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Abstract

Solutions of recursive program schemes over a given signature Σ were characterized by Bruno Courcelle
as precisely the context-free (or algebraic) Σ-trees. These are the finite and infinite Σ-trees yielding, via
labelling of paths, context-free languages. Our aim is to generalize this to finitary endofunctors H of general
categories: we construct a monad CH “generated” by solutions of recursive program schemes of type H,
and prove that this monad is ideal. In case of polynomial endofunctors of Set our construction precisely
yields the monad of context-free Σ-trees of Courcelle. Our result builds on a result by N. Ghani et al on
solutions of algebraic systems.
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1 Introduction

The aim of the current paper is to introduce, for a finitary endofunctor H of a
“reasonable” category, the context-free monad CH of H characterizing solutions of
recursive program schemes of type H. This is analogous to our previous construction
of the rational monad RH characterizing solutions of first-order recursive equations
of type H, see [4]. In case of a polynomial functor H = HΣ on Set the monad RH is
given by all rational Σ-trees, i. e., Σ-trees having (up to isomorphism) only a finite
set of subtrees, see [17]. In contrast, CH is given by the algebraic trees investigated
in the pioneering paper of Bruno Courcelle [10]. We call these trees t context-free
since in [10] they are characterized by the property that a certain natural language
associated to the paths of t is context-free (whereas t is rational iff that language is
regular).

Recall that a recursive program scheme (or rps for short) defines new operations
ϕ1, . . . , ϕk of given arities n1, . . . , nk recursively, using given operations represented
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by symbols from a signature Σ. Here is an example:

ϕ(x) = f(x, ϕ(gx)) (1)

is a recursive program scheme defining a unary operation ϕ from the givens in
Σ = { f, g } with f binary and g unary. The semantics of recursive program schemes
is a topic at the heart of theoretical computer science, see [10,18]. Here we are
interested in the so-called uninterpreted semantics, which treats a recursive program
scheme as a purely syntactic construct, and so its solution is given by Σ-trees over
the given variables. For example, the uninterpreted solution of ϕ above is the Σ-tree

f

x f

gx f

ggx

��
�� ��

��

��
�� ��

��

��
��

(2)

(here we simply put the terms x, gx, ggx, etc. for the corresponding subtrees).
Observe that if Φ = {ϕ1, . . . , ϕk } denotes the signature of the newly defined

operations and
HΦX = Xn1 + · · · + Xnk

is the corresponding polynomial endofunctor of Set, then algebras for HΦ are just
the classical general algebras for the signature Φ. We denote by FH the free monad
on H, thus FHΦ is the monad of finite Φ-trees. A recursive program scheme can be
formalized as a natural transformation

e : HΦ → FHΣ+HΦ .

In fact, FHΣ+HΦ is the monad of all finite (Σ + Φ)-trees. Since Xni is a functor
representable by ni, a natural transformation from Xni into FHΣ+HΦ is, by Yoneda
Lemma, precisely an element of FHΣ+HΦ(ni), i. e., a finite (Σ + Φ)-tree on ni vari-
ables. Thus, to give a natural transformation e as above means precisely to give k

equations, one for each operation symbol ϕi from Φ,

ϕi(x0, . . . , xn−1) = ti (i = 1, . . . , k) (3)

where ti is a (Σ + Φ)-term on {x0, . . . , xn−1 }. This is the definition of a recursive
program scheme used in [10].

An uninterpreted solution of e : HΦ → FHΣ+Hϕ is a k-tuple of Σ-trees t†1, . . . , t
†
k

such that the above formal equations (3) become identities under the simultaneous
second-order substitution 2 of ti for fi, for i = 1, . . . , k. For example, the tree t†(x)

2 Recall that in general, a simultaneous second-order substitution replaces in a tree over a signature Γ
all operation symbols by trees over another signature, Σ, say. See [10] or [22] for a category-theoretic
description.
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from (2) satisfies the corresponding equality of trees

t†(x) = g(x, t†(fx)).

This concept of solutions was formalized in [22] by means of the free completely
iterative monad TH on a functor H; in case H = HΣ this is the monad of all Σ-trees.
We recall this in Section 2. The uninterpreted solution is a natural transformation
e† : HΦ → THΣ and this leads us to the following reformulation (and renaming) of
the concept of an algebraic tree of Courcelle [10]:

Definition 1.1 A Σ-tree is called context-free if there exists a recursive program
scheme (3) such that t = t†1.

Example 1.2 Every rational tree is context-free, and (2) shows a context-free tree
that is not rational.

Courcelle proved that the monad CHΣ of all context-free Σ-trees as a submonad
of THΣ is iterative in the sense of Calvin Elgot [11]. Furthermore, context-free
trees are closed under second-order substitution. The aim of the present paper
is a construction of the context-free monad CH for all finitary endofunctors H of
locally finitely presentable categories. We prove that this monad is always ideal,
i. e., it can be seen as a coproduct of variables and non-variables—this is a desired
property that simplifies working with a monad, see e. g. [22,6,16]. However, at this
moment we leave as open problems the proofs that CH is closed under second-order
substitution and it is iterative, in general.

Related work. Our work is based on the pioneering paper by Bruno Courcelle [10].
As we mentioned already, Irène Guessarian [18] presents the classical algebraic se-
mantics of recursive program schemes, for example, their uninterpreted solution as
infinite Σ-trees and their interpreted semantics in ordered algebras. The realization
that basic properties of Σ-trees stem from the fact that they form the final HΣ-
coalgebra goes back to Larry Moss [23] and also appears independently and almost
at the same time in the work of Neil Ghani et al [14] (see also [15]) and Peter Aczel et
al [2] (see also [1]). Ghani et al [12] were the first to present a semantics of uninter-
preted recursive program schemes in the coalgebraic setting. Their paper contains
a solution theorem for uninterpreted (generalized) recursive program schemes. Here
we derive from that the result that all “guarded” recursive program schemes have
a unique solution that is a fixed point w. r. t. second-order substitution. The ideas
of [12] were taken further in [22]; this fundamental study contains a comprehensive
category-theoretic version of algebraic semantics in the coalgebraic setting: the pa-
per provides an uninterpreted as well as interpreted semantics of recursive program
schemes and the relation of the two semantics (this is a fundamental theorem in
algebraic semantics).

The present paper builds on ideas in [12,22]. Our construction of the context-
free monad is new. It is inpired by the construction of the rational monad in [4],
see also [13] for a more general construction.
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2 Construction of the context-free monad

Throughout the paper we assume that a finitary (i. e., filtered colimit preserving)
endofunctor H of a category A is given, and that H preserves monomorphisms.
We assume that A is locally finitely presentable, coproduct injections

inl : X → X + Y and inr : Y → X + Y

are always monic, and a coproduct of two monomorphisms is also monic. Recall
that local finite presentability means that A is cocomplete and has a set Afp of
finitely presentable objects (meaning those whose hom-functors are finitary) such
that A is the closure of Afp under filtered colimits.

Example 2.1

(i) Sets, posets and graphs form locally finitely presentable categories, and our as-
sumptions about monomorphisms hold in these categories. Finite presentabil-
ity of objects means precisely that they are finite.

(ii) If A is locally finitely presentable, then so is Funf (A ), the category of all
finitary endofunctors and natural transformations. In case A = Set, the poly-
nomial endofunctor

HΣX =
∐
σ∈Σ

Xn n = arity of σ (4)

is a finitely presentable object of Funf (Set) iff Σ is a finite set. This is easily
seen using Yoneda Lemma. In fact, the finitely presentable objects of Funf (Set)
are precisely quotients HΣ/∼ of the polynomial functors with Σ finite, where
∼ is a congruence on HΣ, see [5].

Notice that our assumptions concerning monomorphisms carry over to Funf (A )
since coproducts are formed objectwise and natural transformations are monic
iff their components are monic.

Remark 2.2 We shall need to work with categories that are locally finitely pre-
sentable but where the assumptions on monomorphisms above need not hold:

(i) The category
Monf (A )

of all finitary monads on A and monad morphisms. This is a locally finitely
presentable category. Indeed, as observed by Steve Lack [19], the forgetful
functor

Monf (A ) → Funf (A )
is finitary and monadic, thus, the local finite presentability of Funf (A ) implies
that of Monf (A ), see [8], 2.78. It follows that filtered colimits of finitary
monads are formed object-wise on the level of A .

(ii) We will also make use of the fact that for every locally finitely presentable
category B and object B the coslice category B/B of all morphisms with
domain B is a locally finitely presentable category, see [8], 2.44.
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Free monad. Recall from [3] that since H is a finitary endofunctor, free H-algebras
ϕX : H(FHX) → FHX exist for all objects X of A . Denote by η̂X : X → FHX

the universal arrow. As proved by M. Barr [9] the corresponding monad on A

FH

of free H-algebras is a free monad on H. It follows that FH is a finitary monad,
and its unit

η̂ : Id → FH

together with the natural transformation

ϕ : HFH → FH

given by the above algebra structures ϕX yield the universal arrow

κ̂ = (H Hbη
��HFH ϕ

��FH ).

The universal property states that for every monad S and every natural transfor-
mation f : H → S there exists a unique monad morphism f : FH → S such that
the triangle below commutes:

H
bκ ��

f
����

��
��

�� FH

f
��

S

(5)

Moreover, from [3] we have

FH = HFH + Id with injections ϕ and η̂. (6)

Remark 2.3 The category Monf (A ), being locally finitely presentable, has co-
products. We use the notation ⊕.

Given finitary endofunctor H and K, since the free monad on H + K is the
coproduct of the corresponding free monads, we have

FH+K = FH ⊕ FK . (7)

We shall use the same notation ϕ, η̂ and κ̂ for different endofunctors than H,
e. g. κ̂ : H + K → FH+K .

Free Completely Iterative Monad. For every object X the functor H(−) + X,
being finitary, has a terminal coalgebra

THX → H
(
THX

)
+ X. (8)

By Lambek’s lemma [20], this morphism is invertible, and we denote the components
of the inverse by

τX : H
(
THX

) → THX and ηX : X → THX.
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respectively.

Notation 2.4 Since THX is only used for the given functor H throughout the
paper, we omit the upper index H, and write from now on simply

TX.

As proved in [1], T is the underlying functor of a monad (T, η, μ) with the unit
η : Id → T above. This monad is, moreover, the free completely iterative monad on
H, see [1,21]. The above natural transformation τ : HT → T yields the universal
arrow

κ = ( H
Hη

�� HT
τ �� T ) (9)

Moreover, in analogy to (6) above, we have

T = HT + Id with injections τ and η. (10)

Also recall from loc. cit. that the monad multiplication μ : TT → T is a homomor-
phism of H-algebras (here we drop objects in the square below as all arrows are
natural transformations):

HTT
τT ��

Hμ

��

TT

μ

��

HT τ
�� T

(11)

Notation 2.5 (i) We denote by Mon(A ) the category of all monads on A (which
is usually not locally presentable). Given a finitary endofunctor H let

H/Mon(A )

the category of H-pointed monads, i. e., pairs (S, σ) where S is a monad on A
and σ : H → S is a natural transformation. This is isomorphic to the coslice
category of FH :

H/Mon(A ) ∼= FH/Mon(A ).

For example, FH and T are H-pointed monads (via the universal arrows).

(ii) For every H-pointed monad (S, σ) we write

b = [μS · σS, ηS ] : HS + Id → S.

Lemma 2.6 (Ghani et al [13]) For every H-pointed monad (S, σ) the endofunc-
tor HS+Id carries a canonical monad structure whose unit is the coproduct injection
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inr : Id → HS + Id and whose multiplication is given by

(HS + Id)(HS + Id)

HS(HS + Id) + HS + Id

HSb+HS+Id

��

HSS + HS + Id

[HμS ,HS]+Id
��

HS + Id

(12)

Remark 2.7 For HS + Id we also have an obvious H-pointing

inl · HηS : H → HS + Id . (13)

This defines an endofunctor H : H/Mon(A ) → H/Mon(A ) on objects by

H(S, σ) = (HS + Id, inl · HηS),

see [13] or [22], Lemma 5.2 for details.

Example 2.8 For every finitary endofunctor V we consider FH+V as an H-pointed
monad via

H inl ��H + V bκ ��FH+V

And H(FH+V ) = HFH+V + Id is then an H-pointed monad via (13) which has the
form

ψ = (H Hbη
��HFH+V inl ��HFH+V + Id ). (14)

The proof of the following theorem is similar to the proof of Lemma 2.6 in [13].
The precise statement using the category H/Mon(A ) can be found in [22], Theo-
rem 5.4.

Theorem 2.9 The terminal coalgebra for H is given by the H-pointed monad T ,
H-pointed as in (9), with the coalgebra structure T

∼−→ HT from (8).

Definition 2.10 A recursive program scheme (or rps for short) of type H is a
natural transformation

e : V → FH+V

from an endofunctor V which is a finitely presentable object of Funf (A ) to the
free monad on H + V . It is called guarded provided that it factorizes through the
summand HFH+V + Id of the coproduct (6):

FH+V = (H + V )FH+V + Id = HFH+V + V FH+V + Id ,
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that is, we have a commutative triangle

V

e0
���������� e �� FH+V

HFH+V + Id

[ϕ·inl ,bη]

��

(15)

Observe that e0 is unique since the vertical arrow, being a coproduct injection,
is monic. This implies that e0 and e are in bijective correspondence, which is the
reason for our assumption that A has monic coproduct injections.

Example 2.11 In case of a polynomial endofunctor H = HΣ : Set → Set every
recursive program scheme (3) yields a natural transformation e : HΦ → FHΦ+HΣ ,
as explained in the introduction. This is a special case of Definition 2.10: in lieu of
a general finitely presentable endofunctor V , which is a quotient of HΣ (cf. Exam-
ple 2.1(iv)), we just take V = HΣ.

The system (3) is guarded iff every right-hand side term is either just a variable
or it has an operation symbol from Σ at the head of the term. Such a recursive
program scheme is said to be in Greibach normal form. All reasonable rps, e. g. (1),
are guarded. The unguarded ones such as f(x) = f(x) are to be avoided if we want
to work with unique solutions.

Definition 2.12 By a solution of a recursive program scheme e : V → FH+V in
an H-pointed monad (S, σ) is meant a natural transformation e† : V → S such that
the unique monad morphism extending [σ, e†] : H + V → S (see (5)) makes the
triangle below commutative:

V e† ��

e
��

S

FH+V
[σ,e†]

�����������
(16)

Remark 2.13 (1) Every guarded recursive program scheme (15) turns FH+V into
a coalgebra for H. Indeed, e0 : V → H(FH+V ) together with the pointing ψ,
see (14), yield a natural transformation [ψ, e0] : H + V → H(FH+V ) which, by the
universal property of the free monad FH+V , provides a unique monad morphism

[ψ, e0] : FH+V → H(FH+V ) (17)

It preserves the pointing: we have

[ψ, e0] · (κ̂ · inl ) = [ψ, e0] · inl = ψ.

Thus, FH+V is a coalgebra.

(2) Conversely, every coalgebra for H carried by FH+V , where V is a finitely pre-
sentable endofunctor, stems from a guarded recursive program scheme: the coalge-
bra structure r : FH+V → H(FH+V ) is uniquely determined by r · κ̂ : H + V →
H(FH+V ), and the left-hand component of r · κ̂ being the pointing ψ, we see that
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r is determined by e0 = r · κ̂ · inr : V → H(FH+V ) defining a (unique) recursive
program scheme.

(3) For the terminal coalgebra T for H, see Theorem 2.9, we thus obtain the unique
coalgebra homomorphism

e∗ : FH+V → T. (18)

Remark 2.14 Our concept of a recursive program scheme is a special case of the
algebraic systems studied by Neil Ghani et al [12]. Let us recall from that paper
that

(i) an H-pointed monad is called coalgebraic if it is isomorphic to the monad
HS + Id of Lemma 2.6 via b : HS + Id → S in Notation 2.5(ii),

(ii) examples of coalgebraic monads include FH , see (6), and T , see (10),

(iii) T is the final coalgebraic monad; we denote by uS : S → T the unique mor-
phism for a coalgebraic monad (S, σ),

(iv) an algebraic system is given by a finitary monad E, a finitary coalgebraic monad
(S, σ) and a monad morphism

e : E → H(S ⊕ E) + Id ,

(v) a solution of e is a monad morphism s : E → T such that the square below
commutes:

E
s ��

e
��

T

[τ,η]−1

��

H(S ⊕ E) + Id
H([uS ,s])+Id

�� HT + Id

Theorem 2.15 (Ghani et al [12]) Every algebraic system has a unique solution.

This gives a solution theorem for recursive program schemes as follows: due
to (7) we have the morhism e0 : V → H(FH ⊕ F V ) + Id in (15) yielding an
algebraic system via (5):

e0 : F V → H(FH ⊕ F V ) + Id . (19)

Indeed, take E = F V and S = FH . Thus, a unique solution s : F V → T exists.

Theorem 2.16 Every guarded recursive program scheme of type H has a unique
solution e† in T . It can be computed from the unique coalgebra homomorphism
e∗ : FH+V → T by

e† = (V inr ��H + V bκ ��FH+V e∗ ��T ). (20)

Indeed, for the unique solution s : F V → T of the algebraic system e0 in (19)
above we obtain a solution e† in the sense of Definitinon (2.10) by composing with
κ̂ : V → F V :

e† = ( V
bκ �� F V s �� T ).
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The proof that (16) commutes is performed using some diagram chasing. A some-
what subtle point is that for uS : S → T (see Remark 2.14(iii)) we have the equality

[uS , s] = [κ̂, e†] : FH+V → T.

Here the square brackets on the left refer to the coproduct of FH and F V in
H/Mon(A ) and those on the right to H + V in Funf (A ). The verification uses
the universal property of the free monad on H + V and is not difficult. The fact
that (20) holds follows from the same diagram.

To prove that e† is unique use the fact that for any solution e† in the sense of
Definition 2.10 its extension e† : F V · T is a solution of the corresponding algebraic
system e0.

Remark 2.17 It is our goal to define a submonad C of T formed by all solutions
of recursive program schemes of type H. We do this in two steps.

(i) A finitary monad C̃ together with a monad morphism c̃ : C̃ → T is constructed
by forming a colimit of coalgebras for the endofunctor H obtained from all
recursive program schemes.

(ii) The (strong epi, mono)-factorization (cf. Proposition 2.19 below) of c̃ is formed
to obtain the desired submonad:

C̃
ec ��

k
�� �������������� T

C
		

c

		�����������

Unfortunately, Mon(A ) need not have such factorizations in general. We there-
fore need to work in the category

Monacc(A )

of all monads on A that are accessible, that is, the underlying functors pre-
serve, for some infinite cardinal λ, λ-filtered colimits. (Recall that a λ-filtered
category is such that every subcategory with less than λ objects and morphisms
has a cocone in it.)

Here is our basic example of an accessible but not finitary monad:

Lemma 2.18 For every finitary endofunctor H the monad T (see Notation 2.4) is
accessible.

Proof. It is proved in Proposition 5.16 of [4] that TZ can be constructed as the
colimit of the diagram of all coalgebras for H(−) + Z carried by all countably pre-
sentable objects. Thus, T coincides with the ℵ1-accessible monad Rℵ1 of loc. cit.�

Proposition 2.19 The category Mon(A ) has as monomorphisms precisely the monad
morphisms with monic components. The subcategory Monacc(A ) has (strong epi,
mono)-factorizations and is closed in Mon(A ) under strong epimorphisms and mono
mor

-
phisms.
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Proof. (1) The category Fun(A ) of all endofunctors on A has a generator formed
by all accessible functors. In fact, let u, v : K → L be distinct natural transforma-
tions. Then uA �= vA for some object A. Since A is locally finitely presentable,
A is λ-presentable for some λ, see [8]. Thus, A lies in the small full subcategory
E : Aλ ↪→ A representing all λ-presentable objects. The functor K has a λ-
accessible coreflection c : K ′ → K obtained as the left Kan extension of K ·E along
E. Since A ∈ Aλ implies that cA is an isomorphism, we conclude that u · c �= v · c,
as desired.

(2) The first statement of our proposition follows from the fact that every
monomorphism m : P → Q in Mon(A ) is monomorphic in Fun(A ). By item (1),
we only need to consider u, v : K → P with m · u = m · v where K is λ-accessible.
Then free K-algebras exist, see [3]. Therefore a free monad FK exists, cf. [9]. The
corresponding monad morphisms u, v : FK → P (cf. (5)) fulfil m · u = m · v. This
implies u = v since m is monic as a monad morphism. Thus, u = u · κ̂ = v · κ̂ = v

as desired.

(3) The category Monλ(A ) of all λ-accessible monads is closed under monomor-
phisms in Mon(A ) since (by the same argument as in item (2)) monomorphisms in
Monλ(A ) are precisely the morphisms that are collectively monic. And it is closed
under strong epimorphisms in Mon(A ) since this subcategory is coreflective; indeed,
all left adjoints preserve strong epimorphisms. For λ = ℵ0 this was proved in [7],
and for general λ the proof is (easy and) completely analogous.

(4) The category Monλ(A ) is locally λ-presentable and therefore (strong epi,mono)-
factorizations exist, see [8]. From item (3) it now follows that also Monacc(A ) has
(strong epi, mono) factorizations and is closed under monos and strong epis in
Mon(A ). �

Corollary 2.20 The functor H preserves monomorphisms.

Indeed, given a monomorphism m : (S, σ) → (S′, σ′) in H/Mon(A ), then m is
componentwise monic, thus, so is Hm (since H preserves monomorphisms), and so
is also Hm = Hm + id (since coproducts of monomorphisms are monic in A ).

Construction 2.21 The H-pointed monad C̃H . For every guarded recursive pro-
gram scheme (15) consider FH+V as a coalgebra for the functor H, see (17).

We denote by
EQ0 ⊆ Coalg H

the full subcategory of all these coalgebras. The respective inclusion functor is an
essentially small diagram since Funf (A ) has only a set of finitely presentable objects
up to isomorphism. We denote the colimit of this small diagram by

C̃H = colim EQ0 (in Coalg H).

Thus, we have a finitary monad C̃ with an H-pointing and a coalgebra structure
denoted by

ρ̃ : H → C̃H and r̃ : C̃H → H(C̃H)

J. Adámek et al. / Electronic Notes in Theoretical Computer Science 264 (2010) 3–23 13



respectively, together with a colimit cocone

e� : FH+V → C̃H for all rps e : V → FH+V ,

formed by coalgebra homomorphisms for H preserving the pointing (14), i. e. with

ρ̃ = e� · (κ̂ · inl ) for every e.

We see in the next lemma that EQ0 is a connected category. Since the forgetful
functors

Coalg H → H/Mon(A ) → Mon(A )
clearly preserve connected colimits, the above cocone e� : FH+V → T is also a
colimit cocone in Mon(A ).

Lemma 2.22 EQ0 is closed under finite coproducts in Coalg H.

Proof. Consider two objects of EQ0 determined by

e : V → HFH+V + Id and e′ : V ′ → HFH+V ′
+ Id

The coproduct injections i : H+V → H+V +V ′ and i′ : H+V ′ → H+V +V ′ yield
corresponding monad morphisms ĩ : FH+V → FH+V +V ′

and ĩ′ : FH+V ′ → FH+V .
Denote by

k =
(
(HFH+V + Id) + (HFH+V ′

+ Id)
[Hei+Id ,Hei′+Id ]

��HFH+V +V ′
+ Id

)

the canonical morphism. We prove that the object f : V + V ′ → FH+V +V ′
of EQ0

determined by

f0 = k · (e0 + e′0) : V + V ′ → HFH+V +V ′
+ Id

is the coproduct of the two given objects.
We know from Remark 2.13 that morphisms from the above object into an

H-coalgebra X = ((S, s), p) are given by natural transformations

t : V + V ′ → S

such that the extension [s, t] : FH+V +V ′ → S of the transformation [s, t] : H + V +
V ′ → S to a monad morphism fulfils

p · r = (H[s, t] + Id) · f.

We claim that this holds for t : V + V ′ → S iff

(i) the left-hand component q : V → S of r gives rise to a morphism of Coalg H from
the object determined by e0 into X

(ii) and the right-hand component q′ : V ′ → S yields a morphism from the object
determined by e′0 into X.
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For that observe first that the diagram

FH+V
ei ��

[s,q]
��															 FH+V +V ′

[s,t]
��

FH+V ′ei′



[s,q′]
��
















S

commutes: indeed, all these morphisms are monad morphisms. The left-hand tri-
angle commutes since ĩ · κ̂H+V = κ̂H+V +V ′ · i, therefore,

([s, t] · ĩ) · κ̂ = [s, t] · i = [s, q] = [s, q] · κ̂

and analogously for the right-hand triangle. Thus, the square

V + V ′ f
��

t

��

HFH+V +V ′
+ Id

H[s,t]+Id

��

V

inl

��� � � � � � �

q

� � � � � � � e0
�� HFH+V + Id

Hei+Id
�����������

H[s,q]+Id �����������

S p
�� HS + Id

commutes iff [s, q] and [s, q′] are morphisms of Coalg H into X: in the diagram we
indicated the left-hand component (commuting iff p · q = (H[s, q] + Id) · e0, that is,
q is a homomorphism), analogously for the right-hand one. �

Corollary 2.23 C̃H is a filtered colimit of the closure EQ of EQ0 under coequalizers
in Coalg H.

Indeed, since EQ0 is closed under finite coproducts, EQ is closed under finite
colimits, thus, it is filtered. And colimEQ ∼= colim EQ0.

Definition 2.24 The context-free monad CH . Denote by

c̃ : C̃H → T

the unique coalgebra homomorphism (see Theorem 2.9) and define the context-free
monad of H as the submonad CH of T obtained by the following (strong epi,
mono)-factorization of c̃ in Mon(A ):

CH

��

c

��

C̃H

k

�� ��������������

ec
�� T

Remark 2.25 (i) Since C̃H is finitary and T accessible, see Lemma 2.18, we have
the desired factorization by Proposition 2.19.
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(ii) The context-free monad is pointed: The pointing ρ̃ : H → C̃H of C̃H yields
the pointing

ρ = k · ρ̃ : H → CH

of CH which c preserves (because c̃ is a morphism of H/Mon(A )).

(iii) Analogously to T we shall write C and C̃ without the upper index H from now
on.

Observation 2.26 The functor H preserves monomorphisms by Corollary 2.20,
thus, C carries a canonical structure r of an H-coalgebra derived from the structure
r̃ for C̃:

C̃
k �� ��

er
��

C

c

��r

����
��

��
��

��
��

��
��

��

HC̃

Hk
��

T

�
��

HC ��
Hc

�� HT

(21)

Indeed, recall that c · k = c̃ is an H-coalgebra homomorphism; so the outside of the
above square commutes, and we can use the unique diagonalization property of the
factorization system to obtain r.

Theorem 2.27 Every guarded recursive program scheme e : V → FH+V has a
unique solution in the context-free monad of H.

Proof. We use e‡ for solutions in C and e† for solutions in T throughout this proof.
We are to prove that there exists a unique natural transformation e‡ : V → C with
e‡ = [ρ, e‡] · e. Recall that the colimit injection e� : FH+V → C̃ in Construction
2.21 is a coalgebra homomorphism for H, hence, so is c̃ · e�, which proves

e∗ = c̃ · e�,

see Theorem 2.16 (because T is a terminal coalgebra by Theorem 2.9). Therefore,
by (20) we have

e† = c̃ · e� · κ̂ · inr = c · k · e� · κ̂ · inr .

Thus for e‡ = k · e� · κ̂ · inr we obtain

e† = c · e‡.

We conclude that e‡ is the desired solution in C: in the following diagram

V

e
��

e‡ �� C
c �� T

������
e†

FH+V
[ρ,e‡]

�������������� ��
[κ,e†]

��
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the outside commutes, see (16) with σ = κ, and the right-hand part does since
κ = c · ρ (see Definition 2.24). Consequently, the left-hand triangle commutes:
recall from Definition 2.24 that c is a monomorphism.

The uniqueness follows from the same diagram: if the left-hand triangle com-
mutes, so does the outside, and since e† is uniquely determined (see Theorem 2.16),
we conclude e† = c · e‡. Finally, use again that c is monic. �

3 The context-free monad is ideal

Under the assumptions of Section 2 we prove that C is an ideal monad in the sense
of C. Elgot [11] for every finitary endofunctor H. Elgot’s concept was defined for
monads (S, η, μ) in Set: the monad is ideal if the complement of η : Id → S is
a subfunctor σ : S′ ↪→ S of S (thus, S = S′ + Id) and μ restricts to a natural
transformation μ′ : S′S → S′. For general categories “ideal” is not a property but
a structure:

Definition 3.1 ([1]) An ideal monad is a sixtuple (S, η, μ, S′, σ, μ′) where (S, η, μ)
is a monad,

σ : S′ → S (“the ideal”)

is a subfunctor such that S = S′ + Id with injection σ and η, and

μ′ : S′S → S′

is a natural transformation restricting μ in the sense that

μ · σS = σ · μ′

Example 3.2

(i) The free monad FH is ideal: its ideal is HFH , see (6).

(ii) The free completely iterative monad T is ideal: its ideal is HT , see (10).

Remark 3.3 It is our goal to prove that the context-free monad (C, ηC , μC) is ideal.
The H-coalgebra structure r : C → HC + Id , see Observation 2.26, is (analogously
to the two examples FH and T above) invertible, as we prove below: its inverse is
the morphism

b ≡ HC + Id ρC+Id
��CC + Id

[μC ,ηC ]
��C, (22)

cf. Notation 2.5(ii). From that we will derive that C is an ideal monad with the
ideal

b · inl : HC → C

Theorem 3.4 The context-free monad C is an ideal monad for every H.

Proof. We first prove r = b−1.
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(1) The proof of b · r = id follows, since c is a monomorphism, from the com-
mutativity of the following diagram (here c ∗ c denotes the parallel composition of
natural transformations):

C
r ��

c

��

HC + Id
�� ��

b

��ρC+Id
��

Hc+Id
��

CC + Id
[μC ,ηC ]

��

c∗c+Id
��

C

c

��

T
[τ,η]−1

�� HT + Id
κT+Id

�� TT + Id
[μ,η]

�� T�����	
[τ,η]

Indeed, the right-hand square commutes since c : C → T is a monad morphism, the
left-hand one does because c is a coalgebra homomorphism for H (see (21)), and
the middle square follows from fact that by Remark 2.25 c preserves the pointing,
i.e., c · ρ = τ · Hη. Finally, the lower part follows from (11):

μ · τT · HηT = τ · Hμ · HηT = τ.

So the outside of the diagram commutes:

c · b · r = c,

and since c is a monomorphism, we see that b · r = id .

(2) To prove that r · b = id we show that the diagram below commutes:

HC

inl
��

HC

inl
��

HC + Id
r·b

�� HC + Id

Id

inr

��

Id

inr

��

For the commutativity of the lower square we have since r is a monad morphism
and the unit of the monad in the codomain is, by Lemma 2.6, inr that

r · b · inr = r · ηC = inr .

Since b · inl = μC · ρC = μC · (kC · ρ̃C), the commutativity of the upper square boils
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down to showing that the outside of the following diagram commutes:

HC

(i)

HηCC

��

ρ̃C
��

Hη
eCC

��

eCC

(ii)

kC ��

r̃C
��

CC

(iii)

μC
��

rC
��

������
ρC

C

r

��

H eCC
(iv)

inl ��

HkC

��

(H eC+Id)C
(Hk+Id)C

�� (HC+Id)C

(HC+Id)r

��

HCC

inl

������������������������������������

HCr
��

HC(HC+Id)

(v)

(vi)

inl
��

HCb
��

(HC+Id)(HC+Id)
μ̃

�� HC+Id

HCC
HμC

�� HC

inl

��

Here μ̃ denotes the monad multiplication (12) of Lemma 2.6, where S = C and
σ = ρ. Indeed, all inner parts commute: the two left-hand parts commute since
k · η

eC = ηC and b · r = id , for part (i) recall that the coalgebra structure ρ̃ is a
morphism in H/Mon(A ), part (ii) commutes since k is a coalgebra homomorphism
for H, for (iii) use that r is a monad morphism, (iv) and (v) are trivial, and part
(vi) commutes by (12). The remaining upper part commutes since k preserves the
H-pointing. Finally, using the monad law μC · ηCC = id , we get r · μC · ρC = inl :
HC → HC + Id , and this completes the proof. �

4 Context-free trees

We now return to the original concept of a context-free (or algebraic) Σ-tree on a
given signature Σ, as studied by Bruno Courcelle, see the introduction. We prove
that the context-free monad CHΣ of the polynomial endofunctor HΣ of Set is indeed
precisely the submonad CHΣ ↪→ THΣ of the Σ-tree monad consisting of all context-
free Σ-trees of Definition 1.1.

Observation 4.1 Polynomial endofunctors are projective in Funf (Set). That is,
for every epimorphism (which means a componentwise surjective natural transfor-
mation) p : F → G and every natural transformation g : HΣ → G there exists a
natural transformation f : HΣ → F with g = p · f :

F
p

�� �� G

HΣ

∀g

����������
∃f

��

In case Σ consists of a single n-ary symbol, this follows from Yoneda Lemma, since
HΣ

∼= Set(n,−): the natural transformation g corresponds to an element of Gn,
and we find its inverse image (under pn) in Fn, giving us f : HΣ → F . If Σ has
more symbols, apply Yoneda Lemma to each of them separately.
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Theorem 4.2 For every signature Σ we have:

CHΣ = the monad of context-free Σ-trees

Proof. Throughout the proof we write H in lieu of HΣ and C in lieu of CHΣ .

(1) We prove that every element of CX lies in the image of e‡ for some guarded
recursive program scheme

e : HΦ → FH+HΦ

where e‡ is the unique solution in C, see Theorem 2.27.
Indeed, since C̃ is the filtered colimit of EQ, see Corollary 2.23, and filtered

colimits of finitary functors in Mon(A ) (and thus also in H/Mon(A )) are computed
on the level of the underlying functors (in other words: filtered colimits are formed
object-wise in A ), we have for every set X a colimit cocone

r�
X : SX → C̃X

where s : (S, σ) → H(S, σ) ranges over all coalgebras in EQ and s� : S → C̃ is the
colimit cocone.

Since EQ is a closure of EQ0 under coequalizers, every object of EQ is a quotient
of one in EQ0. Thus, we have a guarded recursive program scheme

e : V → FH+V (23)

and an epimorphic coalgebra homomorphism for H:

(FH+V , κ̂ · inl ) ��

q

��

H(FH+V , κ̂ · inl )

Hq

��

(S, σ) s �� H(S, σ)

Since V is a finitely presentable functor, there exists by Example 2.1(ii) a finite
signature Φ and an epimorphic natural transformation

p : HΦ → V.

The free-monad functor takes H + p : H + HΦ → H + V to a monad morphism
p̃ : FH+HΦ → FH+V which is also an epimorphism (since the free-monad functor is
a left adjoint). Due to the projectivity of HΦ we obtain a natural transformation
f0 making the diagram

HΦ
f0 ��

p
����

HFH+HΦ + Id

Hep+Id

����

V
e0

�������������������

bκ·inr
��

FH+V
[ψ,e0]

�� HFH+V + Id
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commutative (see Observation 4.1.) Here f0 is the guard of a “classical” guarded
recursive program scheme f : HΦ → FH+HΦ and for the corresponding H-coalgebra
on FH+HΦ , see Remark 2.13, the above monad morphism p̃ is a coalgebra homo-
morphism.

We conclude that the triangles for f † (see Theorem 2.16) and f ‡ (see Theo-
rem 2.27)

HΦ
inr ��

f†

����
��

��
��

��
��

�����������������������������

f‡

���
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� H + HΦ
bκ �� FH+HΦ

ep
��

FH+V

q

��

S

s�

��

C

c
��

TH

commute: recall from (20) that the coalgebra homomorphism f∗ fulfils

f † = f∗ · κ̂ · inr ,

and so we only need to notice that the vertical arrow, being a coalgebra homo-
morphism, is equal to f∗. Since c is a monomorphism, the upper triangle also
commutes. Thus, every element in the image of s�

X lies in the image of f ‡
X for the

above recursive program scheme f .

(2) We will verify that cX : CX ↪→ TX consists precisely of the context-free Σ-trees
on X. Indeed, every context-free Σ-tree has the form

t = e†X(x)

for some guarded recursive program scheme e : HΦ → FH+HΦ and since e†X =
cX · e‡X , the tree t lies in CX.

Conversely every element of CX has, by item (1) above, the form e‡X(x) for
some guarded rps e : HΦ → FH+HΦ . �

5 Conclusions and Open Problems

The aim of our paper was to construct for a finitary endofunctor H a monad ex-
pressing solutions of recursive program schemes of type H. We hoped originally to
achieve what we managed to do for the first-order recursive equations of type H

in previous work [4]: there we defined the rational monad RH based on solutions
of recursive equations, we proved that RH is iterative (and, in particular, ideal) in
the sense of Calvin Elgot, and we characterized RH as the free iterative monad on
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H. From this we derived, in case of endofunctors of Set, that RH is closed under
second-order substitution. Moreover, the construction worked for all locally finitely
presentable base categories.

In the present paper we also exhibited a general construction: for every finitary
endofunctor H we provided a context-free monad CH based on solutions of recursive
program schemes of type H. The existence and uniqueness of these solutions were
derived from the corresponding more general solution theorem of Ghani et al [12].
In case H is actually a polynomial endofunctor of Set associated to a signature Σ,
our monad coincides with the monad of context-free (= algebraic) trees of Bruno
Courcelle [10]. However, whereas Courcelle proved that the context-free-tree monad
is iterative, we were only able to prove that the general context-free monad is ideal.

In fact, as soon as CH would be proved to be iterative, the intuition says that
this is not enough: the next open problem is, then, whether CH is closed under
second-order substitution in the sense of [22]. Again, this was, for context-free
Σ-trees, proved by Bruno Courcelle.

Finally, the rational monad RH and the monad TH are both characterized by
universal properties; RH is the free iterative monad and TH the free completely
iterative one. It remains to be seen whether CH can be characterized by some
universal property, too. Unfortunately, context-free trees cannot serve as a guiding
example in this respect as no universal property of them is known.
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[12] N. Ghani, C. Lüth, and F. D. Marchi. Solving algebraic equations using coalgebra.
Theor. Inform. Appl., 37:301–314, 2003.
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