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Recent work in human cognitive neuroscience has linked self-consciousness to the processing of multisen-
sory bodily signals (bodily self-consciousness [BSC]) in fronto-parietal cortex and more posterior temporo-
parietal regions.We highlight the behavioral, neurophysiological, neuroimaging, and computational laws that
subtend BSC in humans and non-human primates. We propose that BSC includes body-centered perception
(hand, face, and trunk), based on the integration of proprioceptive, vestibular, and visual bodily inputs, and
involves spatio-temporal mechanisms integrating multisensory bodily stimuli within peripersonal space
(PPS). We develop four major constraints of BSC (proprioception, body-related visual information, PPS,
and embodiment) and argue that the fronto-parietal and temporo-parietal processing of trunk-centered
multisensory signals in PPS is of particular relevance for theoretical models and simulations of BSC and
eventually of self-consciousness.
Introduction
Brain activity causes subjective experience, and over the last

two decades, research has investigated some of the major

neuronal mechanisms of conscious processing (Koch, 2004;

Dehaene and Changeux, 2011). Early data regarding the neural

correlates of consciousness arguably came from clinical obser-

vations in neurological patients (i.e., (Poppel et al., 1973;

Weiskrantz et al., 1974; Bisiach et al., 1979), empowered by

psychophysics and, more recently, brain imaging (i.e., Kim and

Blake, 2005; Sergent and Dehaene, 2004). Although these

studies have led to a better understanding of visual conscious-

ness, the interaction of conscious and unconscious vision with

other senses has remained largely unexplored, although it is a

crucial element given the multisensory nature of consciousness

(Deroy et al., 2014; Faivre et al., 2014, 2015).

Importantly, the observer, or subject of conscious experience,

is also generally not accounted for in these models of perceptual

consciousness, although a fundamental property of conscious-

ness is its link with a self as subject of conscious experience.

Conscious perception, indeed, is not only a multisensory experi-

ence of an object (McGurk and MacDonald, 1976; Bertelson,

1999) but also includes a subject of experience: that is, the

implicit and pre-reflexive experience of being the subject of a

given experience. Thus, an object of perception is experienced

by someone, by the self, or by the subject of experience. The

latter is localized within a body, which is felt as one’s own, occu-

pying a given location in space. Recent research has revealed

that this important aspect of conscious experience—the implicit

andpre-reflexive experience of being the subject of a given expe-

rience—is based on multisensory brain mechanisms underlying

the integration of bodily signals; it has been the target of much

recent research and conceptual work in cognitive neuroscience
and philosophy of mind, and we refer to it as bodily self-con-

sciousness (BSC) (Christoff et al., 2011; deVignemont, 2011;Gal-

lese and Sinigaglia, 2010; Blanke and Metzinger, 2009; Jean-

nerod, 2003; Knoblich, 2002; Legrand, 2007; Damasio et al.,

2009). The associated experimental approach to BSC in healthy

subjects has alsobeen influencedby empirical work in behavioral

neurology and altered states of consciousness. We note that by

focusing onBSCwedeliberatively do not refer to or review cogni-

tive or conceptual higher-level notions of the self, as targeted by

other important lines of research in cognitive neuroscience (Gal-

lagher, 2000; Goldberg et al., 2006; Heatherton et al., 2006; Le-

grand and Ruby, 2009; Mitchell et al., 2005).

Studies of multisensory bodily processing allow the investiga-

tion of the subject of experience and have successfully induced

illusory states of BSC, such as the illusory feeling of an artificial

body part as one’s own (illusory body ownership or self-attribu-

tion). By manipulating visuo-tactile inputs, an illusory feeling of

ownership can be induced for an artificial hand (rubber hand illu-

sion; Botvinick andCohen, 1998) or for another person’s face (en-

facement illusion; Tsakiris, 2008; Sforza et al., 2010). Viewing

another person’s hand (face) being stroked in synchrony with

strokes applied to one’s own corresponding non-visible hand

(face) can induce illusory self-attribution of the seen hand (face).

Moreover, participants perceive their hand to be at a position

that is displaced toward the fake hand’s position (proprioceptive

drift) or judge another person’s face as similar to their own.

One of the main new arguments of the present paper is that

rubber hand and enfacement illusion rely on processing sensory

information from the space immediately surrounding the body (or

peripersonal space [PPS]), which is a particularly important

spatial compartment for BSC. Multisensory perception studies

(Spence and Driver, 2004) showed that tactile processing is
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strongly modulated by visual or auditory stimuli (for reviews:

Macaluso and Maravita, 2010; Occelli et al., 2011) and that

such modulation occurs in particular when these are presented

close to (within PPS), as compared to far from, the body.

Neuroimaging studies (Macaluso and Driver, 2005; Makin

et al., 2007; Serino et al., 2011a; Sereno and Huang, 2014) asso-

ciated these effects with brain regions in human posterior parie-

tal and premotor cortices, hosting bimodal and multimodal

neurons, as revealed by earlier neurophysiological work in

non-human primates (Duhamel et al., 1998; Graziano et al.,

1994; Rizzolatti et al., 1981). Similar regions also process signals

involved in self-attribution of the hand (Ehrsson et al., 2004;

Tsakiris et al., 2007; Evans and Blanke, 2013) and face (Cardini

et al., 2011; Apps et al., 2015).

More recent research has investigated trunk-related multisen-

sory processing, as it allows researchers to investigate brain

mechanisms that target the body as a global and unitary entity.

The importance of this latter approach was motivated by con-

ceptual work in philosophy of mind (Metzinger, 2004; Blanke

and Metzinger, 2009) and clinical data in neurological patients

suffering from disorders of BSC (Brugger et al., 1997; Blanke

et al., 2008). A series of studies in healthy volunteers revealed

that trunk-related bodily processing is of particular relevance

for key aspects of BSC, involving brain mechanisms beyond

ownership for a given body part (hand, leg, face). These experi-

mental studies also exploited visuo-tactile and visuo-vestibular

stimulations at the trunk for the induction of more global changes

in BSC, such as ‘‘full-body,’’ ‘‘out-of-body,’’ or ‘‘body-swap’’ illu-

sions (Ehrsson, 2007; Lenggenhager et al., 2007; Petkova and

Ehrsson, 2008; Aspell et al., 2013). Typically in these paradigms,

tactile stimulation is repeatedly applied to the back or chest

(Lenggenhager et al., 2009) of a participant who is being filmed

and so simultaneously views (on a head-mounted display

[HMD]) the stroking of a human body in a real-time video or vir-

tual-reality animation, in front of her/him, at a farther location.

When exposed to the full-body illusion, participants self-identify

with the seen virtual body (change in self-identification) and

show a forward drift in self-location (the experience of where

‘‘I’’ am in space) toward the position of the virtual body. In partic-

ular, behavioral and questionnaire data show that participants

perceive themselves to be located ‘‘in front’’ of the position

where they had been standing physically during the experiment.

Here, we argue that bimodal and multimodal neurons that inte-

grate visual, tactile, and vestibular information as defined in

monkey posterior parietal and premotor cortex are of key rele-

vance for these aspects of BSC. Neuroimaging data in humans

found such integration in fronto-parietal and temporo-parietal re-

gions, reflecting experimentally induced changes in self-identifi-

cation and self-location (Ionta et al., 2011; 2014; Petkova et al.,

2011; Gentile et al., 2015; Guterstam et al., 2015).

In this review, we develop four major neuroscientific con-

straints of BSC and apply them to (1) body ownership or self-

attribution of a body part (hand, face), (2) self-identification

with the full body, and (3) self-location (Blanke and Metzinger,

2009; Blanke, 2012). For this, we will describe the behavioral

laws of multisensory processing of bodily stimuli in PPS, the

major neuronal properties of bimodal and multisensory neurons

at the level of single neurons, the major brain regions and net-
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works involved in the processing and integration of such

signals, and the major computational approaches to BSC.

We note that other mechanisms contribute to self-conscious-

ness and BSC, such as the sense of agency for bodily actions

that is based on the additional integration with motor signals.

Interoceptive body-related inputs are also an important additional

mechanism inBSC. Both have been the topic of a large number of

studies and reviews (agency, e.g.: Jeannerod, 2003; Gallese and

Sinigaglia, 2010; Haggard and Chambon, 2012; Marcel, 2003; in-

teroception: Craig, 2002; Damasio, 2003; Seth, 2013). Current

research has also started to study global aspects of BSC (self-

identification and self-location) based on interoceptive signals

(Aspell et al., 2013; Ronchi et al., 2015) and sensorimotor signals

(Kannape et al., 2010; Kannape and Blanke, 2013). However, in

the present paper we focus on multisensory brain mechanisms

of exteroceptive bodily signals as, we believe, this is the simplest

account for BSC (see also Blanke and Metzinger, 2009).

Major Behavioral Laws of Multisensory Processing,
Multisensory Bodily Processing, and BSC
Multisensory Integration

Information from different senses is integrated in order to

improve perception (Fetsch et al., 2013; Ernst and Bülthoff,

2004), and there are at least three general laws of multisensory

integration. Inputs from different modalities are more strongly

integrated the closer they occur in space (spatial law) and in

time (temporal law), and the weaker each unisensory input signal

is (inverse effectiveness) (Stein and Stanford, 2008; Stein et al.,

1989; Frassinetti et al., 2002). For example, in audio-visual

perception, participants are faster and more accurate in local-

izing the source of a visual target when a concurrent auditory

cue is presented at the same location, at the same time, and

when the intensity of the visual and the auditory stimuli is weak

(Spence and Driver, 2004; Calvert et al., 2004).

Concerning multisensory stimulation involving bodily signals,

several studies have shown that a visual (Spence et al., 2000)

or an auditory (Zampini et al., 2007) cue affects the perception

(i.e., it improves accuracy and speeds up reaction times) of a

tactile stimulus delivered to the hand; an effect termed crossmo-

dal congruency effect (CCE). CCE magnitude increases with

decreasing temporal delays between the multisensory stimuli,

in line with the temporal law of multisensory integration. In addi-

tion, the spatial arrangement of tactile targets and visual cues

determines CCE magnitude, with stronger CCEs when both

multisensory inputs are presented at the same spatial location

and weaker if the visual cue is presented further away from the

hand that has received the tactile stimulus (Spence et al.,

2004), in line with the spatial law of multisensory integration.

Multisensory Integration of Bodily Signals Is

Constrained by Proprioception and Body-Related Visual

Information

Although previously reviewed studies suggest that the inte-

gration of multisensory signals including bodily signals (i.e.,

tactile and proprioceptive signals) share similar laws of multi-

sensory integration (Van der Stoep et al., 2015), we argue that

multisensory integration of bodily signals relies on additional

constraints that are absent or minimal for exteroceptive events.

Consider the case of visuo-tactile integration. If we want to



Figure 1. Four BSC Constraints Determining Hand Ownership
(A—E) Stimuli applied to an artificial hand (blue hand) are integrated with stimuli on the physical hand, if the artificial hand is placed coherently with the posture of
the physical hand, whereas no change in hand BSC (i.e., illusory hand ownership) occurs if it is placed in an non-matching body posture ([A], proprioceptive
constraint). No change in hand BSC occurs for an object with a non-bodily shape ([B], body-related visual information constraint) or if the artificial hand is
presented outside the PPS of the real hand ([C], PPS constraint). A change in hand BSC is obtained if the real hand and the artificial hand receive synchronous and
prolonged visuo-tactile stimulation ([D], embodiment constraint). Note that, normally, these four constraints apply to the parts of one’s own physical body, leading
to the normal sense of body ownership (E). Red and green body of the participant indicates, respectively, absence or presence of BSC for the hand.
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determine the location of an object touching our body, the

position of the skin receptors detecting touch needs to be re-

mapped continuously from its fixed position on the skin to its

position in external space, where the visual cue is located

(Soto-Faraco and Deco, 2009; Heed et al., 2015). Thus, besides

visual and tactile cues, other inputs, such as proprioceptive sig-

nals, impact multisensory integration, defining the position of

the body in space and whether stimuli are related to the body

or not. In the case of auditory-visual integration, the auditory

and the visual cues both occur in external space, and their loca-

tion is determined by visual information in retinal coordinates,

auditory information in head coordinates, further integrated

based on eye position signals (Stricanne et al., 1996; Colby,

1998; Cohen and Andersen, 2000). Accordingly, for multisen-

sory perception of exteroceptive cues, no input from other mo-

dalities (if the eyes and head are fixed, see below) is needed,

and integration is determined based on the described laws of

space, time, and inverse efficiency. In the next section, we will

review behavioral studies in humans showing that the inte-

gration of multisensory bodily signals requires the concurrent

processing of several signals related not only to the stimuli

themselves but also to proprioceptive signals encoding the

subject’s body position. It is worth noting that this also makes
studying the integration of multisensory bodily signals more

difficult than for exteroceptive cues, because bodily-related in-

puts (e.g., signals about body-parts position) are always present

and more difficult to manipulate.

Several studies have shown that the spatial determinants

of the crossmodal interaction between tactile stimuli and visual

targets depend on the participant’s arm posture. For instance,

Spence et al. (2004) compared CCE strength when tactile targets

were delivered to the right or left hand, and visual cues were

administered to the right or left visual space. Usually, same

side visuo-tactile stimulation (e.g., visual cues on the left side

with tactile stimuli on the left hand) induces stronger CCE. How-

ever, if participants cross their hands, the effects reverses (right

visual cues interact more strongly with tactile stimulation on the

left hand), showing that multisensory integration of bodily signals

is re-referenced based on proprioceptive cues (spatial remap-

ping of touch; Soto-Faraco and Deco, 2009; Heed et al., 2015);

the prominent impact of proprioceptive signals for the percep-

tion of bodily signals is the first constraint for multisensory inte-

gration for BSC (see Figure 1A).

Other studies showed that multisensory integration of bodily

inputs is determined not only by the physical position of the

hand in space, as determined by proprioception, but also by
Neuron 88, October 7, 2015 ª2015 Elsevier Inc. 147
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visual information related to the configuration of the body and

its parts in space (body-related visual information) (Serino and

Haggard, 2010). For instance, Pavani et al. (2000) showed that

visual cues induced a stronger CCE over tactile targets (admin-

istered to the participants’ hidden hands), when the cues were

presented on fake hands, as compared to when they were pre-

sented exactly at the same spatial location, but without fake

hands, or when presented at the same position on fake hands

that were placed in a posture incompatible with the actual

posture of participants’ hands. Similar effects have been found

using mirrors (Maravita et al., 2002) or hand shadows (Pavani

and Castiello, 2004) to administer visual cues that, although be-

ing presented in a spatial location physically far from the place of

tactile stimulation, were processed as occurring on the body,

modulating tactile processing. Thus, top-down input related

to the perceived visual configuration of the body in space is a

second major constraint governing multisensory integration of

bodily signals for BSC (see Figure 1B).

Thus, integration of multisensory stimuli requires that sensory

inputs, originally processed in sensory-dependent reference

frames (e.g., visual stimuli in eye-centered, auditory stimuli in

head-centered, tactile stimuli in skin-centered reference frames),

are realigned and integrated into a common reference frame. In

the case of integration of exteroceptive inputs, such as audio-

visual integration (e.g., the noise and the flashing of a fire alarm

on the wall), multisensory integration is based on the spatial

relationship between the source of the visual and the auditory

cue, determined by the position of the visual stimulus on the

retina, the location of the sound in the auditory space, and sig-

nals related to eye and head position. Thus, additional sensory

signals (eye-head proprioception) only minimally concur with

the integration process of exteroceptive stimuli under static

conditions. Instead, in the case of bodily inputs (e.g., visuo-

tactile or audio-tactile stimuli), the common reference frame of

multisensory perception is the subject’s body, and the transfor-

mation—or remapping process—involves processing and

integration of additional proprioceptive and vestibular inputs

signaling the location of a tactile cue on the body in space (first

BSC constraint) and visual inputs related to the configuration

of the body in space (second BSC constraint).

Multisensory Integration of Bodily Signals Occurs within

a Limited Space around the Body: The PPS Constraint

Research in patients with crossmodal extinction following focal

brain damage have confirmed the importance of both constraints

inmultisensory bodily perception (di Pellegrino et al., 1997; Farnè

and Làdavas, 2002; Làdavas et al., 1998a; Farnè et al., 2000).

These studies also showed that a visual or auditory stimulus

more strongly interacts with tactile stimulation on the body

when the visual or auditory event occurs close to the perceived

location on the body, rather than farther away, within PPS. Serino

and colleagues provided behavioral support that for healthy par-

ticipants PPS is an additional critical factor for multisensory

bodily perception. They reported that responses to a tactile stim-

ulus delivered to the hand are enhanced if a concurrent, task-

irrelevant sound is presented close to the stimulated hand (inside

PPS) but not at larger distances (outside PPS) (Serino et al., 2007,

2011a). The border of PPS (i.e., themost distant position in space

from the body where this audio-tactile interaction effect occurs)
148 Neuron 88, October 7, 2015 ª2015 Elsevier Inc.
was then defined by administering tactile targets coupled with

dynamic sounds, originating from a far location and approaching

the participant’s stimulated hand (Canzoneri et al., 2012). By pre-

senting tactile target stimuli at different delays from sound onset

(simulating different sound distances from the body), reaction

times to tactile targets became faster (compared to unimodal

tactile stimulation) once the sound entered the participants’

PPS. This facilitation effect was not linearly proportional to the

spatial position of the sound, but occurred for sounds within a

limited distance from the body (i.e., 40–50 cm for the hand),

beyondwhich no space-dependent modulation of reaction times

was found (Bassolino et al., 2015; Canzoneri et al., 2013a, 2013b;

Serino et al., 2015; Teneggi et al., 2013). These data show that

multisensory integration of bodily signals not only is governed

by the metric distance of external stimuli from the body, but

also depends on a third constraint of BSC that is absent for

non-bodily multisensory perception: PPS. In the present paper,

we define PPS as the part of space that surrounds the different

body parts, which remains anchored to a given body part (arm,

face, trunk) when that body part moves, and where information

related to external stimuli (as signaled by visual or auditory inputs)

interacts with the processing of somatosensory stimuli on the

body. The extent or the boundaries of PPS are defined on the ba-

sis of multisensory responses, as captured by behavioral and

neurophysiological measurements.

PPS has most often been linked to the arm reaching space,

conceived as a sensory-motor interface for hand-object interac-

tions (Brozzoli et al., 2012b; Makin et al., 2012; Maravita et al.,

2003). However, data from patients and healthy volunteers also

described a PPS around the head (Cléry et al., 2014; Farnè

et al., 2005; Farnè and Làdavas, 2002; Làdavas et al., 1998b;

Teneggi et al., 2013) and the trunk (Galli et al., 2015; Noel

et al., 2014, 2015; A.S., unpublished data), suggesting that the

extent of PPS should be defined by the (potential) interactions

between stimuli on the body and objects in the space around it.

Prolonged Multisensory Stimulation Leads to Changes

in Body Ownership, Self-Identification, and Self-

Location: The Embodiment Constraint

Do multisensory stimulations within PPS that induce altered

states of BSC also impact the constraints of multisensory

perception? We propose that specific stimulation patterns, im-

plemented during the different illusory own-body perceptions,

change multisensory integration of bodily signals and shapes

PPS representation, reflecting a fourth constraint for the

neural mechanisms underlying BSC that we call ‘‘embodiment.’’

More specifically, the fourth constraint, which models of BSC

need to account for, is how the synchronous and prolonged

manipulation of multisensory stimulation impacts BSC. In the

described experiments on BSC, subjects are exposed to syn-

chronous visuo-tactile stimulations between their body and an

artificial body, and these are generally applied for several mi-

nutes, inducing the different illusions (rubber-hand, enfacement,

or full-body illusions), which are quantified by behavioral and

brain imaging measurements. The prolonged synchronous stim-

ulations related to the embodiment constraint temporally link

stimuli from different modalities and from the physical body

and another body or object. Embodiment applies when synchro-

nous multisensory bodily signals are integrated over longer
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periods of multisensory stimulation, thus inducing changes in

BSC. Importantly, under normal conditions, embodiment applies

for the physical parts of the biological body, which naturally and

continuously receive prolonged and synchronous multisensory

inputs. However, the reviewed bodily illusions (see Makin et al.,

2007; Ehrsson, 2012; Apps and Tsakiris, 2014; Blanke, 2012

for revisions) and previous work on tool incorporation (Maravita

and Iriki, 2004) show that embodiment can also apply to artificial

objects and tools, whose features and position do not fully over-

lap with those of the biological body. In the rubber hand (Makin

et al., 2007; Ehrsson, 2012), enfacement (Apps and Tsakiris,

2014), and full-body illusion paradigms (Blanke, 2012), despite

spatio-temporal conflicts in basic multisensory processing with

respect to the three other BSC constraints, the embodiment

constraint allows extending BSC to a different object or location

than the biological body, if the period of multisensory stimulation

is long enough. In the following sections, we will link specific

changes in body ownership, self-identification, and self-location

to mechanisms of plasticity in multisensory integration of bodily

signals within the PPS, affecting embodiment.

Studies using the rubber hand illusion have consistently

shown that the integration of visuo-tactile stimuli is determined

by the same proprioceptive, visual, and spatial constraints

determining multisensory bodily integration within PPS. No (or

weaker) illusory hand ownership is induced if the rubber hand

is presented far outside the participant’s hand PPS (Lloyd,

2007), in a spatial position incompatible with the participants’

posture (Ehrsson et al., 2004; Costantini and Haggard, 2007),

or for a visual stimulus whose shape does not resemble a hand

(Tsakiris et al., 2008, 2010). Thus, visuo-tactile integration

inducing the rubber hand illusion is subject to the constraints

determining multisensory integration within the PPS (see

Figure 1C). Illusory ownership can also be evoked for a very

long virtual arm (Kilteni et al., 2012; Armel and Ramachandran,

2003) or different arm colors (Martini et al., 2013), pending that

the virtual limbs were perceived to be connected to the partici-

pant’s body (Perez-Marcos et al., 2012). In addition, illusory

hand ownership occurs not only when visuo-tactile stimulation

on the participant’s hand and on the virtual hand are perfectly

synchronized, but also with a delay shorter that 300ms, whereas

at higher delays the strength of the illusion decays and vanishes

for delays longer than 500 ms (Shimada et al., 2009; see also

Aspell et al., 2010 and Zopf et al., 2010 for temporal factors

affecting multisensory interaction during the full-body illusion

and the rubber hand illusion, respectively).

Other results show that once illusory ownership for the rubber

hand is induced, the processing and integration of stimuli related

to the real and the rubber hand is affected so that administering

a threatening stimulus toward the rubber or virtual hand induces

autonomic responses, as if the real hand was threatened (Armel

and Ramachandran, 2003). Such effects have also been associ-

ated with physiological and perceptual changes in the partici-

pant’s hand, such as reduction of hand temperature (Moseley

et al., 2008), hand temperature sensitivity (Llobera et al., 2013),

and change in immunological reactivity (Barnsley et al., 2011).

Moreover, Zopf et al. (2010) showed the CCE magnitude re-

flected changes in BSC, since visual cues enhanced CCEs

when applied on a rubber hand that was associated with illusory
hand ownership. This result reflects an alteration of multisensory

integration within the PPS due to changes in BSC. Finally, Ferri

et al. (2013) showed that the rubber hand illusion hand can be

obtained even without touching the rubber hand by just present-

ing visual stimuli entering the rubber hand’s PPS.

Less data are available for face ownership but are consistent in

linking the enfacement illusion to multisensory integration within

the face PPS. Cardini et al. (2013) showed that a visual stimulus

occurring on another person’s face (seen in front of the partici-

pant on a computer screen) impacted tactile stimulation on the

participant’s face more strongly after the two faces had received

synchronous visuo-tactile stimulation to induce illusory face

ownership. This effect was associated with a change inmultisen-

sory integration within the PPS: Maister et al. (2014) measured

how a dynamic sound moving between the participant and the

other person affected tactile processing of stimuli on the partic-

ipant’s face (as in Canzoneri et al., 2012) and how this depended

on illusory face ownership with the other person’s face. They

found that a sound presented at a specific location far from

the participant’s face, but close to the other person’s face, had

a stronger effect on tactile processing, when the participants

experienced illusory face ownership for the other person’s

face. To summarize, illusory ownership for a hand and face,

due to prolonged stimulation, has been consistently linked to

multisensory integration of bodily signals, based on propriocep-

tive, body-related visual information, PPS, and embodiment

constraints. In case of ownership for specific body parts, we

propose that such multisensory (mainly visuo-tactile) integration

mechanisms concern body-part-specific (hand-centered, head-

centered) representations. Multisensory stimulation involving

larger body sectors, and in particular the trunk region, leads to

alterations of global aspects of BSC, such as self-identification

and self-location.

First experimental manipulations of self-location are reported

by psychologist George Stratton, who performed self-experi-

ments and described subjective changes in visuo-tactile percep-

tion using a portable system that consisted of two mirrors. One

mirror was positioned horizontally above the head and another

small mirror in front of the eyes (at an angle of 45�). The topmirror

imaged the person as seen from above and was also reflected in

the small mirror, leading to a projection of the image of Stratton’s

body in front-space. Prolonged usage of this device induced

visuo-tactile sensations characterized by referral of touch to

the visual locations and changes in self-location (Stratton,

1899). More systematic changes in self-location have been

induced by recent studies employing different full-body illusion

paradigms. By using questionnaires, behavioral tasks, mental

imagery or skin conductance response, several studies proved

that it is possible to make participants self-identify with an artifi-

cial body (Lenggenhager et al., 2007, 2009, 2011; Ehrsson, 2007;

Petkova and Ehrsson, 2008, 2011; Guterstam et al., 2015; Aspell

et al., 2009, 2010, 2013; Palluel et al., 2011; Ionta et al., 2011;

Pfeiffer et al., 2013, Pomés and Slater, 2013) and also to induce

changes in self-location. For instance, asking participants to

walk to the position where they have been standing during the

illusion induction (after displacing them), they place themselves

not at the location of their physical body during the experiment,

but either ‘‘in front’’ of or behind that position, depending on the
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Figure 2. Four Constraints Determining Global Aspects of BSC (i.e., Self-Identification and Self-Location)
(A and B) Stimuli applied to an artificial body (with blue shirt) are integratedwith stimuli on one’s physical body (with red or green shirt), if the artificial body is placed
coherently with the posture of the physical body. This change in global BSC does not occur if proprioceptive (and vestibular) information from one’s own and the
artificial body does not match ([A], proprioceptive constraint), or if an object with non-bodily shape is shown ([B], body-related visual information constraint).
(C—E) Prolonged synchronous visuo-tactile stimulation applied to one’s physical body and to the artificial body induces changes in global BSC, extends one’s
own PPS ([C], PPS constraint), and induces self-identification for, and a shift of self-location toward, the artificial body ([D], embodiment constraint). These four
constraints normally determine integration of multisensory body signals for one’s whole body, thus underlying self-identification with the body and normal self-
location at the location of the physical body, within the PPS (E). Red and green body of the participant indicates, respectively, absence or presence of global
aspects of BSC.
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location of the artificial body during themanipulation. Aspell et al.

(2009) studied changes in multisensory integration of bodily sig-

nals (CCE) associated to these experimentally induced changes

in BSC. Stronger CCEs were found in the synchronous condi-

tion—inducing self-identification with the avatar and a drift in

self-location toward the avatar’s location. Proprioceptive con-

straints of multisensory integration of bodily signals were also

found to modulate BSC, as investigated in the full-body illusion,

since themagnitude of the CCE, aswell as self-identificationwith

the virtual body, were modulated consistently by leg muscle vi-

bration (inducing proprioceptive noise), but not by arm muscle

vibration (Palluel et al., 2012). Body-related visual information

also impacts on such changes in BSC, as the administration of

visuo-tactile synchronous stroking with a non-bodily object in-

duces no or minimal changes in self-identification and self-loca-

tion (Figure 2B) (Lenggenhager et al., 2007; Salomon et al., 2012;

Aspell et al., 2009; Romano et al., 2014). Thus, the embodiment

constraint of BSC—based on the prolonged synchronous visuo-

tactile stimulation—is also present and is associated with illusory

changes in self-identification and self-location. Critically, such

changes have been directly linked with a modulation of trunk-
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centered PPS. Noel et al. (2015) measured the PPS size and

the location of PPS boundaries adapted to the full body (while

participants were exposed to synchronous visuo-tactile stroking

to induce the full-body illusion). The PPS was found to extend in

the front-space, toward the avatar’s body, for which illusory self-

identification was experienced. The opposite effect (a contrac-

tion of the PPS) was found in the back-space (and no such

changes were observed in the asynchronous control condition

in front- or back-space). These data show that the boundaries

of PPS during the full-body illusion shift toward the avatar, sug-

gesting that the reshaping of PPS representation mirrored the

experimentally induced changes in BSC and further suggest

that the trunk-centered, whole-body, PPS is referenced to the

experienced location of the self, rather at the location of the

physical body (see Figure 2C). These data show that although

multisensory integration for the body occurs under normal con-

ditions within the PPS, prolonged temporally synchronized stim-

ulation of the body and of a virtual or physical replacement of it

(embodiment, see Figure 2D) alters the constraints of multisen-

sory bodily integration, reshapes PPS, and induces BSC for an

artificial body.



Box 1. Current Status of the Field

BSC depends on the integration of bodily signals from different sensory modalities. As compared to other forms of multisensory

integration involving purely exteroceptive stimuli, multisensory processing of bodily signals for BSC is determined by four compu-

tational constraints.

d It depends on proprioceptive and vestibular inputs signaling the location of body parts and of the whole body in space (pro-

prioceptive constraint).

d It depends on visual information about the shape and the structure of the body (body-related visual information constraint).

d Normally it occurs within a limited space surrounding the body, termed PPS (PPS constraint).

d Prolongedmultisensory stimulation manipulating the spatio-temporal coherence of bodily signals alters BSC, by reshaping the

PPS boundaries and inducing BSC for non-corporeal objects (embodiment constraint).
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Multisensory Integration for Partial versus Global

Aspects of BSC

We summarize what is known about the constraints determining

multisensory mechanisms of BSC in Box 1. We note that,

although the four constraints of BSC (proprioception, visual

body-related information, PPS, and embodiment) are present

for hand, face, and trunk, the mechanisms of multisensory

perception of stimuli at the trunk and head are based on different

mechanisms that are not present for hand-related perception

and hand-related aspects of BSC. These differences are re-

flected in differences in tactile properties; for instance, the tactile

spatial resolution at the fingers and hand is very high, whereas it

is very low for the trunk, since the size of tactile receptive fields is

small at finger/hand and large at the trunk (see next section).

Moreover, the impact of vestibular cues is much more important

for head-related processing than for arm-related processing,

where proprioceptive cues are more relevant. Other differences

are the limited direct visual access we have to our face and back

as compared to the highly visible limbs and the differences in

movement properties for hand and trunk (i.e., hand movements

versus head or full-body movements) (Kannape and Blanke,

2012; Kannape et al., 2010).

The importance of these distinct bodily signals for global

aspects of BSCare prominent for self-identification and self-loca-

tion, asdistinguished frombody-part ownership. Thus,while it has

been shown that body ownership relies on multisensory signals

from smaller circumscribed body regions (hand, face), self-identi-

fication relies onmoreglobalmultisensory signals, encompassing

largeparts of thebody (or the entire body). Accordingly, themech-

anisms involved in self-identification and self-location rely heavily

onproprioceptive and vestibular signals, and relatedmultisensory

bodily processes are referenced to the trunk. Finally, while illusory

hand ownership occurs only when the hand is within the PPS, illu-

sory self-identification and a shift of self-location can be induced

for an artificial body presented farther away, to which the partici-

pant’s PPS extends. Thus, we propose that neural processes of

global BSC related to the trunk are fundamental for self-identifica-

tion and self-location and are different from neural processes en-

codingBSC for circumscribed body parts. Only the former lead to

the experience of an organism to be located within a particular

portion of space in the world (self-location) and to identify with

that portion of space. Most of the time, that position of space co-

incides with the organism’s physical body (self-identification),

because multisensory bodily inputs, under normal conditions,

are all coherently related to the same physical object, the
body—‘‘the same old body, always there’’ to use William James’

words (James, 1890)—which is then experienced as one’s own

body and where the PPS representation is centered. However, if

multisensory bodily inputs are manipulated, using specific con-

flicts under specific constraints, it is possible to induce states of

BSC for other objects or spatial locations, reshaping PPS repre-

sentation and altering self-identification and self-location.

Major Neurophysiological Properties of BSC
Bimodal and Multimodal Neurons

Next we focus on a particular set of neurons, bimodal and multi-

modal neurons, located in posterior parietal cortex, posterior

insula, and premotor cortex (PMC) of non-human primates

and highlight their main neurophysiological properties related

to multisensory bodily perception and BSC. The key feature of

bimodal neurons is that they respond not only to stimuli in one

modality, such as tactile cues, but also to visual, auditory, and

proprioceptive signals. Following seminal work by Vernon

Mountcastle (Mountcastle et al., 1975, 1995), subsequent single

unit studies in awake, behaving monkeys have consistently

described several populations of bimodal and trimodal neurons

processingmultisensory bodily inputs. These neurons aremainly

located in the posterior parietal cortex, in particular in a region

ranging from the postcentral sulcus (at the junction between

the superior parietal and the inferior parietal lobules) to more

posterior regions along the intraparietal sulcus (IPS), and involve

area 5, area 7, and area VIP. Frontal cortex, in particular ventral

PMC (area 6), also harbors bimodal and trimodal neurons pro-

cessing multisensory inputs (see Figure 3). These fronto-parietal

areas are strongly interconnected, directly or indirectly project

to the cortico-spinal tracts, and together are considered to

form a fronto-parietal multisensory-motor network supporting

sensory-motor functions (Rizzolatti et al., 1997, 2002; Colby,

1998; Grefkes and Fink, 2005; Andersen, 1997).

Typically, these neurons have a tactile receptive field (RF)

covering a relatively large part of the skin that is centered on a

specific body part. Importantly, these neurons also respond to

visual stimulation (Duhamel et al., 1998; Fogassi et al., 1996;

Graziano et al., 1994, 1997; Rizzolatti et al., 1981; Avillac et al.,

2005) or auditory stimulation (Graziano et al., 1999; Schlack

et al., 2005) (bimodal neurons), and still others respond to all

threemodalities (trimodal neurons). Many of them receive propri-

oceptive inputs, and some of them are active during body

movements. The neuronal responses (i.e., spike discharge

rate) are enhanced (or depressed) when bimodal stimuli
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Figure 3. Neurophysiological Mechanisms
of BSC in the Macaque
(A–C) Upper panel: main brain regions, dimen-
sions, and location of multisensory receptive fields
of multimodal neurons integrating body-related
multisensory inputs within the PPS in themacaque
([A], PPS constraint). Lower panel: multisensory
neurons may respond to stimulation related to an
artificial arm, but this effect depends on whether
the artificial hand is placed coherently or not with
the posture of the physical hand ([B], propriocep-
tive constraint) and on whether an visual stimulus
with bodily or non-bodily shape is shown ([C],
body-related visual information constraint).
(D and E) Some multisensory neurons originally
respond only to stimuli related to the real arm (D)
and not to an artificial arm; however, prolonged
synchronous visuo-tactile of the real and the arti-
ficial arm makes these neurons responding also
to the artificial arm ([E], embodiment constraint).
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(e.g., visuo-tactile) are presented simultaneously, as compared

to non-stimulation trials (baseline neuronal discharge rate) or to

unimodal conditions (unimodal visual or unimodal tactile stimula-

tion). Different nonlinear sub-, super-, or additive mechanisms

have been described (Avillac et al., 2007), and these neural activ-

ity modulations are a prominent feature of multisensory integra-

tion (i.e., Stein and Stanford, 2008). Integration is usually optimal

when stimuli are in temporal synchrony and spatially congruent,

similarly as for cortical regions processing auditory-visual stimuli

(in superior temporal sulcus regions or superior colliculus; see
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Stein and Stanford, 2008). Frontal and

parietal bimodal neurons are particularly

sensitive to dynamic stimuli, as their firing

rate increases in response to external (vi-

sual or auditory) cues approaching the

body (Graziano et al., 1997; Graziano,

1999) and are sensitive to the velocity of

looming stimuli (the boundaries of their

receptive fields extend in space when

presented with fast, as compared to

slow, visual stimuli; Fogassi et al., 1996).

Receptive Field Properties of

Bimodal and Multimodal Neurons

At least four distinct fronto-parietal func-

tional networks have been described,

based on their anatomical and functional

properties, compatible with their involve-

ment in specific sensory-motor functions

(see Rizzolatti et al., 1997, 2002; Colby,

1998). Here we will focus on area F4 in

the ventral-PMC and on the fundus of

the IPS (ventral intraparietal area [VIP]),

which, together with neighboring parietal

areas 5 and 7b, host multisensory neu-

rons whose multisensory properties

have been most directly linked to bodily

processing and BSC.

Compared to tactile receptive fields in

lower-tier parietal regions such as S1,
the size of the tactile receptive fields of bimodal neurons is large

andmay cover an entire hand/arm, the head or trunk, or an entire

body half. Somemay cover bilateral body regions. The size of the

visual or auditory receptive fields typically matches that of the

tactile receptive field, and the different receptive fields overlap

spatially and extend from the body for varying distances. For

instance, in ventral PMC, most neurons have a tactile receptive

field covering the arm, but can also cover the shoulder, upper

trunk, or face. Visual receptive fields (Fogassi et al., 1996; Gra-

ziano et al., 1997) of such PMC neurons also have variable
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dimensions (from 5 cm to 1 m), and auditory receptive fields may

extend into space by approximately 30 cm (Graziano et al.,

1999). In most VIP neurons, the tactile receptive fields are usually

centered on the head (Duhamel et al., 1998; Avillac et al., 2005),

but have also been reported for the upper trunk (chest), shoulder,

or arm (Iriki et al., 1996). Visual (Duhamel et al., 1998; Bremmer

et al., 2001a) and auditory (Schlack et al., 2005) receptive fields

in area VIP are usually limited to the upper part of visual or audi-

tory space and cover a distance of 10–60 cm from the body sur-

face, almost always on the same side of space as the tactile

receptive field.Most bimodal neurons in area 7b have even larger

tactile receptive fields and may cover the arm, the head, and the

trunk, and sometimes even the whole body bilaterally. Again, the

size and location of their visual (or auditory) receptive fields are

congruent with the dimensions of the tactile receptive field and

also extend bilaterally over large regions of the visual field, some-

times covering more than 1 m (Leinonen, 1980; Leinonen et al.,

1979, 1980; Leinonen and Nyman, 1979; Hyvärinen, 1981; Gra-

ziano and Gross, 1995; Jiang et al., 2013). Thus, the receptive

fields of these bi- and tri-modal neurons cover body-parts or

larger parts of the body surface extending over portions of

PPS and are proportional in size. At the anatomical level, upper

extremities are represented mainly in PMC, the face in VIP,

and the trunk in area 7b (Figure 3A).

Body-Part-Centered Multisensory Properties

Next to their sensitivity to tactile, visual, and auditory signals,

these neurons also integrate proprioceptive and sometimes

vestibular signals, which are important inputs allowing to anchor

their multisensory receptive fields to the different body parts

and to maintain spatial congruency between visual, auditory,

and tactile receptive fields. Indeed, a critical feature of these neu-

rons is that their visual (and auditory) receptive fields remain in

spatial alignment with the tactile receptive field, despite active

or passive movements of the arm, head, or trunk. If the body

part (e.g., the arm) to which the tactile receptive field is anchored

moves, the spatial location of the visual or auditory receptive field

shifts congruently from the initial spatial position to its new loca-

tion (Fogassi et al., 1996; Graziano et al., 1997), compatible with

the importanceof proprioceptive signals highlighted inbehavioral

studies of multisensory bodily processing in humans (Làdavas

et al., 1998a; Spence et al., 2004; Serino et al., 2011a). Thus,

multimodal neurons encode multisensory bodily stimuli in body-

centered reference frames (i.e., arm-centered, head-centered,

trunk-centered) by anchoring the different receptive fields to a

given body part. In order to study the relative contribution of pro-

prioceptive and visual inputs to arm-centered neurons, Graziano

(1999) recorded the activity of ventral PMC neurons with multi-

sensory arm-centered receptive fields and exposed a monkey

to the following conflicting visuo-proprioceptive conditions: the

monkey saw a visual stimulus that approached either its real

arm or a fake arm, which was placed either congruently or incon-

gruently with the real arm posture. The firing rates of the neurons

to approaching stimuli varied as a function of the position not only

of the monkey’s real arm but also of the fake arm (see also Gra-

ziano et al., 2000 for similar coding by parietal neurons). Thus,

body-related visual information, as signaled by the fake arm, in

addition to proprioception of the real arm,modulates the location

of multisensory receptive fields of these neurons in a similar way
as shown for multisensory perception in healthy (Pavani et al.,

2000) and brain-damaged (Farnè and Làdavas, 2002) individuals.

Since sensory stimuli coming from an external object are

initially processed in sensory-dependent reference frames (e.g.,

visual stimuli in eye-centered, auditory stimuli in head-centered,

tactile stimuli in body-centered frames), their coordinates need to

be aligned for integration. To this aim, the samestimuli are coded,

or remapped, with respect to different body-centered reference

frames (Colby, 1998; Andersen, 1997; Rizzolatti et al., 1997; Se-

reno and Huang 2014; see also Deneve and Pouget, 2004; Ma

et al., 2006; Pouget et al., 2002). The computations necessary

for coding stimuli from different modalities in body-centered

reference frames differ depending on the concerned body parts

to which external stimuli are referenced to (Andersen and Buneo,

2002; Cohen and Andersen, 2002; Pouget et al., 2002), compat-

iblewith the proprioceptive constraint of BSCand the differences

between hand- and trunk-related aspects of BSC. Thus, in order

to construct a visual receptive field that is anchored to the arm, it

is necessary to take into account theposition of thearm relative to

the eye and the head, as well as the position of the arm relative to

the trunk. Accordingly, fronto-parietal multisensory neurons

mapping the peri-hand space show responses that are modu-

lated by eye position, head position, and arm position (Graziano

et al., 1997; Fogassi et al., 1996). In contrast, in order to construct

a visual receptive field that is anchored to thehead, it is necessary

to take into account the position of the eye relative to the head

and that of the head with respect to the trunk (while the position

of the arm with respect to the trunk is irrelevant in this context).

Most neurons in VIP, mapping the peri-head PPS, have been

shown to modulate their responses depending on the position

of the eyes and the head, but not of the arm (see Duhamel

et al., 1998; Avillac et al., 2005; Graziano and Gross, 1995).

Finally, for a trunk-centered spatial representation, head position

and arm position are irrelevant. In fact, responses of area 7b or

VIP neurons,mapping the trunk or thewhole body, are notmodu-

lated by arm and head movements (Leinonen and Nyman, 1979;

Leinonen et al., 1979; Hyvärinen, 1981; Graziano and Gross,

1995; Jiang et al., 2013) (see Figure 3A).

Multisensory Integration in PPS and Its Relevance

for BSC at the Level of Single Neurons: Body Ownership

and Self-Identification

In a series of elegant neurophysiological experiments, Graziano

and Gross described multimodal neurons in area 5 that come

closest of being the neurophysiological basis of BSC in animals

(Graziano et al., 2000). These authors applied conditions ofmulti-

sensory stimulation (similar to those of the rubber hand illusion in

humans) and tested the response properties in monkey area 5.

Presenting the animal either with a fake hand or the animal’s

hand (placed either on the right or the left side of space), several

neurons responded preferentially when the arm occupied one

side of space; bimodal visuo-proprioceptive neurons coded

either the location of the physical arm (proprioception), the

position of the fake arm (vision), or both (visuo-proprioceptive

integration) (see also Graziano, 1999). Moreover, visuo-proprio-

ceptive coding in area 5 neurons depended on whether a fake

arm was seen or not (i.e., a box did not affect the cell’s

responses; body-related visual constraint of BSC; Figure 3C)

and onwhether the fake handwas shown in a physically possible
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position (i.e., an inverted arm was not effective; proprioception

constraint of BSC; Figure 3B). Most importantly, Graziano et al.

(2000) showed that prolonged visuo-tactile stroking—similarly

as that used to induce the rubber hand illusion—affected

the tuning properties of these neurons. Selecting neurons whose

response preference depended on the location of the real (pro-

prioceptive), but not of the fake (visual information), arm, they

applied synchronous visuo-tactile stroking repeatedly to the

monkey’s hidden real and visible fake arm. Re-evaluating the

visual tuning of the same neurons immediately afterward, these

neurons were now tuned to the visual location of the fake arm

(a coding which was absent before visuo-tactile stimulation;

embodiment constraint of BSC; see Figure 3E). As in the rubber

hand illusion in healthy humans, such neuronal tuning changes

were absent after asynchronous visuo-tactile stroking. We

argue that changes in body ownership that are induced by syn-

chronized visuo-tactile stroking during the rubber hand illusion

involve comparable neurophysiological changes and shifts in

the spatial characteristics of hand-centered multimodal neurons

in human parietal or PMC areas (see Makin et al., 2008). Analo-

gously, we argue that changes in self-identification and self-

location induced in the full-body illusion (i.e., Lenggenhager

et al., 2007) that are associated with changes in the boundary

of trunk PPS (Noel et al., 2015) rely on similar neurophysiological

tuning changes, but for trunk- and not hand-centered neurons,

especially in areas VIP or area 7b. We thus speculate that the vi-

suo-tactile stroking procedures described for the arm, face, and

trunk and affecting BSC change the neural responses of multi-

modal neurons, resulting in a displacement or enlargement of

their visual or auditory receptive fields, so that they also encode

the seen hand, face, or whole body, even if presented at spatial

location beyond the body’s boundaries (see Iriki et al., 2001). In

other words, appropriate manipulations, implementing specific

spatio-temporal conflicts in multisensory signals, might alter

the standard constraints typically ruling multisensory integration

of bodily inputs, thus re-shaping PPS representation and

inducing specific and predicted changes in BSC.

Similar links between multisensory integration, body percep-

tion, and BSC in animals can be proposed for face perception

(Chang et al., 2015). These authors assessed self-face recogni-

tion in monkeys by means of the mirror-mark test (Gallop,

1970).Usually,monkeys fail topass the test, indicating apotential

lack of self-awareness (at least as tested by this procedure; see

Suddendorf and Butler, 2013 and Rochat and Zahavi, 2011 or

discussions). However, Chang and colleagues observed that

monkeys passed the test after exposure to multisensory bodily

stimulation, which consisted in projecting a laser light of mildly

irritating facial tactile stimulation, the monkey could observe

through a mirror. Such facial somatosensory stimulation was

coupled with synchronous visual stimulation of the face (seen in

the mirror), mimicking the enfacement illusion in humans (Tsaki-

ris, 2008; Sforza et al., 2010). Crucially, after prolonged visuo-

tactile training in front of the mirror, the trained monkeys showed

behavioral evidence of self-recognition and exhibited sponta-

neous untrained behaviors that were directed toward their body

(potential behavioral evidence for BSC). We speculate that

such synchronous visuo-tactile stimulation during the training

may have activated face-selective PPS neurons in VIP and that
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changes in the tuning of these neuronsmay have resulted in suc-

cessful self-face recognition (Chang et al., 2015). Ishida et al.

(2010) reported that VIP bimodal face-centered neurons, which

responded to tactile and visual stimulation approaching themon-

key’s face, also discharged when a visual stimulus approached

the experimenter’s face. As the latter condition is comparable

to looking into amirror, it is possible that the systematic and pro-

longed activation of such bimodal neurons due to the mirror vi-

suo-tactile training as used by Chang and colleaguesmay estab-

lish new systematic links between the seen face (mirror) and the

monkey’s own face. By repeating comparable experiments as

described by Chang et al. (2015) for the face and by Graziano

et al. (2000) for the hand, but by exposing monkeys to conditions

of multisensory stimulation of the full-body illusion while

recordingneural activities frommultisensory areas indifferent an-

imal species, one may reveal the detailed neural machinery of

self-identification and self-location not only in monkeys but also

in lower species suchascats (Wallace andStein, 2007) or rodents

(Raposo et al., 2012; Olcese et al., 2013); even in Drosophila the

investigation ofmultisensory signals that are of relevance forBSC

is possible (see e.g., Gepner et al., 2015).

Major Brain Regions of BSC in Humans
In the following section, we present neuroimaging data suggest-

ing how multisensory integration of bodily signals in PPS, rele-

vant for BSC, is implemented in the human brain.

Hand Ownership

Many studies have focused on the processing of hand-centered

multisensory bodily signals. Makin et al. (2007) showed that re-

gions along the IPS, in the lateral occipital complex (LOC), and

the ventral PMC were activated more strongly when a stimulus

approached the participants’ hand (near condition) as compared

to the same visual stimulation presented at a distance of 70 cm

from the hand (far condition). This differential activation was

further modulated by proprioceptive hand position signals as

well as body-related visual information, compatible with coding

in a hand-centered reference frame. Differential near-far activa-

tion (i.e., within or outside the hand PPS) in IPS was also present

when viewing a fake hand at the near location (even if the partic-

ipant’s real hand was retracted), but was absent in LOC and

ventral PMC, if participants positioned their hand far from the

location of the near stimulus. These activation patterns, espe-

cially in IPS (dependence on visual information as occurring

near versus far from the hand and dependence on propriocep-

tive and visual bodily information), are compatible with the pro-

prioceptive and body-related visual constraints highlighted by

behavioral and neurophysiological studies. Gentile et al. (2011)

further showed that that these areas do not only process signals

that are on or close to the arm but also preferentially integrate

multisensory stimuli, when occurring within the arm-centered

PPS. They compared neural activity associated with unimodal

tactile stimulation of the hand, unimodal visual stimulation near

the hand, and bimodal (visuo-tactile) stimulation within the

PPS. Moreover, areas in posterior and inferior parietal cortex

and PMC showed additive response to bimodal, as compared

to unimodal stimulation (see also Makin et al., 2007). Other re-

gions in the anterior IPS, dorsal PMC, insula, and putamen

showed non-linear, super-additive responses, similarly to
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multisensory integration regions in animals (Avillac et al., 2005;

Stein and Stanford, 2008).

Such multisensory integration effects further depend on the

spatial and temporal coherence between visuo-tactile inputs.

Gentile et al. (2013) joined tactile stimulation of the participant’s

real hand with the visual presentation of a virtual hand while

manipulating spatial congruency (i.e., manipulating the direction

of visual and tactile stimulation along the proximo-distal or

medio-lateral hand axis) and temporal synchrony of stimulation

(i.e., with synchronous or asynchronous visuo-tactile stimula-

tion): activation in IPS, in ventral and dorsal PMC, in LOC, and

in the cerebellum varied as a function of the spatial and temporal

congruency of visuo-tactile hand stimulation and were modu-

lated by proprioceptive and visual signals related to the hand,

reflecting the spatio-temporal constraints of multisensory bodily

integration. (Brozzoli et al., 2011) used fMRI adaption to identify

multisensory arm-related neuronal activations responding to

stimulation within the PPS; they found that IPS, the inferior

parietal lobe (supramarginal gyrus), the dorsal and ventral

PMC, the cerebellum, and the putamen show reduced activation

(adaptation) to consecutive visual stimulation near the hand,

but not for consecutive far stimuli, compatible with their role in

multisensory perception within PPS. Taken together, these neu-

roimaging studies highlight a network of premotor and parietal

areas (as well as the putamen and the cerebellum) associated

with the integration of tactile hand-centered stimulation with

visual stimuli occurring within the hand PPS, depending on the

first three constraints of BSC (i.e., proprioceptive, body-related

visual information, and PPS contraints).

Further neuroimaging studies linked this PPS hand-centered

system to arm-related BSC, and to hand ownership, in particular.

Prolonged synchronous visuo-tactile stroking of the real and a

fake hand (placed in a plausible posture), inducing illusory

hand ownership, was found to activate ventral PMC (Ehrsson

et al., 2004), IPS, and the cerebellum (Ehrsson et al., 2004,

2005) (i.e., the same areas showing de-activation in case of

incongruent visuo-tactile hand stimulation and decreased hand

ownership) (Gentile et al. (2013). Others described ownership-

related activation in the supplementary motor area (Ehrsson,

2007) and posterior parietal regions, including the inferior parie-

tal and superior parietal lobule (Lloyd et al., 2006), by showing

that those areas responded to threatening stimuli directed to

the fake hand. Moreover, the strength of hand ownership (as

measured by questionnaire ratings) was found to correlate with

activity in anterior insular, anterior cingulate cortices (Ehrsson,

2007), PMC, and cerebellum (Ehrsson et al., 2004). These find-

ings were extended by Tsakiris et al. (2007), who reported that

activity in right posterior insula and sensorimotor cortices (pre-

central and postcentral gyri) was associated with illusory hand

ownership and that activity in the right insula and left somatosen-

sory cortex correlated with proprioceptive drift. We note that

hand ownership has also been manipulated by applying finger-

specific stimulations (i.e., numbness illusion) and has been asso-

ciated with circumscribed activity in sub-regions of primary so-

matosensory cortex (Dieguez et al., 2009; Martuzzi et al., 2015).

Inducing illusory ownership for a fake hand through prolonged

synchronous visuo-tactile stimulation recodes the space around

the rubber hand as peri-hand space.While bilateral IPS and PMC
activations normally show an adaptation effect for consecutive

visual stimuli presented close to the participant’s real hand (Broz-

zoli et al., 2011), this effect was not obtained if repeated visual

stimulations were presented close to a fake hand that was posi-

tioned in contralateral space. Yet, adaptation effects in IPS and

PMC were evoked by stimuli near the fake hand when additional

visuo-tactile strokingwas used to induce illusory hand ownership

for the contralateral fake hand (Brozzoli et al., 2012a). This sug-

gests that both areas, normally representing the participant’s

PPS, also coded the space surrounding the illusory own fake

hand, extending earlier single cell responses in area 5 and PMC

(Graziano et al., 1999, 2000) to subjective hand ownership.

Taken together, these human neuroimaging studies highlight

two main regions (PMC and PPC), within a larger network of

cortical areas (including insula, primary somatosensory cortex,

LOC, TPJ, supplementary motor area, anterior cingulate cortex,

and cerebellum), involved in the integration of multisensory arm-

related signals (see Figure 4A). Human PMC and IPS have

been consistently found to integrate multisensory stimuli within

the hand PPS, based on the spatial and temporal laws of

multisensory perception as well as the four constraints of BSC

(proprioception, hand-related visual signals, PPS, and embodi-

ment). Activity in these regions depends on the spatio-temporal

congruency between the processing of these hand-related multi-

sensory inputs and is consistentwith the reviewedbehavioral data

in humans and the neurophysiological data in PMC and area 5 in

non-human primates. These data support the hypothesis that

the tuning properties of bi- or tri-modal neurons, mapping the

peri-hand space, in the PMC-IPS network (Graziano et al., 1999,

2000; see also Makin et al., 2008) define ownership for one’s

own hand, or for an artificial replacement of it (embodiment), by

integratingmultiple hand-relatedsignalswithin thePPSon theba-

sis of proprioceptive and visual constraints (see Figure 4B).

Self-Face Perception and Face Ownership

An early study on humans showed that neural activity associated

with tactile stimulation on one’s face overlapped with activity

evoked by visual or auditory stimuli approaching the face in

three cortical regions: IPS, ventral PMC, and lateral inferior parts

of the postcentral gyrus (Bremmer et al., 2001b). Based on this

response profile, Bremmer and colleagues proposed that the

IPS region was the human homolog of monkey area VIP, a pro-

posal further corroborated by (Sereno and Huang, 2006), who

found that the same anatomical IPS region contained aligned

maps of tactile and visual stimuli in the peri-face region and that

this activity encoded stimuli in a face-centered reference frame.

More recently,Cardini et al. (2011) showed that the IPS/VIP region

was activated when participants received tactile stimulation on

their face,while viewinganother facebeing touched.Visuo-tactile

evoked IPS/VIP activity in this study did not differ if participants

viewed their own face being touched (as in the mirror) or another

person’s face. Ventral PMC was also activated by visuo-tactile

face stimulation and was found to encode face identity.

Concerning BSC and the particular case of the enfacement

illusion (Tsakiris et al., 2008; Sforza et al., 2010; Apps et al.,

2015), if was shown that prolonged synchronous visuo-tactile

stimulation of the face, as compared to asynchronous stimula-

tion, significantly activated ventral IPS, temporo-parietal junction

(TPJ), and an extrastriate visual face region in the inferior
Neuron 88, October 7, 2015 ª2015 Elsevier Inc. 155



Figure 4. Brain Regions Integrating
Multisensory Bodily Inputs and Implied in
BSC in the Human Brain
(A) Brain areas selectively responding to multi-
sensory inputs within the PPS around the hand
(red), face (blue) or trunk (green).
(B) Brain areas active during manipulations of
BSC, underlying ownership for the hand (red)
or face (blue), self-identification (green), or self-
location (yellow). Each dot represents an activa-
tion site as identified by the studies reviewed in
section 4. The colored shadows highlight clusters
of activations.
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occipital gyrus (occipital face area; (Kanwisher et al., 1997; Apps

et al., 2012). Activation in all three regions was further correlated

with the strength of the enfacement illusion. The data from these

studies converge on a key role for posterior parietal cortex (IPS/

VIP) within a larger network of cortical regions, including PMC,

inferior postcentral gyrus, TPJ, and occipital face area, in the

integration of multisensory face-related signals (see Figure 4A).

In posterior parietal cortex within IPS, especially area VIP con-

tains bimodal and trimodal neurons mapping the face PPS as

described in animal studies (Duhamel et al., 1998; Avillac et al.,

2005; Schlack et al., 2005). This area both in humans and inmon-

keys preferentially responds not only to tactile stimulation on the

face and visual (or auditory) stimulation approaching one’s own

face but also to the face of other individuals (Ishida et al.,

2010; Cardini et al., 2011). Moreover, activation patterns in

area VIP change after prolonged visuo-tactile stimulation of

one’s own and another person’s face inducing face-related

changes in BSC (Apps et al., 2015) (see Figure 4B).

This face-related IPS/VIP region likely overlaps with the hand-

related areas (see Figures 3 and 4). We note, however, that less

information is available on how multisensory responses in face-

specific areas is modulated by proprioceptive and visual inputs

related to the face, as shown for hand-centered areas. Thismight

be the case because face and hand rely on different anatomical

and functional constraints. Direct visual signals from the own

face are absent or rare (i.e., not available without a mirror or

related technology), whereas the arm and hand are often in our

visual fields. Moreover, proprioceptive input is also different,

given the axial head system involved in neck proprioception
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(head and face), the strongly lateralized

hand proprioception system for arm and

hand position, and the different degrees

of freedom in movements for both

different body parts. Accordingly, vestib-

ular inputs are strongly recruited for face-

related multisensory processing, and

indeed, monkey VIP regions representing

the face process not only visual, tactile, or

auditory stimuli in face PPS but also

vestibular inputs signaling head motion

(Bremmer et al., 2002). We argue that

the tuning properties of multimodal neu-

rons in VIP and other face-encoding IPS

regions define face ownership, accord-

ingly with the four major constraints of
BSC described before. However, the role of the different sensory

inputs and constraints vary between hand and face representa-

tion and ownership. In the latter case, vestibular inputs have a

strong role in determining face orientation (in addition to propri-

oceptive signals that are of importance for hand and face).

Furthermore, visual inputs are prominently related to process vi-

sual features about the face—as a stronger hallmark of self-iden-

tity—than signaling face orientation.

Self-Identification and Self-Location

Human brain regions integrating multisensory signals concern-

ing the trunk have also been investigated. Huang et al. (2012)

administered tactile stimulation on the face, shoulders, hands,

legs, and toes while concurrently stimulating different sectors

of the visual field and found a general overlap of activity induced

by tactile stimulation of each body part and the visual stimulation

of spatially congruent sectors of the visual field (i.e., head tactile

stimulation with upper visual field; leg tactile stimulation with

lower visual field). Visuo-tactile maps of different body parts

were identified in the superior posterior parietal cortex: the

face representation was located within the IPS/VIP region

described in the previous section, whereas the representation

of the lower body parts was located more medially and posteri-

orly, and the finger and hand representations more laterally and

anteriorly see Figure 4A).

In order to study the brain mechanisms of self-identification,

Petkova et al. (2011) combined fMRI with the body-swap illusion,

whereby participants receive prolonged tactile stimulation on

their abdomenwhile viewing amannequin through anHMDbeing

touched at the same body location. This stimulation induces
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illusory body ownership for a virtual body, if it is seen from the

viewpoint of a camera mounted on the head of the virtual body

(third-person viewpoint; Petkova and Ehrsson, 2008; see also

Slater et al., 2010; Maselli and Slater, 2013 for effects of changes

in viewpoint during full-body illusions). fMRI data revealed IPS

and ventral PMC activations when tactile information applied to

the participant’s body was spatially congruent and temporally

synchronouswith the seen stimulation of the virtual body, and ac-

tivity modulation in ventral PMC (but not IPS) was correlated with

thestrengthof illusoryownership for thevirtual body (assessedby

post-scan questionnaires). In a series of follow-up experiments,

Ehrsson and colleagues investigated whether and how such illu-

sory body ownership differs in its underlying neural mechanisms

fromownership for body parts (Gentile et al., 2015; Petkova et al.,

2011). To this aim, visuo-tactile stimulation was applied to

different parts (abdomen, chest, or legs) of the participant’s

body and to the seen virtual body.During prolonged synchronous

visuo-tactile stimulation, illusory touch was perceived as arising

from the mannequin’s body, regardless of the stimulated body

part, with no difference in the strength of the illusion, suggesting

that illusory bodily feelings could be obtained by co-stimulating

different bodyparts of theparticipant and the virtual body (Gentile

et al., 2015). Such effects were not obtained by stimulating a rub-

ber hand detached from themannequin and placed in an implau-

sible posture. By using multivoxel pattern analysis, the authors

found that ventral PMCactivity discriminated betweenprolonged

synchronous and asynchronous visuo-tactile simulation (inde-

pendently from the stimulatedbodypart), and it was not activated

for a detached rubber hand (Petkova et al., 2011; Gentile et al.,

2015). Other portions of the ventral PMC, IPS, LOC, and putamen

showed more selective responses for synchronous visuo-tactile

stimulation of specific body parts.

Another fMRI study used the full-body illusion (Ionta et al.,

2011) to study global changes in BSC, and found that self-

identification with a virtual body is associated with activation

of the TPJ (see below) and the middle-inferior temporal cortex.

The latter activation in middle-inferior temporal cortex partially

overlapped with the extrastriate body area (Astafiev et al.,

2004; Downing et al., 2001; Grossman and Blake, 2002), a region

involved in the multisensory processing of human bodies (Orlov

et al., 2010). No activations related to body ownership were

observed in PMC and IPS in the study performed by Ionta et al.,

(2011). Differently from the standard body-swap illusion, the

full-body illusion has also been shown to induce changes in

self-location (Lenggenhager et al., 2007, 2009; Serino et al.,

2013), which were found to be associated with gamma band

oscillations in the right TPJ and alpha band oscillations in

the medial prefrontal cortex (Lenggenhager et al., 2011) (see

Figure 4B). Interestingly, if the prolonged stimulation used to

induce the full-body illusion is performed while participants are

lying, as during fMRI, and view a virtual body that was filmed

from an elevated position, changes in self-location are associ-

ated to changes in the experienced direction of participants’

first-person perspective (see also Pfeiffer et al., 2013). Critically,

activity at the TPJ, peaking in the posterior superior temporal

gyri, the parietal operculum, and the posterior insula, was associ-

ated with changes in self-location and in the experienced

direction of first-person perspective induced by the full-body illu-
sion at individual-subject level. In particular, despite identical

prolonged visuo-tactile stimulation, half of the participants

experienced looking upward toward the virtual body (up-looking

first-person perspective), and half experienced looking down on

the virtual body (down-looking first-person perspective). These

subjective perspectival changes in the experienced direction of

the first-person perspective were associated with consistent

changes in self-location: up-looking participants reported an

elevation (drift) in self-location during synchronous stroking,

from an initially lower initial self-location; down-looking

participants reported theopposite downwarddrift froman initially

higher self-location. TPJ activity reflected these differential

changes during synchronous versus asynchronous visuo-tactile

stimulation, suggesting that TPJ processing reflects self-location

and depends on the experienced direction of the first-person

perspective, compatible with clinical data (Blanke et al., 2002;

Heydrich and Blanke, 2013; De Ridder et al., 2007).

Additional functional connectivity analysis by Ionta et al. (2014)

showed that the TPJ regions are bilaterally connected to

other regions integrating multisensory inputs within the PPS,

such as the IPS/VIP, the ventral PMC, extrastriate visual regions

(extrastriate body area), the supplementary motor area, and the

insula. Interestingly, the pattern of functional connectivity from

the TPJ to the insula and the supplementary motor area varied

during visuo-tactile stimulation, and reflected experimentally-

induced changes in self-location and first-person perspective.

The involvement of the insula in BSC and self-location is in line

with the prominent involvement of the insula neurons in the pro-

cessing of bodily multisensory signals (Craig, 2002, 2009; Critch-

ley, 2004; Critchley et al., 2004), including vestibular signals (In-

dovina et al., 2005; Mazzola et al., 2014). The insula is also the

primary region processing interoceptive signals (Craig, 2002;

Critchley et al., 2004) and has recently been shown to mediate

changes in self-identification and self-location based on car-

dio-visual stimulation in the full-body illusion (Aspell et al.,

2013; Ronchi et al., 2015), illusory own-body perceptions due

to interoceptive-exteroceptive disintegration in neurological pa-

tients (Heydrich and Blanke, 2013) and hand ownership (Tsakiris

et al., 2007). Thus this brain region, by processing and integrating

multisensory signals from the outside and the inside of the body,

may play a primary role in self-consciousness, as suggested by

recent reviews (Craig, 2002, 2009; Seth, 2013).

Finally, in a recent study, Guterstam et al. (2015) used the

body-swap illusion and combined visuo-tactile stimulation

(of the participant’s abdomen) with different visual viewpoints

from where the mannequin’s body and the room were seen.

This was done to induce changes in self-location (and self-iden-

tification). Participants experienced illusory self-location at

different places in the scanner room, depending on the manne-

quin’s viewpoint (as assessed by questionnaires), and this was

reflected by hippocampal, posterior cingulate, and IPS activa-

tions (further modulated by visuo-tactile synchrony). Moreover,

functional connectivity between posterior cingulate cortex and

IPS correlated with the experienced self-location.

To conclude, neuroimaging studies in humans suggest that

self-identification recruits a network of multisensory brain areas

located in the posterior parietal cortex (IPS/VIP region) and

PMC. These areas in IPS and PMC, which contain bimodal and
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trimodal neurons underlying PPS representation, are widely

connected with more lateral, temporo-occipital regions (LOC;

processing high-level visual andmultisensory information related

to the body), with the insular cortex (processing interoceptive

bodily signals), andwithmore lateral regions at the TPJ, including

posterior insula and parietal operculum (receiving important pro-

jections from the vestibular system). We argue that these trunk-

centered activations related to self-identification are based on

neuronal populations and regions that partially overlap, but are

anatomically and functionally distinct from arm-related aspects

of BSC (hand ownership), containing neurons with multisensory

receptive fields that are anchored to large body regions, encom-

passing the right or left hemibody, the upper or lower body half, or

in somecases the entire body surface (Graziano andGross, 1995;

Duhamel et al., 1998; Leinonen et al., 1979; Hyvärinen, 1981).

Face ownership activations are likely an intermediate case be-

tween hand- and trunk-centered activations, overlapping with

hand, but particularly with trunk- and body-related ownership re-

gions. Importantly, the reviewedneuroimagingdata show that ac-

tivations in these regions depend on the four constraints of BSC.

Next to the degree of separation between hand, face, and

body ownership regions, there remain fascinating open ques-

tions for BSC, especially in relation to the brain mechanisms

related to the global components of BSC; future research should

aim at identifying the differences between the neural bases of

self-identification, self-location, and first-person perspective.

For instance, different brain activations have been reported

during prolonged visuo-tactile stimulation when the virtual trunk

is seen from an embodied viewpoint (looking down your own

body; viewing a virtual body as employed in the Body-swap illu-

sion) as compared to when the trunk (back) of a virtual body is

seen from a more distant viewpoint (as in the full-body illusion),

suggesting different neural and functional mechanisms for self-

identification and self-location (e.g., Ionta et al., 2011; Pfeiffer

et al., 2013). We argue that the key regions for self-identification

are within the PMC-IPS network, whereas key areas for self-

location are located in more lateral temporo-parietal regions,

encompassing parietal operculum, supramarginal gyrus, poste-

rior superior temporal gyrus, and posterior insula, (Ionta et al.,

2011, 2014), as well as posterior cingulate cortex (Guterstam

et al., 2015). Systematic human studies are needed to differen-

tiate the self-identification PMC/IPS system from the self-loca-

tion TPC/PCC system, ideally using automatized and roboti-

cally-controlled experimental approaches.

Models of Multisensory Integration and BSC
Computational models have focused on how inputs from two

or more senses are combined to improve perception based on

the principles of optimal integration and Bayesian computations.

These models have been applied to visuo-tactile integration

(Ernst and Banks, 2002; Ernst and Bülthoff, 2004) to explain

object perception during haptic manipulation and to audio-

visual integration to explain phenomena such as the ventrilo-

quism effect or sound-induced visual illusions (Alais and Burr,

2004; Magnotti et al., 2013; Wozny et al., 2010; Wozny and

Shams, 2011). The integration of visuo-vestibular stimuli for

translational and rotational self-motion perception has also

been studied by several investigators (Fetsch et al., 2012,
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2013; Prsa et al., 2012, 2015). In all these cases, it has been

shown that inputs from different modalities are combined

accordingly to maximum-likelihood estimation models: multi-

sensory estimate is the weighted sum of unisensory signals,

where signals from the less noisy modality (i.e., with lower vari-

ance and higher reliability) are weighted more strongly during

the integration process. This integration rule minimizes error

so that the perceptual precision of the multisensory estimate is

always higher than the individual estimates.

Other models focused on neural mechanisms of multisensory

integration, and some were developed to explain the non-linear

properties of audio-visual integration by implementing the tem-

poral, spatial, and inverse effectiveness laws in neural structures

like the superior colliculus (Cuppini et al., 2010, 2011; Stein et al.,

2014; Xu et al., 2015). Other research investigated how signals

from different sensory modalities are aligned into common

reference frames for integration. Early studies focused on vi-

suo-motor transformations, necessary to re-map visual inputs,

originally coded in eye-centered reference frames, into body-

part centered reference frames, such as an arm-centered refer-

ence frame for reaching movements toward a seen object

(Andersen et al., 1985; Cohen and Andersen, 2002; Colby and

Goldberg, 1999; Salinas and Thier, 2000). These reference frame

transformations have been proposed to be implemented at the

level of individual neurons, so that a single cell’s response to a vi-

sual stimulus occurring within their receptive field is rescaled as a

function of eye, head, or arm posture (a mechanism known as

gain fields). Neurons with gain field properties have been exten-

sively described in parietal cortex and fronto-parietal networks

supporting body-object interactions (for reviews, see Colby,

1998; Grefkes and Fink, 2005). Others extended these reference

frame transformation models to the population level and impli-

cated not only visuo-motor neurons, but also auditory, somato-

sensory, as well as vestibular and proprioceptive neurons in

multisensory integration processes. In particular, Pouget and

colleagues (Deneve and Pouget, 2004; Ma et al., 2006; Pouget

et al., 2002) proposed an influential computational framework

based on neural network dynamics, consisting of multiple layers

ranging from layers coding unisensory inputs to multisensory

layers. Following this approach, unisensory layers are intercon-

nected with different multisensory layers, containing so-called

basis function units, which, due to attractor dynamics, code

multisensory stimuli in mixed reference frames, consistent with

partially shifting receptive fields. Such models are supported

by neurophysiological data showing that multimodal neurons

have not only eye-centered or head-centered receptive fields

but also mixed or combined receptive fields (e.g., combining

eye-centered and head-centered reference frames), especially

in regions of the posterior parietal cortex (i.e., area LIP, VIP and

MIP), which are known to integratemultisensory inputs (Duhamel

et al., 1998; Avillac et al., 2005, 2007) and enable sensorimotor

transformations (Andersen and Buneo, 2002).

Sabes and colleagues tested the dynamics of neural network

models for reference frame transformations and multisensory

integration based on multiple neuronal layers, proposing that

the computations implemented to combine inputs from unisen-

sory layers into multisensory layers are learned and depend on

sensory experience. Using machine learning, they proposed to
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conceptualize reference frame transformations andmultisensory

integration in terms of a density estimation model, whereby the

distribution of observed data (the activity of unisensory neurons)

is encoded by a set of latent variables (the activity of neurons in

multisensory layers) and a set of parameters (the synaptic con-

nections between unisensory and multisensory layers) (Dadarlat

et al., 2015; Makin et al., 2013). The network is trained (by chang-

ing the synaptic weights) so to generate the same distribution of

unisensory activities when they are driven by the multisensory

neurons as when they are driven by their true ‘‘hidden’’ causes

in the world. This requires that the latent variables encode the

‘‘hidden causes’’ of the data and their relationships, learning a

range of neural computations, such as optimal integration of

signals with a common cause, separation of signals with different

causes, and coordinate transformations.

Magosso and Serino also used a multilayer architecture to

design a neural network of the arm PPS representation (Ma-

gosso et al., 2010a, 2010b; Serino et al., 2015). The model

includes a series of unisensory layers (representing tactile, audi-

tory, and visual areas) connected to a multisensory layer. In this

model, the strength of the synapses from unisensory tomultisen-

sory neurons is set to reproduce the response tuning that has

been observed for near-body stimuli of the PPS system. Thus,

the weight of the synapses from unisensory neurons with tactile,

visual, or auditory receptive fields on the body or at short dis-

tances from the body is strong, whereas the synaptic weight

from unisensory neurons with receptive fields covering far

space is weak. The model reproduced behavioral data showing

enhanced tactile processing when dynamic visual and auditory

stimuli enter the boundaries of the PPS (Serino et al., 2015; Can-

zoneri et al., 2012). By implementing feedback projections from

multisensory to unisensory neurons and inhibitory interhemi-

spheric projections, the model also explained behavioral data

from brain-damaged patients suffering from crossmodal extinc-

tion (Magosso et al., 2010b). In addition, the model proposes a

mechanism to account for PPS-related plasticity. The weights

of the model connections, indeed, are continuously defined

through experience due to Hebbian learning aimed at simulating

everyday life hand-objects integration. Hand stimulation acti-

vates the tactile unisensory layers, which in turn activates the

multisensory layer. Usually, tactile stimulation is coupled with

visual or auditory stimulation occurring within the PPS, thus

activating visual or auditory unisensory neurons with receptive

fields close to the body. Instead, neurons with receptive fields

covering far space are not, or much less frequently, activated.

In this way, the synaptic weights from unimodal visual or auditory

neurons with receptive fields close to the body continuously

strengthen due to the concurrent firing of the post-synaptic

multisensory neurons (activated by tactile stimulation), while

the synaptic weights from unimodal visual or auditory neurons

with far receptive fields decay. However, such stimulation

patterns may vary, for instance, if people use tools to reach far

objects, as many studies in multisensory integration have shown

(see Maravita and Iriki, 2002, for a well-known review). During

tool use, people receive a tactile stimulation on their hand from

the tool-extended body, synchronously coupled with visual

and/or auditory stimulation from far space, where the tool exerts

its function. Thus, tool-use, inducing a synchronous near-far
stimulation, might result in a strengthening of the synapses

between unisensory neurons with far receptive fields and

multisensory neurons. Serino et al. (2015) recently provided

the computational demonstration of this prediction and also

showed, in a behavioral experiment, that administering synchro-

nous tactile stimulation on the participants’ hand and auditory

stimulation at a far location, even without any tool use, resulted

in an extension of PPS boundaries, which reproduced the effect

obtained after actual tool use (Canzoneri et al., 2013b).

We note that the patterns of stimulation used to investigate

model performance in the case of extending the PPS via tool

use (Serino et al., 2015) resembles that used to induce the rubber

hand illusion. In the latter illusion, participants receive tactile stim-

ulationon their hand that is coupledwith synchronous visual stim-

ulation of the rubber hand, placed at a distance, whereas in the

former case auditory stimulation at the tip of the tool is coupled

with tactile stimulation of the hand. We speculate that a similar

model can account for the changes in multisensory bodily

perception and the shift of the arm-related PPS boundary toward

an artificial replacement of the body during the rubber hand illu-

sion (see Brozzoli et al., 2012a; Graziano et al., 2000) and tool

use (Serino et al., 2015). In case this hypothesis is confirmed by

computational and experimental work, it would be possible to

linkmechanisms of plasticity in PPS representationwith changes

in BSC induced by multisensory bodily stimulations.

Closely related to this point, Samad et al. (2015) recently

modeled proprioceptive drifts during the rubber hand illusion as

the result of amultisensory integration based on Bayesian causal

inferences. Based on tactile and proprioceptive cues from the

real handandvisual cues from the rubber hand,Bayesiancompu-

tation was used to determine whether these multiple sensory in-

puts relate to thesameobject (illusoryownershipandpropriocep-

tive drift) or to two different objects, depending on the temporal

and the spatial coherence between the multiple bodily signals.

Themodel also predicts that nomultisensory integration nor pro-

prioceptive drift occur if the rubber hand is placed at distance of

more than 30 cm from the real hand; this is compatible with

behavioral data (Lloyd, 2007), the size of the arm-centered PPS

in humans (Canzoneri et al., 2012), the size of visuo-tactile recep-

tive fields of arm-centered PPS neurons in monkeys (Graziano

and Cooke, 2006), and the distance-dependent activation pat-

ternsobserved in humanPMCand IPS (Makin et al., 2007;Gentile

et al., 2011; Brozzoli et al., 2011). These data confirm that multi-

sensory integration of bodily signals is constrained by the dimen-

sions of PPS and that such constraints likely impact BSC.

We note, however, that a Bayesian model based only on bot-

tom-up inputs cannot explain why hand ownership is absent or

weakerwhen the stroking is applied over a non-bodily visual stim-

ulus (Ehrsson et al., 2004; Tsakiris, 2010) or on a rubber hand

placed in an incompatible body posture (Tsakiris and Haggard,

2005). Bottom-up integration ofmultisensory inputs is necessary,

but not sufficient, for these effects. Additional signals about the

body from visual and proprioceptive inputs regulate the degree

of multisensory integration and determine illusory hand owner-

ship. The interaction between bottom-up inputs and top-down

modulation in generating the rubber hand illusion has been

recently formalized intoBayesianmodels incorporatingpredictive

coding (Clark, 2013) and the free energy principle (Friston, 2010).
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In general, suchmodels conceptualize brain function as the inter-

action between bottom-up neural processes, coding sensory in-

formation, and top-down processes, generating predictions

about the incoming sensory inputs. Information travels continu-

ously in feedforward and feedback directions between bottom-

up and top-down levels,with themain regulating principle ofmini-

mizing thedifferencesbetween thegeneratedpredictions and the

incoming sensory inputs. This architecture is repeated hierar-

chically at successively more complex stages of neural informa-

tion processing. These models have been recently applied to

describe bodily illusions such as the rubber hand illusion as the

result of different unisensory inputs (touch and proprioception

from the real hand and vision of the rubber hand), initially pro-

cessed in unisensory areas, and then integrated in multisensory

areas, depending on a series of predictions based on prior expe-

rience (Apps and Tsakiris, 2014; Hohwy and Paton, 2010; Lima-

nowski and Blankenburg, 2013). If a mismatch arises from

incoming sensory inputs and predictions, the prior is updated to

minimize error predictions. In everyday life, tactile stimulation on

thehandandvisual informationwithin thePPSabout ahandbeing

synchronously touched are integrated because the standard pre-

diction is that those inputs derive from thesameobject (one’s own

hand).During the rubberhand illusion, however, the incongruence

between tactile and visual inputs (due to the proprioceptive

mismatch between the position of the real and the rubber hand,

or by the appearance of the rubber hand) generates a strong

prediction error, which needs to be minimized. This is done by

changing predictions and modulating sensory inputs so that the

proprioceptivemismatch (proprioceptivedrift) and theperceptual

difference between the real and the rubber hand is reduced, re-

sulting in the new prediction that ‘‘the rubber hand is my hand,’’

thus supporting embodiment (see Limanowski and Blankenburg,

2015 for recent neuroimaging data supporting this model).

It has also been argued that similar models based on Bayesian

computation, predictive coding, and free energy principle may

also account for changes in face ownership during the enface-

ment illusion and face perception (Apps and Tsakiris, 2013,

2014) and to BSC and the different kinds of bodily illusions,

including the full-body and the body-swap illusion (Limanowski

and Blankenburg, 2013; Hohwy and Paton, 2010; Apps and Tsa-

kiris, 2014). These models may also explain why bodily illusions

can be easily obtained in virtual reality contexts. Thus, whenever

individuals throughout their entire life look toward their body they

of course see their own body. Hence when in immersive virtual

reality contexts they control a virtual body while receiving sen-

sory stimulation and carrying out movements, the simplest hy-

pothesis for the brain to adopt is that what they are seeing is their

own body. Thus, in order to minimize prediction errors, sensory

information signaling that the seen body does not look like the

real body and that ‘‘virtual reality isn’t real’’ is discounted at the

perceptual and subjective level. This is emphasized by another

manipulation that many bodily illusions based on immersive vir-

tual reality carried out by Slater and colleagues included: the

participant sees a reflection in a virtual mirror of a virtual body.

The reflection they see is a virtual body rather than their real

one, while in their entire life individuals have seen their own

body reflected back when looking in amirror. Nevertheless, peo-

ple self-identify with the virtual body, suggesting that the ‘‘prior
160 Neuron 88, October 7, 2015 ª2015 Elsevier Inc.
probability’’ that what they see in a mirror is their body is over-

whelming (Sanchez-Vives and Slater, 2005; Slater, 2009).

Although there is awealth of computationalmodelsonmultisen-

sory integration,multisensory illusions, and reference frame trans-

formations, we currently lack models on the integration of multi-

sensory bodily stimuli within PPS underlying BSC. We argue that

models related to arm-centered multisensory PPS and hand

ownership, if adapted to the reviewed trunk-related processing

principles, are likely to also account for self-identification and

self-location during the full-body and body-swap illusions. Thus,

more computational work is needed to compute the mechanisms

of the integrationofmultisensorybodily inputs thatareof relevance

for trunk-centered aspects of BSC, accounting for the constraints

of vestibular and proprioceptive signals, body-related visual sig-

nals, and PPS. In addition, none of the available models, at the

moment, seems able to convincingly account for the subjective

BSC components induced by the body-swap and full-body illu-

sions, including self-location and first-person perspective.

Conclusion and Outlook
We reviewed the brain mechanisms of multisensory integration of

bodily stimuli underlying BSC. We highlighted four different con-

straints for designing neurocomputational models of BSC and

showed how the integration of multisensory bodily stimuli for

BSC depends on (1) proprioception, (2) body-related visual infor-

mation, (3) PPS, and (4) embodiment (see Box 1). These con-

straints were highlighted in the reviewed data from human

behavior, animal neurophysiology, human neuroimaging, and

computationalmodels, suggesting thepresenceof twodistributed

and partially overlapping cortical networks of BSC: one in fronto-

parietal cortex (IPS and PMC) processing signals for hand and

face ownership (i.e., ownership for circumscribed body parts)

and a second in more posterior temporo-parietal cortex (supra-

marginal gyrus, insula, superior temporal gyrus) processing sig-

nals for such global aspects of BSC, such as self-identification

and self-location. Both networks are densely interconnected and

partially overlapping, forming theneural substrate for themultisen-

sory integration of bodily stimuli underlying BSC.

Such knowledge is starting to impact engineering and in

particular virtual reality technology. Over the last 30 years, tech-

nological developments in virtual reality have struggled to

modulate and control, substitute, and enhance human experi-

ence. Recent advances in digital technologies, such as commu-

nication, personal computing, and wearable technologies, now

offer powerful tools to manipulate bodily and environmental

information to study first-person perspective (Petkova and

Ehrsson, 2008; Ionta et al., 2011; Slater et al., 2010; Maselli

and Slater, 2013). Detailed descriptions of the brain mechanisms

of BSC might inform the exploitation of such technologies to

produce or enhance the experience of being in other places

and to control and perceive multiple artificial bodies, or body

parts, and robots (see Blanke, 2012; Sanchez-Vives and Slater,

2005) for more extensive discussion). Moreover, these methods

are currently applied in the field of social psychology to study

and potentially reduce implicit racial and other social biases,

by inducing implicit self-identification for out-group members

(in terms of race, age, or gender; Banakou et al., 2013; Peck

et al., 2013; Maister et al., 2014, 2015).



Box 2. Future Directions

Most of the data about integration of multisensory bodily signals for BSC focus on single body-part representations. Thus, we lack

information about global aspect of BSC. In particular:

d More single unit data, imaging data, and computational models are needed about trunk-centered mechanisms of multisensory

integration within PPS, critical for global aspects of BSC.

d We do not know which computational mechanisms distinguish body-parts versus trunk-centered, global coding of BSC.

d While mechanisms of body ownership and self-identification have been explored, more work is needed on self-location and,

even more, on 1PP.

d More animal research inmodel simpler than primates (e.g., rodents especially, but also insects) might contribute to unreveal the

biological and genetic basis of BSC.

Neuron

Perspective
There are several outstanding issues that need to be solved in

order to design neurocomputational models of BSC, which are

summarized in Box 2. First, while some of the necessary condi-

tions of multisensory stimulation inducing specific changes in

BSC are known (based on four constraints reviewed in this pa-

per), many of the parameters for manipulating BSC are currently

less well specified (e.g., the minimal duration of multisensory

stimulation affecting BSC, the precise features of stimulation

inducing stronger effects). The integration of psychophysical

studies,with computationalmodels andanimal neurophysiology,

might contribute to provide such information. Second, most

currently available data describe themechanisms of visuo-tactile

integration for hand-related inputs, hand-centered spatial repre-

sentations, andhandownership. For themore relevant aspects of

BSC, such as self-identification and self-location (and first-per-

sonperspective; not reviewedhere), behavioral, animal, and neu-

roimaging data, as well as computational descriptions, are

currently missing. As a simple thought experiment shows, finger

or limb amputation would likely induce some alterations of limb

ownership andphantom limbexperiences inmost patients (Ram-

achandran andHirstein, 1998), but it does not radically alter BSC,

as amputees maintain normal self-identification with the body,

normal self-location, and normal first-person perspective.

Conversely, consider the case of neurological patients suffering

from out-of-body experiences due to damage to temporo-parie-

tal cortex. These patients suffer strong BSC alterations with

altered self-identification, self-location, and first-person

perspective, as they report to feel abnormally elevated self-loca-

tion, self-identify with this elevated position, and experience to

perceive the world from a disembodied perspective (Blanke

et al., 2002; Ionta et al., 2011;Blanke, 2012;Heydrich andBlanke,

2013). None of the reviewed models can currently account for

these clinical alterations of BSC that could be described not as

phantom limb but as phantom body experiences. However, the

existing trunk-related behavioral and neuroscientific data sug-

gest that neurocomputational accounts of BSC are possible

and should extend models proposed for hand-centered BSC

(e.g., Makin et al., 2008; Samad et al., 2015) and other multisen-

soryeffects to the studyof global components of self-experience.

More animal, neuroimaging, and modeling work on trunk-

centeredmultisensorybodily processing is needed to understand

and describe how global components of BSC underlying subjec-

tive experience are implemented in the mammalian brain. A clear

definition of BSC, as in the present study, that is based on neural

mechanisms of integration of multisensory bodily signals may
allow to build powerful bridges with biology. Highly independent

from human language, memory, and other cognitive functions,

the mechanisms of BSC have already been studied in monkey;

we argue that they can also be studied in rodents andDrosophila,

targeting the neural, genetic, and molecular origins of BSC. In

mice, for example, we argue that the trunk-centeredmultisensory

BSC system likely relates to other neural systems involved in

generating spatial maps of the environment such as place and

grid cells (Moser et al., 2008), calibrating the coordinates of the

subject of conscious experience not only with respect to the sub-

ject’s body but also to egocentric and allocentric maps of the

external world. This work needs to investigate multisensory inte-

gration of bodily stimuli relying on the processing of axial cues in

trunk- and head-centered coordinates instead of the visuo-tactile

hand-related cues that have been studied in innumerous investi-

gations. We note that the morphology of the trunk is particularly

well preserved across animal species. We also suggest that in-

puts from the vestibular system to this trunk-centered BSC sys-

tem are not only fundamental to determine the orientation and

motion of the body in space, but also for BSC, especially self-

location, self-motion, and the first-person perspective.
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