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If A and B are groups such that A x Z’S B x h, then A and D are elementarily equivalent. From 

this follows rhe existence of finitely generated torsion-free nilpotent groups which are elemen- 

tarily equivalent without being isomorphic. 

Since 1970, a number of papers were devoted to the investigation of non-isomor- 
phic groups A, B such that A x Z2-= B x Z. It is fair to say that no clear algebraic 
pattern emerges. 

This paper is divided into two parts: In the first, and most important, part we 
prove the following result, which provides a surprising connection with model 
theory: 

Theorem. If A and B are groups such that A x Z s %’ x B, then A and I? are &men- 
tardy equivalen I. 

In the second part we give some examples and applications. 
The definition of elementary equivalence and the results of model theory which 

arc used here can be found in [2]. The reader is referred to [7] for group theory. 
For subsets X, Y of a group G, we denote by <X) the subgroup generated by X 

and IX, Y] the subgroup generated by 

{[x,y] =x--ly-lxy~xcY,yEY}. 

If X has a single element x, we write [k; Y] instead of [X, Y] and <‘A-, Y) instead ol‘ 
(XU 17). We note Z(G) the center of a group G. 
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I. Proof of the theorem 

We shall prove :hat A and B are elementarily equivalent under the following 
ypot heses: 

- A arld B at-e subgroups of a group G and x, y elements of G. 
- (x)nA =- {I}, [x,A] = (1) and (&A)= G. 
- (y)nB - 0) [y,B] = (I} and (y,B)=G. 
- (s) am (_v) are isomorphic to Z. 

omorphic groups are elementarily equivalent. So, from now on, we suppose A 
B non-isomorphic. 

Lemma 1. U’e have [G. G ] c A fl B; so A, B and A n B are normal subgroups of G. 

Proof. Since x is obviously in the center of G, we have [G, G] = [(x, A), (x, A)] = 
A. Likewise, we have [G, G] C B. 

Lemma 2. (i) Tke group (x, y) is isomorphic to Z x 72. 
(ii) Ue have (x3_v)n(Af?B)= (Ii,. 

(iii ) The _f~~llrwing groups are isomorphic to k: 

Proof. The subgroup M = ((a, 6) E S x Z ( _Pyh E A fl B} is either isomorphic to Z! or 
to {()I +incc((l.O))nM= ((0,O)). AsG/AzZandG/BsZaretorsion-free groups, 

B) and (_’ x i")/M are also torsion-free. So, if M is isomorp!ric to Z, 
) .Sl is isomorphic to 2 and there is a basis {(k, I), (nr, n)} elf Z_ x Z with 
31 and ((In, n)) nM = ((O,O)}. We have 

c; = ( _I-, A} = (xhy“, .~“‘y”, A} = (.P_Y”, A> 

I; = ( _I*, B > = (shy’, _Y~~‘_v~~, B) = (.Py”, B) 

(.Pfj fl A = { 1) and {_Pyn) n B = {I). 

~“wP’oPc’, if 31 is isomorphic to 2, A and B are both isomorphic to G/(.1 “‘_V>, 
r>. PO our hypothesis. 

.21 2 ((0, O)), (_I-, y> z z x 2 and (x,y)n(AnB) = {l}. 



Canceiiation and elementary eq:Gvalence of groups 

are both isomorphic to z. An obvious argument about ranks of &modules shows 
that (x, y) nA and (x, y)fV3 are also isomorphic to 22. 

Lemma 3. Thegroups A/(A fl B), Z(A)/(Z(A) n B), B/(A n B) andZ(B)/(A n Z(B)) 

are isomorphic to z. 

Proof. We only give the argument for Z(A)/(Z(A)n B) siiice the other proofs are 
similar. It follows from Lemma 2 that Z(A) is not contained in B, for (x, y) f7A is 
contained in Z(A). Therefore, Z(A)/(Z(A)n B)n (Z(A), B)/BC G/B is isomorphic 
to z. 

Lemma 4. There is an integer pz 2 such that 

A/(Z(A), A fI B) SE B/(Z(B), A n B) z Up.L 

Proof. The group A/(Z(A), A f3 B) is cyclic since A/(A n B) is isomorphic to iz and 
finite since Z(A) is not contained in A f7 B. Moreover, we have: 

JWZ(A), A n B) = G/(x, Z(A), A (I B) = G&y, Z(B), A n B) 

= B/(Z(B),AnB) 

since CY, Z(A)) = Z(G) = (v, Z(B)). If the groups A!(Z(A), A n B) and 
B/(Z(B), A nk3) were trivial, it would imply 

A=(A~B,Z(A))~(AflB)X(Z(A)/(Z(A)~B))~(A~B)xiz 
and 

B = (A 0 B, Z(B)) = (A f7 B) X (Z(B)/(A nZ(B))) = (A nB) X ,E 

Corollary 5. If a E A and b E B are such that A = {a, A n B) and B = (b, A n B), we 
have 

(ap,AN?) = (Z(A),AnB) and (bP,AnB) = (Z(B),AnB) 

for the integer p of Lemma 4. 

Proof. Since A/(Z(A), A nl?) is isomorphic to Up& we have ape (Z(A), A f?B) 
and (a4 A n B} c (Z(A), A fl B). Then, (ap, ,4 f7 B) = (Z(A), A (I B) follows from 

(A/(a”,AnB)I := I(a,Ar3B)/(aP,.4nB)l =p = jMZ(A),AnB)/. 

If b&l is such that B= (b,AfU?), we have G =(y,b,AnB) and A = 
(A n (y, b), A n B) since A f7 B is normal in G So, we can choose a E A Tr (y, b> sucl~ 
that A = (a, A n B). 

For the sequel, we consider elements a E A ;lrrd b E B SUC!I that A = (a, A n B> and 
B = (b, An&, and for which there are integers r,.s such that a=y’b”. Replacing CI 
by a-’ if necessary, we may assume SM. We also consider elements c, d E A nB, 
u E Z(A) and u E Z(B) such :hat ap = UC and bp = ud. 
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We note that a. lo, u, u are elements of infinite order according to Lemma 3. Each 
SQ the clcments a, b,c,d commutes with the rhree others. 

l,~~~rsra 6. tCrirk rksp definitions, we have s 12. 

pr~f, ff S = 0. lwe have a E Z(A), contrary to Lemma 4. If s = 1, there is an isomer- 

phhf:A --=B cwh that.f(a)=h and f(X,=x for each x&nB+ 

I,cmms 7. Tlte integers p,s are prime to each other. 

Prm,Q. If m is a divisor of y and s, we have 

since a and d belong to A, yrc/’ ‘% ” =uP “rd-“*‘n belongs to Z(G)n,4 = Z(A). 

wm!a~~ cr. d 6 “I belongs to A CJ B. So we have ap m E (Z(A), A nB) and m = F 1. 

Emma 8. For ew*h integer n 2 2, there are two integers g and h, with g prime to 
19, mxl UN ele~ttent z E (y,t~) such that a = bKdh;. 

It I\ %ut’tiLicnt to have s =g +ph and : =_Y’u~. So, we have only to find ;I solution 

tc equation 5 = g + ph. ivith g and n prime to each other, knr,wing that s 

&net 6~ NC’ prime to each other. 

I ct 11% consider two integers i, j such that n = ij, with j prime to s and each prime 

d~\i~r of i being a divisor of s. As p is prime to s, it is also prime to i. Thus, 

$ - ~11 ilri prime to i since p and j are prime to i. It is also prime to j since j and 

(I 3.1~ prime to each other. So, g is prime to n. .Moreover, (g =s t,,Tj, h = -j) is a 

WlUBKVl ot‘ s = &rr + pII ~ 

ii’: XC going to pros c that, for any non-trivial ultrafilter U over N, ,4’ and BU 
62: LA i +mcbrphi<. Then _ .d and B will be elementarily equivalent, according to corol- 

se*r DUB clcmcnt\ :E G’ and LV?‘, we note 2” the element of CL’ which admits 
_ :: 

4 ‘*, = c a a r-t’prt’\t‘ntatii c‘. where (Q,,, ,. . and (CT,,),,,- 5. are any representatives of 
- $1 *s U &p4 c; c and._-‘. if tl commute\ with z2 in G L’, we have 

(t; z$’ r~ zi’7: for any (Y fz 3’ . 

I %nc -iI grrmp F.‘ _ 0,. . . . II_? of _“” - 1% ch*isihk (for each .Y E E and each n E IN*, 
u i. iiI~‘C” ‘:‘9 hi 1 F %: \a++~ thaf .\ - r~_r’). A \ubgroup .s of s” ’ IS ssid to be a supplementary 
\$f / iI\ i ti 6188 k iI‘ .‘irw - ; I) and (S, E) = _. . 7” The divisibility of E and the 



Cancelkltion and elementary equivuience of groups 29’;;’ 

existence of a supplementary of E in Z” are classical since the groups involved are 
abelian (for a more general treatment, see Proposition 5.4 and Theorem S.3 of [6J). 

Lemma 9. Let S and T be supplementaries of E in HU. The subgroups uE = 
(u”lcreE} andC={aazI at9andzE(AnB)‘) ofA”aresuchthatuEN’=(l}, 
[uE,Cj=(l) and (uE,C)=AU. In the same wcry, vE=(vajaeE) and D= 

(baz(aET and zE(AnB)“) are such that vEnD=(l}, [vE,D]=(l} and 
<II”, D) = B”. Any isomorphism f : C-+ D induces an isomorphism f’ : AU--+ B” 
with f ‘(ua) = va for each a e E and f’(x) = f (x) for each x E C. 

Proof. Every element of AU is a product aaz with a& and ZE (A n B)“. For 
each aG.“, there are PE S and y E E such that a =p + y, and 6 E E such that 
y =p& It follows that 

aa2 = afi(aP)‘z = aP(uc)‘Z = u”aQ”z) 

with &EE, DES and &z(AnB) “. Moreover, for each a E E, if u” = al’(ycb-(r 
belongs to C, we have pa E EM and a = 0. 

To end the proof, it is encqh to observe that the maps a -+ II” from E onto 16 
and a -+ va from E onto uE are isomorphisms; this easily follows from the pre- 
viously noted fact that the elements u and v of G are of infinite order. 

Lemma 10. Zf S is a supplementary of E in Z” and if g E Z? has a representatilpe 

(g&t, hJ such that g,, is prime to n ! for each integer n, then T = gS is a supylentt-‘n- 
tary of E in Z? and the map S --+ T : q -+ gq is an isomorphism. 

Proof. Let us consider an element q E S - (0) and a representative (q,& rr\l of q in 
Z’. There is an integer k ~2 such that q$ k@‘and, therefore, (n E N 1 q, $‘kZ} E W. 
For this integer k, (n E N 1 g,?q, $ kiZ} contains {n E IN 1 n 2: k and qn $ kZ} since g, 
is prime to k for each nk k. So {n E N 1 g,,qn $ k-Z} belongs to U and gq cannot 
belong to E since it does not belong to kZ*. 

In order to show that ZU= (E, T), we consider an eleme:: t q e 27” and a represen- 
tative (4n)nEN of q in Z ‘. For each n E IN, there is an integer h,, ~27 such that 
g,Ih, -qn WI!,?!. The element h &! whit;; admits (h,),,Et)v as a representative is 
such that gh - q E E. Tilere IS an element i E S such that h - iE E. Then, we have 
gi - 4 = gh - q -- g(h - i) E E, hence the lemma. 

Now, we come to the proof of A % BU. For each n E IN, we consider two in- 
tegers g(n), h(n) E Z, with g(n) prime to n! 9 and an element z(n) E (y, u> suci~ that 
a = bg(“)dh’N’z(n)\. The existence of g(n), h(n) and z(n) follows from Lemma 8. We 
note g, h the elements of Z’/ and z the element of Z(G “) which admit (g(n)),,, >,- 

(h(n)),, hj and (z(n)),, N as representatives. We have a = b”d”t. 
We also consider a supplementary S of E in Z’. According to Lemma 10, T = gS 



is a supplementary oi E in 2’. It follows from Lemma 9 that we only need to build 

iwmorphism J from 

MS and w*E(AnB)L:) to 

D- 1 jb”w~a~Tand we(AnB)U). 

WC dcfinr b‘; 

S and each w E (A n B)“‘. It follows from Lemma 10 that f is bijective. 

t c~ufficcs to show that f is an homomorphism. 
I-or any c., 0%~ S and any W, w’ E (-La n Bf’, we have 

(u”“;v)(a” w’) = aa + n'([a"', W-‘1 ww') 

f(fa”‘ac)(a” w’)) = (a: ‘)a + “‘([a”; w ‘1 Ww’) 

_f(a”w)_f(a” w’) = (a: ‘)“w(aZ ‘jrr’\t*’ 
;= (aT I)Q l “‘[(a:- ‘)fl; WV _ I] 1~9~’ 

= (0: i)n + n’ ([a”‘, w ‘1 ww’) 

.: &longs 10 Z(G’), which completes the proof of the theorem. 

2. Phmples and applications 

D try W&T i\ rct’txrcd to R. Hirshon’s works and especially to tbc introduction 

for the algebraic properties of non-isomorphic grc;*ps A, B such that 

it is well known that if A and B are such groups, they are infinite 

‘Pw examples are quoted in the introduction of 131. Another one, given on pages 

e1y generate6 torsion-free nilpotent groups. According to our 
is provides an example of finitely generated torsion-free nilpotent 

are elementarily equivalent without being isomorphic. 

vamptes concern finitely generated groups with finite commutator 

Warfield proves in [I%] that two finitely generated groups with finite 

A, B have the same finite images if and only if A x Z and 

XVcn-rri\ ial examples of that situation can be found, for 

and in 15, p. 1041. 

I two Finitely generated groups with finite commutator sub- 

ntarily equivalent if and only if they have the same finite 

and only if ,q x 2’ and B x H are isomorphic. 
I 1nt* h.wc~~~ ot’ rtw prkxnt paper only provides a partial genel*aliza:ion of this 

rt*%toI! 1% ;t 8~ caH‘ 1;1~:1, TV finitcl\-* generated groups A, B can tie elementarily 
t @a c .-I x _? and B x 3' are not isomorphic. 
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In order to see this, we consider an example, which was given in [4], of a finitcl) 
generated group A such that Z(A) = {l}, A ~4 x A x A and A SA x A. Z he e!emew- 
tgry equivalence of A and B = A x A follows from Proposition 6.3.13.(ii) of [2] since 
each of the two groups A, B is isomorphic to a direct factor of the other. 

We have Z(A x Z) = Z(B x Z) = Z since Z(A) = Z(B) = { 1) e So, any isomorphism 
f: A x Z + BX Z would map Z(A x B) = Z onto Z(BX Z) = Z and induce an iso- 
morphism from A s (A x Z)/Z to Bz (B x Z)/E. Therefore, A x Z and B x Z are ri;t 
isomorphic. 

As a conclusion, we also mention Theorem 1 of [3]: If a group C satisfies the 
maximal condition for normal subgroups and if A x C E B x C, then ,4 x Z s B x 2. 

Therefore, A and B are elementarily equivalent, according to our theorem. 
On the other hand, if rl and B are the two finitely gene1 nted groups that we intro- 

duced when we considered the example of [4], we have A = { 1) x A s B x A white { 1) 
and B are not elementarily equivalent. 
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