MICU1 Serves as a Molecular Gatekeeper to Prevent In Vivo Mitochondrial Calcium Overload

Graphical Abstract

Highlights

- The absence of MICU1 leads to impaired gatekeeping by the calcium uniporter

- Surviving MICU1−/− mice manifest mitochondrial calcium overload

- MICU1−/− mice improve as they age, correlating with decreased EMRE expression

- Deleting one allele of EMRE helps rescue MICU1−/− mice

Authors

Julia C. Liu, Jie Liu, Kira M. Holmström, ..., Chengyu Liu, Elizabeth Murphy, Toren Finkel

Correspondence

finkelt@nih.gov

In Brief

Liu et al. describe the physiological effects of deleting MICU1, a key component of the mitochondrial calcium uniporter. MICU1−/− mice demonstrate in vivo calcium overload, mirroring what has been described recently for MICU1-deficient human patients. These animals can be rescued by reducing the expression of EMRE, another uniporter component.
MICU1 Serves as a Molecular Gatekeeper to Prevent In Vivo Mitochondrial Calcium Overload

Julia C. Liu, Jie Liu, Kira M. Holmström, Sara Menazza, Randi J. Parks, Maria M. Fergusson, Zu-Xi Yu, Danielle A. Springer, Charles Halsey, Chengyu Liu, Elizabeth Murphy, and Toren Finkel

Center for Molecular Medicine, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
Pathology Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
Murine Phenotyping Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
Pathology Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
Transgenic Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA

Correspondence: finkelt@nih.gov
http://dx.doi.org/10.1016/j.celrep.2016.07.011

SUMMARY

MICU1 is a component of the mitochondrial calcium uniporter, a multiprotein complex that also includes MICU2, MCU, and EMRE. Here, we describe a mouse model of MICU1 deficiency. MICU1−/− mitochondria demonstrate altered calcium uptake, and deletion of MICU1 results in significant, but not complete, perinatal mortality. Similar to afflicted patients, viable MICU1−/− mice manifest marked ataxia and muscle weakness. Early in life, these animals display a range of biochemical abnormalities, including increased resting mitochondrial calcium levels, altered mitochondrial morphology, and reduced ATP. Older MICU1−/− mice show marked spontaneous improvement coincident with improved mitochondrial calcium handling and an age-dependent reduction in EMRE expression. Remarkably, deleting one allele of EMRE helps normalize calcium uptake while simultaneously rescuing the high perinatal mortality observed in young MICU1−/− mice. Together, these results demonstrate that MICU1 serves as a molecular gatekeeper preventing calcium overload and suggests that modulating the calcium uniporter could have widespread therapeutic benefits.

INTRODUCTION

Calcium entry into the mitochondria is critical for cellular homeostasis and is believed to modulate bioenergetic capacity and help determine the threshold for cell death (Balaban, 2009; Orrenius et al., 2003). For over 50 years, it has been appreciated that isolated mitochondria could rapidly take up calcium, using the large mitochondrial membrane potential across the inner mitochondrial membrane as a driving force for the entry of the ion (Deluca and Engstrom, 1961; Vasington and Murphy, 1962). Subsequent studies demonstrated that this uptake was highly selective for calcium (Kirichok et al., 2004). These and other studies help define the biophysical properties of the inner mitochondrial membrane channel, now termed the mitochondrial calcium uniporter complex. Nonetheless, the molecular components of the uniporter complex remained elusive for over five decades. However, in the last several years, rapid progress has been made, including the molecular identification of a 40-kD inner mitochondrial membrane protein (MCU) as the pore-forming protein of the uniporter complex (Baughman et al., 2011; De Stefani et al., 2011).

The composition of the uniporter complex is now believed to contain several additional components beyond the pore-forming MCU protein. These include the MCU paralog MCUb, a family of related EF-hand-containing proteins (MICU1, MICU2, and MICU3), and a small 10-kD protein, EMRE (Foskett and Pippin, 2015; Kamer and Mootha, 2015; Murgia and Rizzuto, 2015). The composition of the uniporter complex appears to differ between various cell lines and between different tissues; for instance, the expression of MICU3 appears to be largely confined to the brain (Plovanich et al., 2013), and the relative ratio of MCU and MCUb appears to markedly differ in various organs (Raffaello et al., 2013). These differences in composition might, in turn, be important for the observed tissue-specific differences in uniporter activity (Fieni et al., 2012).

Although the recent molecular identification of MCU has provided significant insight into the regulation of mitochondrial calcium entry, numerous questions persist. Experimental evidence suggests that rates of calcium entry through the uniporter are sigmoidal, with slow rates of calcium uptake at low extra-mitochondrial calcium concentrations and faster uptake when calcium concentrations begin to exceed 10–15 μM (Csordás et al., 1999, 2010; Giacomello et al., 2010; Rizzuto et al., 1998). This sigmoidal behavior is critical because this endows resistance to calcium overload at resting cytosolic calcium levels while still allowing the mitochondria to respond to a rise in cytoplasmic calcium induced by agonist stimulation. Although such gating behavior could result from the intrinsic properties of MCU itself, considerable attention has focused on other components of the uniporter complex. Particular emphasis has been placed on what inhibits calcium uptake at low calcium levels, providing the necessary gatekeeping functions of the uniporter and thus preventing the potentially disastrous consequences...
of calcium overload. Studies have suggested that both MICU1 (Csordás et al., 2013; de la Fuente et al., 2014; Kamer and Mootha, 2014; Mallilankaraman et al., 2012) and MICU2 (Patron et al., 2014) might mediate this gatekeeping function. To date, most studies have relied on the behavior of permeabilized cell lines in which unipporter components were knocked down (Csordás et al., 2013; de la Fuente et al., 2014; Mallilankaraman et al., 2012; Patron et al., 2014) or used specific cell lines containing clustered regularly interspaced short palindromic repeats (CRISPR)-mediated cellular knockouts (Kamer and Mootha, 2014). Analysis of these cellular data employing knockdown and knockout of MICU1 has, however, often revealed conflicting results. For instance, the role of MICU1 at high calcium concentrations has varied between studies, with some arguing that knockdown of MICU1 does not alter mitochondrial calcium uptake following agonist-induced calcium release (Mallilankaraman et al., 2012). Others have suggested that cells lacking MICU1 are impaired in this capacity (Csordás et al., 2013; Perocchi et al., 2010), whereas still others have demonstrated that the effects may be determined by the strength of the agonist stimulation (de la Fuente et al., 2014). There are similar ambiguities with regard to whether genetic inhibition of MICU1 leads to resting calcium overload, again with some studies arguing that it does (Mallilankaraman et al., 2012; Patron et al., 2014) and others suggesting that it does not (Csordás et al., 2013; de la Fuente et al., 2014; Perocchi et al., 2010). It is likely that differences in experimental approaches, including differences in the degree of knockdown, as well as differences in the intrinsic composition of the unipporter complex in the various cell lines employed might at least partially explain these divergent results.

Further insight into the regulation of unipporter activity has come from the recent description of a cohort of children who presented with a range of severe symptoms characterized by profound proximal skeletal muscle weakness accompanied by neurological features that included chorea, tremors, and ataxia (Logan et al., 2014). Subsequent genetic analysis identified the afflicted children carried loss-of-function mutations in MICU1 that were inherited in an autosomal recessive fashion (Figure S1A). Four different founder mice, representing four independent genomic targeting events, were generated (Figure S1A). Each line yielded similar results, and therefore, we have incorporated data from all four lines. As expected, mitochondria isolated from this MICU1−/− mouse lacked expression of MICU1 protein (Figure S1B). Next, we asked whether deletion of MICU1 altered calcium uptake. Wild-type (WT) liver mitochondria loaded with a calcium-sensitive fluorophore showed little evidence of calcium uptake when challenged with a low concentration (estimated free calcium concentration of 0.5 μM) of extra-mitochondrial calcium (Figure 1A). In contrast, the absence of MICU1 expression led to a significantly increased rate of calcium uptake under these conditions (Figures 1A and 1B). In the setting of higher concentrations of extra-mitochondrial calcium (estimated free calcium concentration of 16 μM), the absence of MICU1 appeared to reduce the rate of mitochondrial calcium entry (Figures 1C and 1D). Similar alterations in calcium uptake were observed in MICU1−/− mitochondria isolated from other tissues such as brain (Figures S1C and S1D). Thus, in purified mitochondria, the absence of MICU1 expression augments calcium uptake rates at low calcium concentrations and inhibits uptake rates at high calcium concentrations.

We further validated these properties using mouse embryonic fibroblasts (MEFs) derived from embryos of MICU1−/− mice or their WT littermates. As observed in isolated mitochondria, MICU1−/− MEFs lacked discernable MICU1 expression (Figure 1E). As seen with isolated mitochondria, permeabilized WT MEFs showed little uptake of calcium at low calcium concentrations (Figure 1F). In contrast to WT MEFs, MICU1−/− MEFs displayed increased rates of calcium uptake under these same conditions (Figures 1F and 1G). When MICU1 expression was reconstituted in MICU1-deficient cells (Figure 1E), WT calcium uptake properties were restored (Figures 1F and 1G).

RESULTS

MICU1 Deletion Alters Calcium Uptake Rates

In an effort to better understand the molecular function of MICU1, we generated MICU1−/− mice using CRISPR-mediated methods. Four different founder mice, representing four independent genomic targeting events, were generated (Figure S1A). Analysis of over 1,300 births demonstrated that only one in roughly every six or seven MICU1−/− animals was able to survive...
beyond the first post-natal week (Figure 2A). In contrast, examination of litters from late embryogenesis to immediately after birth demonstrated that, although late-stage MICU1−/− embryos were slightly smaller than WT littermates (Figure 2B), there appeared to be no embryonic selection against MICU1−/− progeny. Indeed, when we analyzed a total of 60 late-stage embryos/postnatal day 1 (P1) pups, we observed the precise number of mice expected in each genotype (15 WT, 30 MICU1+/−, and 15 MICU1−/− mice, equivalent to a 25% frequency of knockouts).

In contrast, although it is not unusual for some pups to die in the first few days after birth, when we assessed the litters of MICU1+/− crosses, 96 of 138 spontaneous perinatal deaths (70%) were of the MICU1−/− genotype. Thus, although MICU1 expression appears to be largely dispensable for development, the absence of MICU1 results in a high, but not complete, perinatal death rate. These observations contrast slightly from a very recent report demonstrating that MICU1 deletion resulted in 100% perinatal mortality (Antony et al., 2016). In that report, the authors observed that MICU1−/− mice exhibited a decreased number of specific brainstem neurons known to regulate respiration. Although this decrease was just a trend, other models where deletion of critical mitochondrial proteins leads to perinatal mortality have also shown impaired neuronal innervation of the diaphragm (Nguyen et al., 2014). In that context, we also observed a modest trend for a decreased number of cervical motor neurons required for respiration in MICU1−/− late-term embryos (Figures S2A and S2B), although it remains unclear to what degree this contributed to the high rate of perinatal death.

At 1 week of age, surviving MICU1−/− mice appeared underdeveloped and smaller and weighed roughly 50% less than...
Figure 2. Mice Lacking MICU1 Develop Multiple Neurologic and Myopathic Defects
(A) Expected and observed number of MICU1+/+, MICU1+/-, and MICU1-/- mice surviving over 1 week. The actual number of expected and observed mice is shown above each column from a total of over 1,300 offspring.
(B) E20 littermates demonstrating the appearance of a WT and slightly smaller MICU1-/- embryo.
(C) Appearance of WT and MICU1-/- mice at 1 week of age.
(D) Body weight for 14- to 18-day-old male (n = 12) and female (n = 6) WT and MICU1-/- mice. Data are represented as mean ± SD.
(E) Cerebellar function in 4-week-old WT and MICU1-/- mice assessed by performance on a balance beam and measured as cumulative number of foot slips (n = 4 mice per genotype, mean ± SD).
(F and G) Cerebellar architecture in 12-day-old WT mice (F) or MICU1-/- mice (G). Arrows denote the outer granular layer.

(legend continued on next page)
their WT littermates (Figures 2C and 2D). Young MICU1−/− mice, like children bearing mutations in MICU1, appear to suffer from ataxia. Functional analysis revealed that 1-month-old MICU1−/− mice had severely impaired performance on a balance beam (Figure 2E). A closer histological examination of the cerebellum revealed abnormal persistence of the outer granular layer in 12-day-old mice lacking MICU1 expression (Figures 2F and 2G). In addition, the overall cerebellum of young MICU1−/− mice appeared underdeveloped (Figure S2C). Consistent with their observed neurological defects, MICU1−/− mice also exhibited alterations in the post-natal arborization of Purkinje cells (Figures 2H and 2I). Given that patients lacking MICU1 develop proximal myopathies, we also assessed muscle strength in MICU1−/− mice (Figures S2D–S2F). Similarly, histochemical enzyme assays of succinate dehydrogenase (SDH) and cytochrome c oxidase (COX) activity revealed no significant differences between WT and MICU1−/− muscle fibers, except that, consistent with overall body size, the MICU1−/− fibers were considerably smaller (Figures S2G and S2H). Nonetheless, 4-week-old MICU1−/− mice were markedly impaired in an inverted grid test of skeletal muscle function (Figure 2J) as well as in their performance in a wire hang test, another measure of skeletal muscle strength and coordination (Figure S2I). These mice appear to exhibit many of the neurological and myopathic defects observed in MICU1-deficient patients. We also, however, observed additional properties not formally assessed in human patients. Although analysis of splenic and thymic T cell maturation revealed no discernable alterations (Figures S3A–S3F), the numbers of splenic B cells were markedly reduced in MICU1−/− mice (Figures S3G–S3I). This decrease in overall B cell number was consistent with an observed increase in cell death observed in MICU1−/− B cells (Figures S3J–S3L). The more pronounced effects observed in B cells, compared with T cells, may reflect intrinsic differences in MICU1 expression between these two cell types (Figure S3M).

MICU1 Deletion Leads to Calcium Overload

Next, we sought to better understand the biochemical basis underlying the various phenotypic alterations observed in MICU1−/− mice. Given our observations that, depending on the calcium concentration, MICU1 deletion has either positive or negative effects on calcium uptake, the net effect on resting mitochondrial calcium levels was difficult to predict a priori. Therefore, we first sought to directly measure in situ matrix mitochondrial calcium (Figure 3A). This argues that the predominant in vivo effect of MICU1 is to function as a gatekeeper because, in the absence of this molecule, mitochondria exhibit tonic calcium overload. A number of abnormalities have previously been associated with calcium overload, including alterations in mitochondrial morphology and increased generation of reactive oxygen species (ROS) (Peng and Jou, 2010). Consistent with these past observations in other systems, electron micrographs revealed that MICU1−/− mice had marked alterations in skeletal muscle mitochondrial morphology (Figures 3B and 3C). Similar alterations were seen with mitochondrial in the brain (Figure S4A). In addition, we noted that ATP levels were also significantly reduced in MICU1−/− skeletal muscle (Figure 3D), although alterations in resting ATP levels were not as evident in the brain (Figure S4B). Another common hallmark of mitochondrial dysfunction is a rise in lactate levels, a feature also evident in the skeletal muscle of MICU1−/− mice (Figure 3E). We saw a similar increase in blood lactate levels (Figure S4C). To assess tissue ROS levels, we took advantage of our previous observations of B cell defects in MICU1−/− mice (Figure 2M). Using the redox-sensitive fluorophore 2′,7′-dichlorofluorescin diacetate (DCFDA), we noted a significant increase in the ROS levels observed in MICU1−/− B cells (Figures 3F and 3G). A similar elevation in ROS levels was also seen in thymus-derived T cells (Figures S4D and S4E). Mitochondrial uncoupling abrogated the difference in ROS levels between WT and MICU1−/− cells, consistent with a mitochondrial source for the elevated levels of ROS observed in MICU1−/− cells (Figures S4F and S4G).

Age-Dependent Improvement in MICU1−/− Mice

Although the survival and appearance of newborn and young MICU1−/− mice was markedly impaired, we noted that surviving MICU1−/− mice appeared to improve over time (Figure 4A). This improvement was evident in appearance and overall body weight. Although MICU1−/− mice remained smaller than their WT littermates, these differences narrowed considerably as the animals aged (Figure 4B). With this phenotypic improvement, we noted that differences in resting calcium, ATP, and muscle lactate were no longer significantly different between older WT and MICU1−/− mice, although a trend toward increased resting calcium, decreased resting ATP, and increased lactate remained (Figures 4C–4E). Similarly, the differences in B cell abundance and ROS levels observed in young MICU1−/− mice were no longer evident as these animals aged (Figures 4F–4H and S5A–S5C). Histological assessment of the cerebellum of MICU1−/− mice revealed that previous abnormalities, such as a persistent outer granular layer, resolved in the brains of older MICU1−/− mice (Figures 4I and 4J). This suggests that MICU1−/− mice experience a developmental delay, rather than a complete block, of this post-natal cerebellar process. Although many of the histological and biochemical parameters improved in the older

(H and I) Calbindin staining demonstrating Purkinje cell morphology in 12-day-old WT (H) and MICU1−/− (I) cerebellum.

(J) Assessment of muscle strength using an inverted grid test at 4 weeks of age (n = 4 mice per genotype, mean ± SD).

(K and L) Representative fluorescence-activated cell sorting (FACS)-based assessment of splenic B cell (CD45R+) abundance in WT (K) and MICU1−/− (L) mice. SSC-A, side scatter area.

(M) Mean B cell percentage in splenics of 2- to 3-week-old WT and MICU1−/− mice (n = 6 per genotype, mean ± SD).

p < 0.01, *p < 0.05. See also Figures S2 and S3.
MICU1/−/− mice, we did, however, continue to see persistent functional defects in both neurological and skeletal muscle function (Figures S5D and S5E). In addition, as these animals aged, new abnormalities arose. For instance, electron micrographs of skeletal muscle revealed the presence of tubular aggregates (Figure 4K). Interestingly, in humans, this relatively rare myopathic abnormality has been recently described to result from alterations in skeletal muscle calcium handling because of patients inheriting dominant mutations in stromal interaction molecule 1 (STIM1), an endoplasmic reticulum (ER) calcium sensor (Bohm et al., 2013).

In an effort to explain why some of the parameters improved in MICU1/−/− mice as they aged, we re-evaluated calcium uptake parameters from mitochondria derived from the liver of older MICU1/−/− animals. Although the defects in calcium uptake at high calcium concentrations remained essentially unchanged (Figures S5F and S5G), we noted that the loss of gatekeeping function at low calcium concentrations was now less marked (compare Figures 5A and 5B to Figure 1A). This suggested that some age-dependent remodeling of the uniporter complex might have occurred. We therefore examined the levels of MCU and EMRE proteins in the livers of young (2-week-old) and old (7-month-old) WT and MICU1/−/− mice. We noted that, at 2 weeks of age, surviving MICU1/−/− animals had similar levels of MCU as WT animals but had a reduced EMRE-to-MCU expression ratio (Figure 5C). Interestingly, at 7 months of age, the EMRE/MCU expression ratio had fallen even lower in these now phenotypically improved older MICU1/−/− mice.

Figure 3. MICU1-Deficient Mice Develop Mitochondrial Defects

(A) Relative levels of mitochondrial matrix calcium in WT and MICU1/−/− mice. Mitochondria were isolated from the brains of 14- to 18-day-old mice (n = 3 per genotype, mean ± SD).

(B and C) Electron micrograph of WT (B) and MICU1/−/− (C) skeletal muscle at 9 days of age. Arrows indicate mitochondria.

(D) Relative skeletal muscle ATP levels in 14- to 18-day-old WT and MICU1/−/− mice (n = 5 mice per genotype, mean ± SD).

(E) Skeletal muscle lactate levels in 12- to 16-day-old WT and MICU1/−/− mice (n = 5 mice per genotype, mean ± SD).

(F) Representative levels of ROS as assessed by DCF fluorescence in immunoglobulin M (IgM)-positive B cells from WT and MICU1/−/− mice.

(G) Mean DCF fluorescent intensity in IgM-positive B cells obtained from 2- to 3-week-old WT and MICU1/−/− mice (n = 5 per genotype, mean ± SD). **p < 0.01, *p < 0.05. See also Figure S4.
EMRE Heterozygosity Rescues MICU1−/− Mice

Previous observations with EMRE knockdown in cultured cells suggest that EMRE functions as a scaffold for MCU and is required to maintain channel opening (Kovács-Bogdán et al., 2014; Sancak et al., 2013; Vais et al., 2016). Our observation that reduced expression of EMRE in older MICU1−/− mice correlated with phenotypic improvement suggested that MICU1−/− mice might remodel their uniporter complex by reducing EMRE expression. Such remodeling would likely limit uniporter opening and, hence, help prevent calcium entry and in vivo calcium overload. To test this hypothesis, we reasoned that genetically reducing EMRE expression might therefore provide a benefit in the setting of MICU1 deficiency. Using CRISPR-mediated methods, we generated additional mice containing targeted deletions in the EMRE locus located on chromosome 15 of the mouse (Figure S6A). We crossed MICU1+/− EMRE+/− mice to find out whether EMRE deficiency could rescue the perinatal mortality of MICU1−/− mice. As expected, only a small fraction of MICU1−/− EMRE+/− mice survived into the first week (Figure 6A). Similarly, to date, we have not observed any surviving MICU1−/− EMRE+/− mice; however, in this mixed genetic background, we were able to generate MICU1+/−/EMRE−/− mice (Figure S6B). Mice lacking EMRE but having wild-type MICU1 appeared to have normal body weight and exhibited no evidence of ataxia or defects in skeletal muscle function (Figures S6C–S6E).

Remarkably, MICU1−/− EMRE+/− mice were observed at nearly the expected frequency at weaning (Figure 6A). We saw a similar capacity to rescue MICU1-deficient animals using a second, independent, CRISPR-generated EMRE-deficient mouse line (Figure S6A). Interestingly, young MICU1+/− EMRE+/− mice had reduced hepatic levels of EMRE expression compared with MICU1+/− mice (Figure 6B). The overall appearance and weight of the MICU1+/− EMRE+/− mice was indistinguishable from WT mice (Figures 6C and S6F). Based on this genetic rescue, we next asked whether, in the context of MICU1 deletion, deleting one allele of EMRE resulted in improved calcium uptake. We observed that liver mitochondria from young MICU1−/− EMRE−/− mice still had slightly impaired gatekeeping function at low extra-mitochondrial calcium levels (Figure 6D). Under these low-calcium conditions, MICU1+/− EMRE−/− mitochondria had roughly 2-fold higher rates of calcium uptake than WT mitochondria (Figure 6E). Nonetheless, this defect was markedly reduced compared with the nearly 6-fold difference observed previously in MICU1−/− mitochondria (Figure 1B). At high calcium concentrations, a situation in which MICU1+/− mitochondria demonstrate reduced rates of calcium uptake, EMRE heterozygosity resulted in a modest but further reduction in this property (compare Figures 6F and 6G with Figure 1D). These results are consistent with a role for EMRE in maintaining channel opening because, in the absence of MICU1 expression, deletion of one allele of EMRE reduced EMRE expression and resulted in reduced calcium uptake at both low and high extra-mitochondrial calcium levels. Interestingly, by itself, EMRE heterozygosity appeared to have no significant effect on hepatic EMRE levels or on calcium uptake (Figures S6G–S6I). This suggests that, in the setting of wild-type levels of the other uniporter complex components, one allele of EMRE is sufficient to maintain the required level of protein expression. We cannot, however, exclude the possibility that the reason why the effects of deleting one allele of EMRE is only evident in the context of MICU1 deletion relates to the recent observation that EMRE’s activity can be regulated by a rise in matrix calcium levels (Vais et al., 2016), a situation that presumably occurs in MICU1−/−, but not WT, mitochondria.

Consistent with the observed reduction in calcium uptake at low calcium levels, brain matrix calcium levels appeared to be similar between WT and MICU1−/− EMRE−/− mitochondria isolated from young mice (compare Figure 6H with Figure 3A). Skeletal muscle mitochondrial morphology was also apparently normalized in these mice (Figure 6I). Similarly, although skeletal muscle ATP levels trended slightly lower than seen in WT mice, this difference was not statistically significant (compare Figure 6J with Figure 3D). Young MICU1−/− EMRE−/− animals also exhibited age-appropriate cerebellar morphology (Figure 6K) and an amelioration of the observed B cell alterations (Figures S6J–S6O). Moreover, compared with MICU1−/− mice (Figure 2E), MICU1−/− EMRE−/− mice exhibited improvement in their performance on the balance beam, although they were still impaired compared with WT animals (Figure 6L). Similarly, skeletal muscle strength was still impaired in the MICU1−/− EMRE−/− mice, although, again, these animals performed slightly better than MICU1−/− animals (Figure S6P).

DISCUSSION

Our results significantly clarify the in vivo function of MICU1. In particular, using isolated WT and MICU1−/− mitochondria, we demonstrate that the absence of MICU1 increases mitochondrial calcium uptake rates at low calcium concentrations and reduces calcium entry rates at high calcium concentrations. Nonetheless, although these changes in gating properties could theoretically lead to either increased or decreased mitochondrial calcium levels, our data suggest that, in vivo, the primary function of MICU1 is to function as a molecular gatekeeper. In particular, in the absence of MICU1, mitochondrial matrix calcium levels are increased, and the deleterious consequences of this increase are evident in a wide range of abnormalities, including alterations in mitochondrial morphology, changes in ATP, and elevation of lactate levels. Further proof of the loss of gatekeeping function comes from analyzing animals bearing the MICU1+/− EMRE−/− genotype. Compared with MICU1−/− mitochondria, the mitochondria derived from these animals have reduced EMRE expression and slower rates of calcium uptake at both low and high extra-mitochondrial calcium concentrations. Thus, in the setting of MICU1 deletion, deletion of one allele of EMRE appears to restrict uniporter opening, thereby helping to prevent MICU1-induced calcium overload. The observation that EMRE heterozygosity also markedly improves the overall survival of MICU1−/− mice provides strong genetic proof that the primary in vivo function of MICU1 is to serve as a gatekeeper of the uniporter complex.

Our data suggest that MICU1 is not required during embryogenesis. However, immediately after birth, the absence of MICU1 induces high rates of perinatal mortality, with the majority of MICU1−/− mice dying in the first 48 hr. Indeed, based on a
Figure 4. Surviving MICU1-Deficient Mice Improve over Time
(A) Appearance of WT and MICU1−/− mice at 8 months of age.
(B) Body weight of 3- to 4-month-old male and female WT and MICU1−/− mice (n = 7 WT male and n = 4 WT female mice; n = 9 MICU1−/− male and n = 4 MICU1−/− female mice). Data are represented as mean ± SD.
(C) Relative levels of mitochondrial matrix calcium in WT and MICU1−/− mice. Mitochondria were isolated from the brains of 7-month-old mice (n = 6 per genotype, mean ± SD). ns, not significant.

(legend continued on next page)
large number of births from four independent founder lines, we estimate that, in a C57BL/6N background, only one in six to seven MICU1/C0/C0/C0 mice survive beyond 1 week. In contrast, while this manuscript was under review, another group reported that MICU1 deletion resulted in complete perinatal mortality (Antony et al., 2016). These survival differences might relate to subtle differences in the animal facilities or, more likely, to the known mitochondrial differences between C57BL/6J and C57BL/6N sub-strains (Nicholson et al., 2010; Toye et al., 2005). Remarkably, our mice that did survive past 1 week function surprisingly well and actually appear to improve with time. We have currently observed MICU1/C0/C0/C0 mice up to 1 year of age, and the only additional phenotype that has emerged is the appearance of chorea-like movements (Movie S1), a feature seen in human patients as well (Logan et al., 2014). This would suggest that the absence of MICU1 expression is particularly critical immediately after birth. This may relate to the essential role of the mitochondria in the transition from the relatively hypoxic environment of the placenta to the oxygenated environment found after birth. We do not have a clear understanding of why the functional defects in the surviving MICU1/C0/C0/C0 mice seem to be most pronounced in skeletal muscle and the brain. In that regard, additional studies are needed to understand these tissue-specific effects. Comparisons of calcium uptake in different tissues, particularly between excitatory tissues such as skeletal muscle, brain, and heart versus non-excitatory tissues such as liver and kidney, might therefore be informative.

The gradual improvement of MICU1/C0/C0/C0 mice over time perhaps suggests that mitochondria are capable of undergoing some level of functional remodeling. Such remodeling has been demonstrated recently in animal models in which MCU activity is reduced (Rasmussen et al., 2015) and may also explain the more pronounced phenotype in mouse models of acute MCU deletion in adult animals (Kwong et al., 2015; Luongo et al., 2015) when contrasted to models in which MCU is deleted or inhibited throughout embryogenesis (Holmström et al., 2015; Pan et al., 2013; Rasmussen et al., 2015). In the case of MICU1 deletion, this remodeling appears to involve alterations in the expression ratio of MCU to EMRE. It will be interesting to discern whether this remodeling represents some form of retrograde signaling from the mitochondria to the nucleus. There is increasing evidence of the importance of retrograde signaling whereby damaged or stress mitochondria emit a poorly understood signal that is sensed and responds by the nucleus. The gradual improvement of MICU1/C0/C0/C0 mice over time may be such a mechanism that allows the mitochondria to adapt to the oxygenated environment.
Figure 6. EMRE Heterozygosity Ameliorates MICU1 Deficiency

(A) Percentage of observed and expected MICU1-deficient mice surviving past 1 week with either EMRE+/+, EMRE+/-, or EMRE-/- genotypes. The actual number of expected and observed mice from MICU1+/- EMRE+/- crosses is shown above each column.

(legend continued on next page)
characterized signal that elicits a protective nuclear response (Haynes et al., 2013). In that regard, it is of interest to note that some previous studies have implicated calcium as a mediator of the mammalian retrograde response (Biswas et al., 1999).

Finally, there is increasing realization that mitochondrial calcium overload might be a final common pathway in a multitude of disease conditions, including various myopathies, certain neurodegenerative diseases, models of heart failure, and ischemic tissue injury (Abeti and Abramov, 2015; Bhosale et al., 2015; Martin and McGee, 2014; Santulli et al., 2015; Vallejo-Illarramendi et al., 2014). Therefore, strategies that modulate mitochondrial calcium uptake might have wide therapeutic potential. The demonstration here that modulating EMRE expression is capable of markedly improving the overall survival as well as the biochemical, neurological, and myopathic phenotype of MICU1−/− mice suggests that efforts to modulate the uniporter complex might be an effective therapeutic avenue for the growing number of disease states characterized by calcium overload.

EXPERIMENTAL PROCEDURES

Generation of MICU1 and EMRE Knockout Mice by the CRISPR/Cas9 Method

The MICU1 and EMRE knockout mice were generated using the CRISPR/Cas9 method as reported previously (Wang et al., 2013). Briefly, two single guide RNAs (sgRNAs) were designed to target each gene, one near the translation initiation codon (ATG) and the other one further downstream within the same exon. Specifically, the nucleotide sequences for these sgRNAs were as follows:

- MICU1-sgRNA 1, GTTAAAGACGAAACATCCTG (reverse orientation);
- MICU1-sgRNA 2, TGTTAAGACGAAACATCCTG (forward orientation);
- EMRE-sgRNA 1, GGAG CTGGAGATGGCGTCCA; and EMRE-sgRNA 2, GCCTGGGTTGCAGTTTC.

These sequences were cloned into a sgRNA vector using OriGene’s gRNA cloning services and were then used as templates to synthesize sgRNAs using the MEGAshortscript T7 kit (Life Technologies). Cas9 mRNA was in vitro-transcribed from plasmid MLM2613 (Addgene, #42251) using the mMESSAGE mMACHINE T7 Ultra kit (Life Technologies). For microinjection, Cas9 mRNA was in vitro-transcribed from plasmid MLM2613 (Addgene, #42251) using the mMESSAGE mMACHINE T7 Ultra kit (Life Technologies). For microinjection, Cas9 mRNA was in vitro-transcribed from plasmid MLM2613 (Addgene, #42251) using the mMESSAGE mMACHINE T7 Ultra kit (Life Technologies). For microinjection, Cas9 mRNA was in vitro-transcribed from plasmid MLM2613 (Addgene, #42251) using the mMESSAGE mMACHINE T7 Ultra kit (Life Technologies). For microinjection, Cas9 mRNA was in vitro-transcribed from plasmid MLM2613 (Addgene, #42251) using the mMESSAGE mMACHINE T7 Ultra kit (Life Technologies). For microinjection, Cas9 mRNA was in vitro-transcribed from plasmid MLM2613 (Addgene, #42251) using the mMESSAGE mMACHINE T7 Ultra kit (Life Technologies). For microinjection, Cas9 mRNA was in vitro-transcribed from plasmid MLM2613 (Addgene, #42251) using the mMESSAGE mMACHINE T7 Ultra kit (Life Technologies). For microinjection, Cas9 mRNA was in vitro-transcribed from plasmid MLM2613 (Addgene, #42251) using the mMESSAGE mMACHINE T7 Ultra kit (Life Technologies). For microinjection, Cas9 mRNA was in vitro-transcribed from plasmid MLM2613 (Addgene, #42251) using the mMESSAGE mMACHINE T7 Ultra kit (Life Technologies). For microinjection, Cas9 mRNA was in vitro-transcribed from plasmid MLM2613 (Addgene, #42251) using the mMESSAGE mMACHINE T7 Ultra kit (Life Technologies). For microinjection, Cas9 mRNA was in vitro-transcribed from plasmid MLM2613 (Addgene, #42251) using the mMESSAGE mMACHINE T7 Ultra kit (Life Technologies). For microinjection, Cas9 mRNA was in vitro-transcribed from plasmid MLM2613 (Addgene, #42251) using the mMESSAGE mMACHINE T7 Ultra kit (Life Technologies). For microinjection, Cas9 mRNA was in vitro-transcribed from plasmid MLM2613 (Addgene, #42251) using the mMESSAGE mMACHINE T7 Ultra kit (Life Technologies). For microinjection, Cas9 mRNA was in vitro-transcribed from plasmid MLM2613 (Addgene, #42251) using the mMESSAGE mMACHINE T7 Ultra kit (Life Technologies). For microinjection, Cas9 mRNA was in vitro-transcribed from plasmid MLM2613 (Addgene, #42251) using the mMESSAGE mMACHINE T7 Ultra kit (Life Technologies). For microinjection, Cas9 mRNA was in vitro-transcribed from plasmid MLM2613 (Addgene, #42251) using the mMESSAGE mMACHINE T7 Ultra kit (Life Technologies). For microinjection, Cas9 mRNA was in vitro-transcribed from plasmid MLM2613 (Addgene, #42251) using the mMESSAGE mMACHINE T7 Ultra kit (Life Technologies). For microinjection, Cas9 mRNA was in vitro-transcribed from plasmid MLM2613 (Addgene, #42251) using the mMESSAGE m

Mice

The MICU1 mice were maintained on a C57BL/6N or C57BL/6NxJ F1 background, and experimental mice were obtained by breeding the mice using heterozygous crosses. Genotyping for MICU1 was performed using the following primers: 5′-CTGGACGCAACATTAGTC-3′ (forward) and 5′-GACACGCG TAGCTGTGAAAACCT-3′ (reverse). MICU1 heterozygous mice were bred to EMRE heterozygous mice (B6CBAF1/J × CD-1 or C57BL/6N) to generate double-heterozygous breeders. Genotyping for EMRE was performed using the following primers: 5′-ACGGGCATACGATGCGGC-3′ (forward) and 5′-ACGGGCATACGATGCGGC-3′ (reverse). All animal studies were done in accordance with and approval of the National Heart, Lung, and Blood Institute (NHLBI) Animal Care and Use Committee.

Cell Culture

MEFs were prepared using standard methods from embryonic day 12 (E12)–E14 embryos resulting from MICU1 heterozygous breeders. MEFs were cultured in growth medium consisting of DMEM (Invitrogen) supplemented with 15% fetal bovine serum (FBS), 50 U/ml penicillin, and 50 μg/ml streptomycin. An epitope-tagged expression vector encoding MICU1 was generated using a C-terminal FLAG epitope in-frame with MICU1 derived from wild-type MEFs. The construct was inserted into pCMV-Tag 4A (Stratagene) using the following primers: 5′-GGC TGA TAT CTT CTT AGC ACC TTC ATT TAT GGC G-3′ and 5′-GGC TGA TAT CTT CTT AGC ACC TTC ATT TAT GGC G-3′. The construct was then inserted into the lentiviral expression vector pLVX-puro (Clontech Laboratories) by using the following primers: 5′-TAG AAT CAT TCA GAG TCG CGG ACT CAG TAT AGG GCG AAT TGC G-3′ and 5′-CAT TCG ACG AAG TTA GCC ACC AAC AAA GTA GCC GAC-3′. Lentiviruses were produced in 293T cells and concentrated by ultracentrifugation by standard methods. MEFs were infected with a lentivirus expressing epitope-tagged MICU1 or empty pLVX vector at an estimated MOI of 0.5 and subsequently selected with puromycin. All constructs were verified by DNA sequencing.

Mitochondrial Isolation

Mitochondria were isolated by standard differential centrifugation protocol. Tissues were first minced in isolation buffer (225 mM mannitol, 75 mM sucrose, 5 mM 3-(N-morpholino)propanesulfonic acid (MOPS), 0.5 mM EGTA, 2 mM taurine, pH adjusted to 7.25) and then homogenized using a Glasc-Col homogenizer at 1,800 rpm for 8–12 strokes. The mixture was centrifuged for 5 min at 500 × g, and the supernatant was removed and centrifuged again. The supernatant was then centrifuged at 11,000 × g for 5 min to pellet the mitochondria, which were washed once more with isolation buffer and resuspended. Protein content was measured using a bichinchoninic acid assay (BCA) protein assay (Thermo Scientific).

Intra-mitochondrial Calcium Levels

Measurement of mitochondrial Ca2+ content was performed as described previously, with minor adjustments as delineated below (Pan et al., 2013). In brief,
brain mitochondria were isolated as described above in the presence of 3 μM Ru380 (Calbiochem) and washed in isolation buffer without EGTA. Mitochondria were pelleted and diluted in 0.6 N HCl, homogenized, and sonicated. Samples were heated for 30 min at 95°C and then centrifuged for 5 min at 10,000 x g. The supernatants were recovered, and the Ca2+ content in the supernatants was determined spectrophotometrically using the O-Cresolphtha-lein Complexone calcium assay kit (Cayman Chemical). Only samples that fell within the range of the standard curve were included for analysis, and all values were normalized to the calcium levels observed in WT mitochondria.

Calcium Uptake Assay

Calcium uptake in mitochondria and MEFs was assayed similarly to what has been described previously (Kamer and Mootha, 2014). Briefly, isolated mitochondria and MEFs were resuspended in a buffer containing 125 mM KCl, 2 mM K2HPO4, 10 μM EGTA, 1 mM MgCl2, 20 mM HEPES (pH 7.2), 5 mM glutamate, and 5 mM malate. For MEFs, 0.004% digitonin was added to permeabilize the cells. The fluorescent cell-impermeable Ca2+ indicator Fluo4 (high-affinity, and 5 mM malate. For MEFs, 0.004% digitonin was added to permeabilize the cells. The fluorescent cell-impermeable Ca2+ indicator Fluo4 (high-affinity, used for low extramitochondrial calcium conditions, final concentration 1 μM, Thermo Fisher) or Calcium Green-5N (low-affinity, used for high extramitochondrial conditions, final concentration 1 μM, Thermo Fisher) was added to the buffer. Fluorescence was measured at 506-nm excitation and 532-nm emission on an Omega plate reader. Experiments were initiated by injecting 5 μM or 25 μM CaCl2, resulting in an approximate free calcium concentration of 0.5 μM or 15 μM free [Ca2+]i, respectively. Calcium uptake curves were normalized to baseline and maximum, and the relative rate of calcium uptake was calculated as the absolute value of the slope from linear regression fit in the linear range of the fluorescent signal (80–300 s at low [Ca2+]i and 40–110 s at high [Ca2+]i). Relative rates of calcium uptake were normalized to the WT.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, six figures, and one movie and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2016.07.011.

AUTHOR CONTRIBUTIONS

J.C.L., J.L., K.M.H., S.M., R.J.P., and M.M.F. performed the experiments. Z.Y. and C.H. helped with the pathological analysis. D.A.S. performed the neurobiological and skeletal muscle phenotyping. C.L. constructed the mouse models. E.M. and T.F. conceived the project. J.C.L. and T.F. wrote the manuscript.

ACKNOWLEDGMENTS

We are grateful to Michele Allen for help with mouse phenotyping; Erin Stem-pinski, Camron Keshavarz, and Christopher Bleck for help with electron microscopic analysis; and Jeffrey Culver at the Sanford-Burnham Orlando Metabolomics Core for skeletal muscle lactate measurements. This work was supported by intramural NIH funds, a Leducq Transatlantic Network grant (to T.F.), and a PRAT postdoctoral fellowship from NIGMS (to J.C.L.)

Received: March 3, 2016
Revised: March 24, 2016
Accepted: July 3, 2016
Published: July 28, 2016

REFERENCES

Mitochondrial Calcium Uniporter Selectively Matches Metabolic Output to Activity Linked to Primary Alterations in Mitochondrial Calcium Signaling. Nat. Genet.

Loss-of-function mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling. Nat. Genet.

