectral caustics related to merging sta-
tionary phase points. Accounting for quantum interference effects 
for the emission from different locations of the quasi-classical elec-
tron motion in the laser field along a temporally changing figure-8 
trajectory, the gross features of the complicated spectrum become 
easily accessibly. Such an interpretation is also in the spirit of [8], 
where the spectrum of pairs produced in a strong external field1

is explained as redistribution in phase space following the produc-
tion process (which can be approximated by a temporally constant 
cross-field probability) and keeping interference effects.

Despite of the similarities of the Compton and Breit–Wheeler 
processes related by crossing symmetry, the different phase spaces 
and attributed kinematic relations make them fairly different. In 
addition, the Compton process has a classical limit – the Thomson 
scattering – while the pair-production is of genuine quantum na-
ture. This is the reason for considering separately the analog of the 
spectral caustics in [37] in the laser assisted Breit–Wheeler pro-
cess.

Our paper is organized as follows. In section 2 we present the 
QED basics for the calculation of the laser assisted Breit–Wheeler 
process. Selected numerical results are discussed in section 3 for 
a special kinematic situation to highlight the impact of the laser 
field. Section 4 summarizes.

2. The QED process

In the Furry picture, the process X ′ + (X + L) → e+ + e− is 
described by a one-vertex diagram X ′ → e+

X+L + e−
X+L (see Fig. 1, 

left), where e±
X+L mean the Volkov solutions of out-going elec-

trons and positrons in temporally shaped fields X + L, both ones 
co-propagating and with perpendicularly linear polarization. We 
consider head-on collision of the photons X ′ and X + L. These 
assumptions are made for the sake of simplifications of the sub-
sequent evaluations. In addition, we linearize in the XFEL field A X . 
This corresponds then to a Furry-picture two-vertex t-channel di-
agram (see Fig. 1, right), with exchange diagram analog to the 
Breit–Wheeler process X ′ + X → e+

L + e−
L , where however here 

the out-going electron and positron and the propagator are laser 
dressed.

2.1. Kinematics

The energy–momentum balance for laser-assisted pair produc-
tion can be put into the form (μ is a Lorentz index)

kμ
X ′ + kμ

X + 	kμ
L = pμ

p + pμ
e , (1)

where 	 represents a hitherto unspecified momentum exchange 
parameter between the assisting laser field L and the produced 
pair (hereafter labeled by e and p for electron and positron, re-
spectively). We define light-front coordinates, e.g. x± = x0 ± x3 and 

1 The interested reader is referred to [38–45] for further work on pair production 
in external fields within a QED framework.
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Fig. 1. Pair creation in the laser assisted Breit–Wheeler process (left diagram; the wavy line stands for the incoming probe photon X ′ and the double lines with superimposed 
zigzag are for outgoing laser + XFEL field dressed electron and positron). For weak XFEL fields, the leading order expansion results in the right diagrams where the double 
lines mean laser dressed wave functions and propagator and the zigzag line is for the XFEL X . The zeroth order process (in the field X ) is just the laser-induced Breit–Wheeler 
pair-production in L − X ′ collisions studied extensively in the literature. For our considered parameters this channel is strongly suppressed and will not be considered further.
x⊥ = (
x1, x2

)
and analogously the light-front components of four-

momenta. They become handy because the laser four-momentum 
vectors only have one non-vanishing light-front component k−

L,X =
2ωL,X . In particular, Eq. (1) contains the three conservation equa-
tions in light-front coordinates: k+

X ′ = p+
p + p+

e and p⊥
e = −p⊥

p . 
Moreover, the knowledge of all particle momenta allows to cal-
culate 	 via the fourth equation of (1)

	 = 1

η

(
p−

p + p−
e − k−

X ′

k−
X

− 1

)
, (2)

with the frequency ratio η = ωL/ωX 	 1. (Note that the variable 
	 can be related also to M2 = (1 + η	)sX ′ X , where M is the in-
variant e+e− mass.) It is convenient to parametrize the produced 
positron’s phase space by the following three variables: (i) the mo-
mentum exchange parameter 	, (ii) the azimuthal angle ϕ with 
respect to the polarization direction of the assisting laser field and 
(iii) the shifted rapidity

z = 1

2
ln

(
p+

p

p−
p

)
+ 1

2
ln

(
(1 + η	)ωX

ωX ′

)
. (3)

The case z = 0 distinguishes the symmetric situation where the 
longitudinal laser momentum is equally shared between the elec-
tron and the positron. In particular, in the equal-momentum 
frame each particle acquires the longitudinal momentum p‖ =
(p+ − p−)/2 Treating (	, z, ϕ) as independent variables completely 
specifies the four-momentum pp of the produced positron by us-
ing Eq. (3) and

p2⊥p = m2
(

1 + η	

cosh2 z

sX ′ X

sthr
− 1

)
. (4)

Moreover, Eq. (1) allows to eliminate the dependence on the pro-
duced electron’s momentum pe .

The laser pulses X + L are described by the four-vector poten-
tial

Aμ = maL

e
gL (ηφ)ε

μ
L cos (ηφ) + maX

e
gX (φ) ε

μ
X cosφ (5)

with the transverse polarization four-vectors εμ
L,X obeying kL,X ·

εL,X = 0 (a dot indicates the scalar product of four-vectors) and 
εX · εL = 0, and the pulse envelope functions

gL (φ) =
{

cos2
(

πφ
2τL

)
, −τL ≤ φ ≤ τL ,

0 , otherwise ,
(6)

g X (φ) = exp

(
−φ2

2τ 2
X

)
(7)

with the dimensionless pulse lengths parameters τL,X . The invari-
ant phase is defined as φ = kX · x = ωX x+ .
2.2. Matrix element and cross section

The invariant matrix element for the process depicted in the 
left diagram of Fig. 1 reads

S = −ie

∫
dx �̄X+L/ε X ′ eikX ′ ·x�X+L , (8)

where /ε X ′ is the four-polarization vector of the probe photon X ′
contracted with a Dirac matrix (we use Feynman’s slash notation) 
and �̄X+L stands for the Volkov solution of the outgoing electron

�̄X+L = ū(pe)

(
1 + e/kX/A

2kX · pe

)
e−i S pe (9)

i.e. dressing by the field (5), and analogously for the out going 
positron

�X+L =
(

1 − e/kX/A

2kX · pp

)
ei S−pp v(pp) (10)

with the phase function

S p = −p · x −
φ∫

φ0

dφ′
(

2e A(φ) · p − e2 A2(φ)

2kX · p

)
; (11)

u, v are free-field Dirac spinors, and ū, v̄ their adjoints. φ0 is 
an irrelevant constant of integration. The phase functions S p are 
known [46] to coincide with the classical Hamilton–Jacobi actions 
for charged particles in a plane wave. Here, they appear via exact 
solutions of the Dirac equation and its adjoints in the field (5). 
These expressions still contain all orders in the X-ray field aX . 
Since we assume a weak field we can linearize all expressions 
in aX . For technical details of this linearization we refer the inter-
ested reader to Ref. [36]. By employing light-front coordinates we 
can perform three of the spatial integrals in (8), and represent the 
S matrix as S = 4π3 ie/ωX ′δ2(p⊥

p + p⊥
e + k⊥

X ′ )δ(p+
p + p+

e + k+
X ′ )M

with the scattering amplitude M which is specified below in Sec-
tion 2.3.

With help of this scattering amplitude we can write the 
positron’s triple-differential cross section in laser-assisted Breit–
Wheeler positron production as

d3σ

dzd	dϕ
= ηr2

0k0
X

4π p+
e a2

X

∫ +∞
−∞ dφ g2

X (φ)

× 1 − tanh z

cosh2 z

1

2

∑
|M|2 , (12)

where we normalize by the particle density of the field X , ρX =
m2a2

X/(2e2) 
∫ ∞
−∞ dφg2

X (φ), and by the incoming photon flux jin =
kX · kX ′/(k0

X k0
X ′ ) = 2. In this way, the cross section (12) turns into 

the usual Breit–Wheeler cross section for a vanishing assisting 
laser field. The sum runs over the unobserved spin degrees of free-
dom of the produced pair as well as the polarization states of the 
incident photon X ′ . Furthermore, we utilize the classical electron 
radius r0 = αQED/m, with the fine structure constant αQED � 1/137.
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2.3. Linearized matrix element

Here we provide the explicit expression for the linearized scat-
tering amplitude M for aX 	 1. As we argued above the zeroth-
order term O(a0

X ) does not contribute to the pair production for 
our considered parameters. The leading term is O(aX ) and reads

M = aX (JXA0 − αX

∑
k=0,1,2

JkAk) , (13)

αX = 1

2
m

(
pe · εX

kX · pe
− pp · εX

kX · pp

)
. (14)

Since M ∝ aX the 1/a2
X in (12) cancels and the pair production 

cross section is independent of the intensity of the incident X-rays. 
The spin and polarization dependence is encoded in the transition 
operators with Dirac current structures

J0 = ū(pe)/ε X ′ v(pp), (15)

J1 = maL

2
ū(pe)

(
/εL/kX/ε X ′

kX · pp
− /ε X ′/kX/εL

kX · pe

)
v(pp), (16)

J2 = m2a2
LkX · εX ′

2(kX · pp)(kX · pe)
ū(pe)/kX v(pp), (17)

JX = m

2
ū(pe)

(
/ε X/kX/ε X ′

kX · pp
− /ε X ′/kX/ε X

kX · pe

)
v(pp), (18)

with the polarization four-vector εX ′ of probe photon fulfilling 
kX ′ · εX ′ = 0. Note that the Jk defined in Eqs. (15)–(18) are just 
complex numbers, albeit depending on momenta, polarizations 
and spins.

The dynamics of the laser-assisted pair production process is 
described by the integrals

A j =
+∞∫

−∞
dφ [cos(ηφ) gL(ηφ)] j g X (φ)eiH (19)

for j = 0, 1, 2 (on l.h.s. a label, while on r.h.s. a power), with the 
phase

H =
ηφ∫

ηφ0

dφ′
(

	 + α

η
gL

(
φ′) cos

(
φ′) + β

η
g2

L

(
φ′) cos2 (

φ′)) (20)

using the abbreviations

α = maL

(
pe · εL

kX · pe
− pp · εL

kX · pp

)
, (21)

β = (maL)
2

2

(
1

kX · pe
+ 1

kX · pp

)
. (22)

Note that the phase H , Eq. (20), can be rewritten in terms of the 
classical trajectory of the generated positron moving in the assist-
ing laser field, projected onto the four-momentum vector kX ′ of 
the probe photon:

H =
ηφ∫

ηφ0

dφ′
(

(1 + η	)
kX ′ · πp(φ′)
ηkX ′ · pp

− 1

η

)
, (23)

where

π
μ
p (φ) = pμ

p + e Aμ
L (φ) − e AL(φ) · pp

k · p
kμ

L − e2 A2
L(φ)

2k · p
kμ

L (24)

L p L p
is the four-momentum of the positron (with out state momen-
tum pμ

p ) along the trajectory in the laser field Aμ
L (first term in (5)) 

as a first integral of the Lorentz equation [47]. This suggests the in-
terpretation of the pair creation by a plain Breit–Wheeler process 
X ′ + X → e+ + e− as the production process with a subsequent re-
distribution of the positrons in phase space due to the action of the 
laser field. By integrating over φ in Eq. (19) one coherently adds 
the production amplitudes from all “instants” (expressed by the 
laser phase) which—after the redistribution due to the laser field—
contribute to the yield of positrons at the chosen final phase-space 
point (	, z, ϕ).

The stationary phase condition dH/dφ = 0 reads, by means 
of (20),

0 = 	 + α

η
gL(φ) cos(φ) + β

η
g2

L (φ) cos2(φ), (25)

representing an approximation w.r.t. the highly oscillating phase 
factor exp(iH) in (19). Note that the large frequency ratio ωX/ωL =
η−1 � 1 is decisive for that. The stationarity condition (25) fur-
nishes a relation between the instant φ the pair is produced and 
the momentum exchange 	. In order to solve (25) for 	(φ) we 
first need to work out how the coefficients α and β depend on 	. 
Here and in the following we restrict our investigation to those 
positrons that are detected in the polarization direction of the 
assisting laser, characterized by ϕ = π . By eliminating the elec-
tron momentum pe in Eqs. (21) and (22) with help of Eq. (1)
and by rewriting the scalar products in terms of the indepen-

dent variables (	, z, ϕ) we find α = −2β

√
(1 + η	)/β − a−2

L and 
β = a2

L sthr cosh2(z)/sX ′ X . Using these expressions in Eq. (25) we 
obtain a quadratic equation for 	(φ), with the two apparent solu-
tions2

	±(φ) = β

η
gL(φ) cos(φ)

[
gL(φ) cos(φ) ± 2

√
1

β
− 1

a2
L

]
. (26)

One has to check, however, for which values of φ the 	±(φ) rep-
resent true solutions of the initial Eq. (25). These solutions for 
	±(φ), which follow from the stationary phase condition, deter-
mine the amount of laser momentum that is transferred to the 
positron after its production at the instant φ, and finally arriving 
at the phase-space point (	, z, ϕ). That means, positrons at some 
fixed 	 in phase space are produced only at a few certain instants.

3. Numerical results and interpretation as spectral caustics

In Figs. 2–4, blue spectra in upper panels, we show numer-
ical examples of the triple-differential positron production cross 
section d3σ/d	dzdϕ for z = 0 and ϕ = π . The chosen 

√
sX ′ X =

1.2 MeV is clearly above the threshold, sX ′ X/sthr = 1.38, and the 
Breit–Wheeler peak at 	 = 0 corresponding to p⊥ = 1

2

√
sX ′ X − sthr

is visible as pronounced structure.3 The very rich-structured blue 
spectra in the upper panels of Figs. 2–4 exhibit the plain QED re-
sults based on Eqs. (12)–(22). To expose the strength distribution 
in a spectrum we apply a smoothing procedure yielding the red 

2 Note that for laser-assisted Compton scattering of X-rays studied in [37], the 
stationary phase condition provides a linear equation for 	(φ) with the single so-
lution 	(φ) = 1/η(k′ · p0/(k′ · πe(φ)) − 1) with k′ denoting the four-momentum of 
the scattered photon, πe(φ) the kinetic four-momentum of an electron in the laser 
pulse, and p0 is the four-momentum of the electron before the laser pulse arrives. 
It is the relativistic kinematics of the massive out-particle instead of the massless 
photon in the case of Compton scattering which gives rise to the double root which 
leads to Eq. (26).

3 Since we consider here exclusively the positron out-states, the label “p” is 
dropped.
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Fig. 2. Spectra for the laser assisted Breit–Wheeler process with the parameters 
mentioned in the Introduction which translate into √sX ′ X = 1.2 MeV, η = 1/600, 
aX = 10−5, τX = 2τ/(πη), aL = 0.1, and τL = 4π in the field (2). Upper panel: 
dσ/d	dzdϕ at z = 0 and ϕ = π as a function of 	 (lower axis; the corresponding 
values of p⊥ are given at the upper axis). The calculated spectrum according to (12)
(blue, with 20,000 meshes) is smoothed by a Gaussian window function with width 
δ	 = 0.8 to get the red curve. Middle panel: smoothed spectrum separately. Lower 
panel: phase φ as a function of 	 from Eq. (26) (only the “+” solution applies 
here). The vertical dotted lines depict the positions of diverging dφ/d	, where two 
branches of φ(	) merge. The gray bands depict the estimated widths of caustic re-
gions. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

curves which are displayed separately in the middle panels. (To 
some extent this mimics also a finite detector resolution.) Still the 
smoothed spectra exhibit a non-trivial gross structure with promi-
nent peaks and some oscillatory sections.

We now turn to an interpretation of the gross structures. In 
doing so we employ the stationary phase (saddle point) approxi-
mation, cf. Eq. (25), which is based on aL/η � 1; that is, the large 
frequency ratio ωX/ωL becomes here operationally to access also 
moderate laser intensities. According to the semi-classical interpre-
tation all positrons are generated at 	 = 0 via the “bare” Breit–
Wheeler process. The assisting laser field acting on these positrons 
shifts them in phase space due to the exchange of laser momen-
tum and they end up at 	 �= 0. Consequently, the spectrum of the 
positrons that is observed after the interaction with the laser is 
spread out essentially between the cut-off values 	min ≤ 	 ≤ 	max
(or equivalently pmin⊥ ≤ p⊥ ≤ pmax⊥ ). Therefore, only for τX > τL

the “bare” Breit–Wheeler peak at 	 = 0 is clearly visible, when 
those positrons which are created before/after the laser impact 
remain at their place of birth in phase space. For smaller val-
ues of τX , the Breit–Wheeler peak vanishes since all positrons are 
shifted away upon the subsequent laser action. The cut-off val-
ues can be determined from the minimum and maximum values 
	± in Eq. (26). They read 	max = 	(+) and 	min = min

(
	(−), 	kin

)
with 	(±) = sthraL/(ηsX ′ X )

(
aL ± 2

√
sX ′ X/sthr − 1

)
. The lower cut-

off is influenced by the fact that the positron can lose at most 
its kinetic energy due to the laser action, it needs to retain at 
least its rest energy. That means (1 + η	)sX ′ X = M2 ≥ sthr, yielding 
the kinematic cut-off 	 > 	kin = (sthr/sX ′ X −1)/η. (The correspond-
ing cut-off values for p⊥ follow from Eq. (4).) Beyond the plateau 
region spanned by these cut-off values the spectra are going expo-
nentially fast to zero.

The influence of the laser field intensity aL is evident upon 
comparing Figs. 2 and 3: The minimum and maximum values 
of p⊥ , respectively 	, do strongly differ. A few, albeit not all, strong 
peaks can be attributed to spectral caustics in the spirit of [37]: 
Fig. 3. As Fig. 2 but for aL = 1 and δ	 = 5. In bottom panel, in black the “+” solution 
of (26), while the green dashed curve is for the “−” solution. The left boundary of 
the figure corresponds to the kinematic cut-off 	kin , or equivalently p⊥ = 0. (For 
interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

These are the loci of merging branches of stationary phase points 
(see lower panels) determined by diverging dφ(	)/d	 (see vertical 
lines in lower and upper panels). We use the notion of spectral 
caustics to denote the loci of accumulated and thus enhanced in-
tensity in the spectrum of the generated positrons in momentum 
space, in analogy to optics where significant enhancement of light 
intensity occurs on a caustic in position space. The gray bands de-
pict the estimated widths of the caustic zone by �	 = (aL/η)2/3, 
following from the universality of the caustic’s properties [37,48].

The shape of the differential spectra in the region around 
the spectral caustics resembles indeed the caustics known from 
diffraction: They show the typical behavior of an Airy function de-
scribing the intensity distribution of light close to an optical caus-
tic, e.g. that of the rainbow. This behavior is most pronounced at 
the upper cut-off values because only the caustic contributes there. 
For all the other peaks, the caustic contributions are accompanied 
by non-caustic contributions from the other branches of φ(	). This 
is particularly evident in Fig. 3. Moreover, the highly oscillatory be-
havior of the spectra can be explained as the interference from the 
contributions from the multiple stationary points.

The impact of the laser pulse length τL is obvious in comparing 
Figs. 3 and 4: The patterns of φ(	) are different (see lower pan-
els) and, correspondingly, the spectra too (see upper panels). The 
shorter pulse implies fewer caustics with clearer correspondence 
to the prominent peaks in the transverse momentum spectra. At 
smaller values of aL , the estimated widths of the caustics become 
too large and overlapping thus not supporting the caustical inter-
pretation of the spectra. At larger values of aL (e.g. aL ≥ 3) addi-
tional spectral modulation effects caused by the beating of the ±
branches in (26) deserve separate investigations.

We would like to emphasize finally that the spectra exhibited in 
upper and middle panels of Figs. 2–4 depict the slice z = 0. There, 
the distributions are flat in z direction, i.e. gating experimentally 
on a z ≈ 0 bin (corresponding to about 30 MeV positrons in the 
lab. frame for given parameters), e.g. by a Brown–Buechner spec-
trograph in the φ = π plane, is a prerequisite to have afterwards 
access to the p⊥ spectra of interest. While leaving a discussion of a 
suitable experimental set-up for future work, we point out that the 
spectral caustic structures are not “washed out” by a superposition, 
e.g. of equally weighted spectra with 20% variation of aL , thus en-
abling the access in multi-shot experiments. Besides observation 
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Fig. 4. As Fig. 3 but for the longer laser pulse duration τ = 8π , resulting in a larger 
number of caustic peaks as compared to Fig. 3.

issues – which might be fairly challenging, in fact – we stress the 
relevance of the present investigation with respect to extensions 
of PIC codes aiming at simulating the formation of avalanches by 
seeded pair production (cf. [49]).

4. Summary

In summary we show that the differential spectra, most no-
ticeably the transverse momentum distributions at fixed rapidity 
(more precisely, at z = 0 and fixed azimuthal angle of the positron) 
in laser assisted Breit–Wheeler pair production is strikingly modi-
fied by details of the lase pulse shape. One may attribute this phe-
nomenon to a final state interaction of the once produced charged 
particles in the laser field. In other words, the quasi-classical mo-
tion with account of interference effects offers a key to the gross 
features of the spectra. On the one hand, the manifestation of the 
trajectories is not so surprising since the phase of the employed 
Volkov solutions for the e± wave functions encodes the classical 
Hamilton–Jacobi action. On the other hand, the convolution with 
other kinematic quantities of the squared matrix element is not 
so strong to destruct this trajectory information. The interpretation 
of the series of distinct peaks as spectral caustics, analog to laser 
assisted Compton scattering of X-rays, is semi-quantitative since 
obviously severe interference effects of the quantum mechanical 
propagation from certain phase points are, in general, responsible 
for the highly non-trivial final momentum distribution.

Finally, we speculate that the trident process, i.e. the seeded 
pair production in a virtual Compton process, may exhibit similar 
momentum signatures which could be also interpreted as spectral 
caustics. Corresponding experiments are possible with the set-ups 
planned by the HIBEF collaboration.
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