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zounenko, Differential equations with discrete state-dependent delay: uniqueness and well-
posedness in the space of continuous functions, Nonlinear Anal. 70 (11) (2009) 3978–3986]
is developed. We propose and study an analogue of the condition which is sufficient for the
well-posedness of the corresponding initial value problem on the whole space of continu-
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1. Introduction

Delay differential equations is one of the oldest branches of the theory of infinite-dimensional dynamical systems –
theory which describes qualitative properties of systems, changing in time.

We refer to the classical monographs on the theory of ordinary delay equations (ODE) [2,7,11,12,22]. The theory of
partial delay equations (PDE) is essentially less developed since such equations are infinite-dimensional in both time (as
delay equations) and space (as PDEs) variables, which makes the analysis more difficult. We refer to some works which are
close to the present research [3–6,28] and to the monograph [45].

A new class of equations with delays has recently attracted attention of many researchers. These equations have a delay
term that may depend on the state of the system, i.e. the delay is state-dependent (SDD). Due to this type of delays
such equations are inherently nonlinear and their study has begun in the case of ordinary differential equations [17,18,
23–25,38,39] (for more details see also a recent survey [13], articles [8,19,26,27,40,41] and references therein).

Investigations of these equations essentially differ from the ones of equations with constant or time-dependent delays.
The underlying main mathematical difficulty of the theory lies in the fact that delay terms with discrete state-dependent
delays are not Lipschitz continuous on the space of continuous functions – the main space, on which the classical theory
of equations with delays is developed (see [44] for an explicit example of the non-uniqueness and [13] for more details). It
is a common point of view [13] that the corresponding initial value problem (IVP) is not generally well-posed in the sense
of J. Hadamard [9,10] in the space of continuous functions (C ). This leads to the search of (particular) classes of equations
which may be well-posed in the space of continuous functions (C ).

Results for partial differential equations with SDD have been obtained only recently in [29] (case of distributed delays,
weak solutions), [16] (mild solutions, unbounded discrete delay), and [30] (weak solutions, bounded discrete and distributed
delays), see also [32].
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The main goal of the present paper is to develop an alternative approach, based on an additional condition (see (H)
below) introduced in [31]. We propose and study a state-dependent analogue of the condition which is sufficient for the
well-posedness of the corresponding initial value problem in the space C. The presented approach includes the possibility
that the state-dependent delay function does not satisfy the condition on a subset of the phase space C , but the IVP still be
well-posed in the whole space C . This is our second goal which is to connect the approach developed for ODEs (a restriction
to a subset of Lipschitz continuous functions) and the approach [31] of a different nature.

Having the well-posedness proved, we study the long-time asymptotic behavior of the corresponding dynamical system
and prove the existence of a compact global attractor.

2. Formulation of the model with state-dependent discrete delay

Let us consider the following parabolic partial differential equation with delay

d

dt
u(t) + Au(t) + du(t) = F (ut), (1)

where A is a densely-defined self-adjoint positive linear operator with domain D(A) ⊂ L2(Ω) and with compact resolvent,
so A : D(A) → L2(Ω) generates an analytic semigroup, Ω is a smooth bounded domain in Rn0 , d is a non-negative constant.
As usual for delay equations, we denote by ut the function of θ ∈ [−r,0] by the formula ut ≡ ut(θ) ≡ u(t + θ). Here r > 0
is a fixed constant (the maximal value of the delay). We denote for short C ≡ C([−r,0]; L2(Ω)). The norms in L2(Ω) and C
are denoted by ‖ · ‖ and ‖ · ‖C respectively.

The (nonlinear) delay term F : C([−r,0]; L2(Ω)) → L2(Ω) has the form

F (ϕ) = B
(
ϕ

(−η(ϕ)
))

, (2)

where the (nonlinear) mapping B : L2(Ω) → L2(Ω) is Lipschitz continuous∥∥B
(

v1) − B
(

v2)∥∥ � LB
∥∥v1 − v2

∥∥, ∀v1, v2 ∈ L2(Ω). (3)

The function η(·) : C([−r,0]; L2(Ω)) → [0, r] represents the state-dependent discrete delay. It is important to
notice that F is nonlinear unless η is constant (even in the case of linear B).

We consider Eq. (1) with the following initial condition

u|[−r,0] = ϕ ∈ C ≡ C
([−r,0]; L2(Ω)

)
. (4)

Remark 1. The results presented in this paper could be easily extended to the case of a nonlinearity F of the form F (ϕ) =∑
k Bk(ϕ(−ηk(ϕ))) as well as to ODEs, for example, of the following form [33]

u̇(t) + Au(t) + d · u(t) = b
(
u
(
t − η(ut)

))
, u(·) ∈ Rn, d � 0. (5)

In the last case one simply needs to substitute L2(Ω) by Rn and use C ≡ C([−r,0]; Rn) instead of C([−r,0]; L2(Ω)). The
function b : Rn → Rn is locally Lipschitz continuous and satisfies ‖b(w)‖Rn � C1‖w‖Rn + Cb with C1, Cb � 0; A is a matrix.

Remark 2. As an example we could consider non-local delay term F (see (2)) with the following mapping

B(v)(x) ≡
∫
Ω

b
(

v(y)
)

f (x − y)dy, x ∈ Ω,

where f : Ω −Ω → R is a bounded and measurable function (| f (z)| � M f , ∀z ∈ Ω −Ω) and b : R → R is a (locally) Lipschitz
mapping, satisfying |b(w)| � C1|w| + Cb with Ci � 0. One can easily check that B satisfies (3) with LB ≡ Lb M f |Ω|, where
Lb is the Lipschitz constant of b, and |Ω| ≡ ∫

Ω
1 dx.

Another example is a (local) delay term F (see (2)) with B(v)(x) ≡ b(v(x)), x ∈ Ω . An easy calculation shows that (3)
is satisfied with LB ≡ Lb .

The methods used in our work can be applied to other types of nonlinear and delay PDEs (as well as ODEs). We choose a
particular form of nonlinear delay terms F for simplicity and to illustrate our approach on the diffusive Nicholson’s blowflies
equation (see the end of the article for more details).
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3. The existence of mild solutions

In our study we use the standard

Definition 1. A function u ∈ C([−r, T ]; L2(Ω)) is called a mild solution on [−r, T ] of the initial value problem (1), (4)
if it satisfies (4) and

u(t) = e−Atϕ(0) +
t∫

0

e−A(t−s){F (us) − d · u(s)
}

ds, t ∈ [0, T ]. (6)

We use the notation C([a,b]; X) for the space of the functions on [a,b] which are continuous with respect to the strong
topology on X (the norm topology).

Proposition 1. (See [31].) Assume the mapping B is Lipschitz continuous (see (3)) and the delay function η(·) : C([−r,0]; L2(Ω)) →
[0, r] ⊂ R+ is continuous.

Then for any initial function ϕ ∈ C, the initial value problem (1), (4) has a global mild solution which satisfies u ∈ C([−r,+∞);
L2(Ω)).

The existence of a mild solution is a consequence of the continuity of F : C → L2(Ω) (see (1)) which gives the possibility
to use the standard method based on the Schauder fixed point theorem (see e.g. [45, Theorem 2.1, p. 46]). The solution
is also global (is defined for all t � −r) since (3) implies ‖F (ϕ)‖ � LB‖ϕ‖C + ‖B(0)‖ and one can apply, for example, [45,
Theorem 2.3, p. 49]. For the existence of solutions to delay PDEs and references see e.g. [34].

Remark 3. It is important to notice that even in the case of ordinary differential equations (even scalar) a mapping
F : C([−r0,0]; R) → R of the form F̃ (ϕ) = f̃ (ϕ(−r(ϕ))) has a very unpleasant property. The authors in [20, p. 3] write
“Notice that the functional F̃ is defined on C([−r0,0]; R), but it is clear that it is neither differentiable nor locally Lipschitz
continuous, whatever the smoothness of f̃ and r.” As a consequence, the Cauchy problem associated with equations with
such a nonlinearity “. . . is not well-posed in the space of continuous functions, due to the non-uniqueness of solutions
whatever the regularity of the functions f̃ and r” [20, p. 2]. See also a detailed discussion in [13].

Remark 4. For a study of solutions to equations with a state-dependent delay in the space C([−r,0]; E) with E not neces-
sarily finite-dimensional Banach space, see e.g. [1].

In this work we concentrate on conditions for the IVP (1), (4) to be well-posed.

4. Main results: uniqueness, well-posedness and asymptotic behavior

As in the previous section, we assume that η : C → [0, r] is continuous and B is Lipschitz. Unlike to the existence of
solutions, the uniqueness is an essentially more delicate question in the presence of discrete state-dependent delay (see a
classical example of the non-uniqueness in [44]).

Let us remind an important additional assumption on the delay function η, as it was introduced in [31]:

• ∃ηign > 0 such that η “ignores” values of ϕ(θ) for θ ∈ (−ηign,0] i.e.

∃ηign > 0: ∀ϕ1,ϕ2 ∈ C : ∀θ ∈ [−r,−ηign] ⇒ ϕ1(θ) = ϕ2(θ) ⇒ η
(
ϕ1) = η

(
ϕ2). (H)

For examples of delay functions satisfying (H) and the proof of the uniqueness of mild solutions (given by Proposition 1)
as well as the well-posedness of the IVP (1), (4), see [31].

Remark 5. It is important to notice that, discussing the condition (H) and its dependence on the value ηign , we see that in
the case ηign > r, one has that the delay function η ignores all values of ϕ(θ), ∀θ ∈ [−r,0], so η(ϕ) ≡ const, ∀ϕ ∈ C i.e.
Eq. (1) becomes an equation with constant (!) delay. On the other hand, the analogue of assumption (H) with ηign = 0,

is trivial since ϕ1(θ) = ϕ2(θ) for all θ ∈ [−r,0] means ϕ1 = ϕ2 in C, so η(ϕ1) = η(ϕ2).

Remark 6. It is worth mentioning that the classical case of constant delay (see the previous remark) and the correspond-
ing theory form the basis for the discussed approach, but is different to the approach of non-vanishing delays. In our case
the delay η may vanish (we do not assume the existence of r0 > 0 such that η(ϕ) � r0, ∀ϕ).
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Fig. 1.

In the above condition (H) the semi-interval (−ηign,0] is fixed (we remind that the value ηign could be arbitrary small).
Our goal is to extend the approach based on the condition (H) to a wider class of state-dependent delay functions

where the value ηign is not a constant any more, but a function of the state. Moreover, as an easy additional extension,
we also allow the upper bound of the delayed segment to be state-dependent. More precisely, we consider two functions
Θu,Θ� : C → [0, r], satisfying

∀ϕ ∈ C ⇒ 0 � Θ�(ϕ) � Θu(ϕ) � r.

Now we are ready to introduce [33] the following state-dependent condition for the state-dependent delay function η : C →
[0, r] (cf. (H)):

• η “ignores” values of ϕ(θ) for θ /∈ [−Θu(ϕ),−Θ�(ϕ)] i.e.

∀ψ ∈ C such that ∀θ ∈ [−Θu(ϕ),−Θ�(ϕ)
] ⇒ ψ(θ) = ϕ(θ) ⇒ η(ψ) = η(ϕ). (Ĥ)

The above condition means that state-dependent delay function η “ignores” all values of its argument ϕ outside of
[−Θu(ϕ),−Θ�(ϕ)] ⊂ [−r,0] and this delayed segment [−Θu(ϕ),−Θ�(ϕ)] is state-dependent. We could illustrate this
property in Fig. 1.

Remark 7. The condition (H) is a particular case of (Ĥ) with Θ�(ϕ) ≡ ηign and Θu(ϕ) ≡ r, ∀ϕ ∈ C .

Example. It is easy to present many examples of (delay) functions η, which satisfy assumption (Ĥ). The simplest one is

η(ϕ) = p1
(
ϕ

(−χ
(
ϕ(−r)

)))
with p1 : L2(Ω) → [0, r] (7)

and given χ : L2(Ω) → [0, r]. Here Θ�(ϕ) ≡ χ(ϕ(−r)) and Θu(ϕ) = r. It is easy to see that the above delay function η
(7) ignores values of ϕ at points θ ∈ (−r,−χ(ϕ(−r))) ∪ (−χ(ϕ(−r))),0] and uses just two values of ϕ at points θ = −r,
θ = −χ(ϕ(−r)). In our notations, the delayed segment [−Θu(ϕ),−Θ�(ϕ)] = [−r,−χ(ϕ(−r))] is state-dependent.

In the same way, one has

η(ϕ) =
N∑

k=1

pk
(
ϕ

(−χk(ϕ(−r)
)))

with pk,χ
k : L2(Ω) → [0, r].

In this case [−Θu(ϕ),−Θ�(ϕ)] = [−r,−mink{χk(ϕ(−r))}]. A slightly more general example is

η(ϕ) =
N∑

k=1

pk
(
ϕ

(−χk(ϕ(−rk)))) with pk,χ
k : L2(Ω) → [0, r], min rk ∈ (0, r].

Here Θu(ϕ) = max{r1, . . . , rN ,χ1(ϕ(−r1)), . . . ,χ N (ϕ(−rN ))} and

Θ�(ϕ) = min
{

r1, . . . , rN ,χ1(ϕ(−r1)), . . . ,χ N(
ϕ

(−rN))}
.

Examples of integral delay terms are as follows

η(ϕ) =
−χ1(ϕ(−r1))∫

2 2

p1
(
ϕ(θ)

)
g(θ)dθ, and η(ϕ) = p1

( −χ1(ϕ(−r1))∫
2 2

ϕ(θ)g(θ)dθ

)
.

−χ (ϕ(−r )) −χ (ϕ(−r ))
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Similar to the previous example, Θu(ϕ) = max{r1, r2,χ1(ϕ(−r1)),χ2(ϕ(−r2))} and

Θ�(ϕ) = min
{

r1, r2,χ1(ϕ(−r1)),χ2(ϕ(−r2))}.
Remark 8. It is interesting to notice that an assumption similar to the existence of upper function Θu(·) is used in [42]
for ODEs with SDD (locally bounded delay). On the other hand, an assumption similar to (H) is used in [14,41] for neutral
ODEs (see (A4)(ii) in [14]), but together with another assumption on SDD to be bounded from below by a constant r0 > 0
(cf. Remark 6).

Following [31, Theorem 1] we have the first result.

Theorem 1. Let both functions Θu,Θ� : C → [0, r] be continuous and Θ�(ϕ) > 0 for all ϕ ∈ C. Assume the delay function η : C →
[0, r] is continuous and satisfies assumption (Ĥ); the mapping B is Lipschitz continuous (see (3)).

Then for any initial function ϕ ∈ C, the initial value problem (1), (4) has a unique mild solution u : [−r,∞) → L2(Ω) (given by
Proposition 1).

If we define the evolution operator St : C → C by the formula Stϕ ≡ ut , where u is the unique mild solution of (1), (4)
with initial function ϕ , then the pair (St , C) constitutes a dynamical system i.e. the following properties are satisfied:

(1) S0 = Id (identity operator in C );
(2) ∀t, τ � 0 ⇒ St Sτ = St+τ ;
(3) t �→ St is a strongly continuous mapping;
(4) for any t � 0 the evolution operator St is continuous in C .

The proof follows the line of [31, Theorem 1] taking into account that condition Θ�(ϕ) > 0, ∀ϕ ∈ C implies that for
any fixed ϕ ∈ C , due to the continuity of Θ� : C → [0, r], there exists a neighborhood U (ϕ) ⊂ C such that for all ψ ∈ U (ϕ)

one has Θ�(ψ) � 1
2 Θ�(ϕ) > 0. That means that in U (ϕ) ⊂ C we have the (state-independent) condition (H) with ηign =

1
2 Θ�(ϕ) > 0 and all the arguments presented in [31, Theorem 1] could be directly applied to this case. To obtain the global
result we use proposition 1 which provides the global existence of solutions for any ξ ∈ C and assume the existence of τ > 0
such that for the initial function ϕ = Sτ ξ the uniqueness of solutions fails. This leads to a contradiction since Θ�(ϕ) > 0
and the local result proved above gives the uniqueness. The same arguments give the continuity of St for any t > 0. We
remark that as in [31, p. 3981], properties 1, 2 are consequences of the uniqueness of mild solutions. Property 3 is given by
Proposition 1 since the solution is a continuous function. �
Remark 9. We do not assume that the functions Θu,Θ� (which are used in (Ĥ) to present the delayed segment
[−Θu(ϕ),−Θ�(ϕ)]) are the functions presenting the smallest possible delayed segment. More precisely, it is possible that
there exist two other functions Θ̃u, Θ̃� such that for all ϕ ∈ C one has 0 � Θ�(ϕ) � Θ̃�(ϕ) � Θ̃u(ϕ) � Θu(ϕ) � r and the
same delay η satisfies (Ĥ) with Θ̃u, Θ̃� as well.

Our next step in studying the state-dependent condition (Ĥ) is an attempt to avoid the condition Θ�(ϕ) > 0, ∀ϕ ∈ C . We
are going to consider the general case Θ�(ϕ) � 0, ∀ϕ ∈ C with a non-empty set Z ≡ {ϕ ∈ C : Θ�(ϕ) = 0} 
= ∅.

Theorem 2. Assume the mapping B is Lipschitz continuous (see (3)).
Moreover, let the following conditions be satisfied:

(1) both functions Θu,Θ� : C → [0, r] are continuous;
(2) there exists L > 0 such that

Z ≡ {
ϕ ∈ C : Θ�(ϕ) = 0

} ⊂ C LL ≡
{
ϕ ∈ C : sup

t 
=s

‖ϕ(t) − ϕ(s)‖
|t − s| � L

}
;

(3) delay function η : C → [0, r] is continuous and satisfies assumption (Ĥ);
(4) for all ϕ ∈ Z one has η(ϕ) > 0;
(5) there exist ω > 0 and Lη > 0 such that for all ϕ,ψ ∈ Uω(Z) ≡ {χ ∈ C : ∃ν ∈ Z : ‖χ − ν‖C � ω} one has |η(ϕ) − η(ψ)| �

Lη · ‖ϕ − ψ‖C .

Then for any initial function ϕ ∈ C, the initial value problem (1), (4) has a unique mild solution u(t), t � 0 (given by Proposi-
tion 1). Moreover, the pair (St , C) constitutes a dynamical system (see Theorem 1).

Proof of Theorem 2. We begin with an observation that any solution u at any time moment t � 0 satisfies either ut ∈ Z
or ut ∈ C \ Z . Moreover any solution is global (by Proposition 1) and for different time moments t1, t2 � 0 one may have
ut1 ∈ Z and ut2 ∈ C \ Z . Hence we split our proof into two cases: ϕ ∈ Z and ϕ ∈ C \ Z .
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Let us consider ϕ ∈ C which is an initial condition (see (4)). We start with the simple case ϕ /∈ Z . By definition of Z, we
have Θ�(ϕ) > 0. If there exists such τ > 0 that Sτ ϕ ∈ Z , we might turn this case to the proof of the case ϕ ∈ Z by taking
Sτ ϕ as ϕ . Otherwise it can be proved by the same argument as in the proof of Theorem 1 (the state-independent condition
(H) is satisfied locally).

The rest of the proof is devoted to the case ϕ ∈ Z and is organized as follows. For all t � 0 we denote by uk(t) any
solution of (1), (4) with the initial function ϕk and by u(t) any solution of (1), (4) with the initial function ϕ . We choose
two arbitrary solutions and look for an estimate for ‖uk(t)−u(t)‖ in terms of ‖ϕk −ϕ‖C . The final estimate (see (18) below)
will provide the uniqueness and continuous dependence.

We recall some estimates similar to estimates (6)–(13) in [31]. We use the variation of constants formula for parabolic
equations (with Ã ≡ A + d · E , where E is the identity operator from L2(Ω) to L2(Ω))

u(t) = e− Ãt u(0) +
t∫

0

e− Ã(t−τ )B
(
u
(
τ − η(uτ )

))
dτ , (8)

uk(t) = e− Ãt uk(0) +
t∫

0

e− Ã(t−τ )B
(
uk(τ − η

(
uk

τ

)))
dτ . (9)

Since the operator A is positive and d � 0 we use (see [6,15]) ‖e− Ãt‖ � 1 and ‖e− Ã(t−τ )‖ � 1 to get

∥∥uk(t) − u(t)
∥∥ �

∥∥uk(0) − u(0)
∥∥ +

t∫
0

∥∥B
(
uk(τ − η

(
uk

τ

))) − B
(
u
(
τ − η(uτ )

))∥∥dτ

�
∥∥ϕk(0) − ϕ(0)

∥∥ + Jk
1(t) + Jk

2(t), (10)

where we denote (for s � 0)

Jk
1(s) ≡

s∫
0

∥∥B
(
uk(τ − η

(
uk

τ

))) − B
(
u
(
τ − η

(
uk

τ

)))∥∥dτ , (11)

Jk
2(s) ≡

s∫
0

∥∥B
(
u
(
τ − η

(
uk

τ

))) − B
(
u
(
τ − η(uτ )

))∥∥dτ . (12)

Using the Lipschitz property (3) of B , one easily gets

Jk
1(t) � LB

t∫
0

∥∥uk(τ − η
(
uk

τ

)) − u
(
τ − η

(
uk

τ

))∥∥dτ � LBt max
s∈[−r,t]

∥∥uk(s) − u(s)
∥∥. (13)

Estimates (10), (13) and property J k
2(s) � J k

2(t) for s � t � t0 give

max
t∈[0,t0]

∥∥uk(t) − u(t)
∥∥ �

∥∥ϕk(0) − ϕ(0)
∥∥ + LBt0 max

s∈[−r,t0]
∥∥uk(s) − u(s)

∥∥ + Jk
2(t0).

Hence

max
s∈[−r,t0]

∥∥uk(s) − u(s)
∥∥ �

∥∥ϕk − ϕ
∥∥

C + LBt0 max
s∈[−r,t0]

∥∥uk(s) − u(s)
∥∥ + Jk

2(t0). (14)

Now we study properties of J k
2 which essentially differ from the ones in [31] since (H) is not satisfied. The Lipschitz

property of B implies

Jk
2(t0) � LB

t0∫
0

∥∥u
(
τ − η

(
uk

τ

)) − u
(
τ − η(uτ )

)∥∥dτ . (15)

Since ϕ ∈ Z , property (4) gives η(ϕ) > 0. Due to the continuity of η (see (3)), there exists α > 0 such that for all
ψ ∈ Uα(ϕ) ≡ {ψ ∈ C : ‖ϕ − ψ‖C � α} one has

η(ψ) � 3
η(ϕ) > 0. (16)
4
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We choose α < ω (see property (5). By definition, a solution is continuous (with respect to the norm topology on L2(Ω)),
hence for any two solutions u(t) and uk(t) there exist two time moments tϕ, tϕk > 0 such that for all t ∈ (0, tϕ ] one has

ut ∈ Uα(ϕ) and for all t ∈ (0, tϕk ] one has uk
t ∈ Uα(ϕ).

Remark 10. More precisely, we assume that there exists Nα ∈ N such that for all k � Nα one has ϕk ∈ Uα/2(ϕ) and hence
there exists time moment tϕk ∈ (0, t0] such that for all t ∈ (0, tϕk ] one has uk

t ∈ Uα(ϕ). This assumption (on Nα ) is not

restrictive since for the uniqueness of solutions we have ϕk = ϕ while for the continuity with respect to initial data (see
below) we have ϕk → ϕ in C .

Remark 11. It is important to notice that we take any solution from the set of solutions of IVP (1), (4) with the initial
function ϕ (and denote it by u(t)) and take any solution from the set of solutions of IVP (1), (4) with the initial function
ϕk (and denote it by uk(t)) i.e. the values tϕ, tϕk may depend on the choice of two solutions.

Hence (16) implies that for all τ ∈ [0, t1], with t1 � min{tϕ; tϕk ; 3
4 η(ϕ)} one gets τ − η(uτ ) � 0, τ − η(uk

τ ) � 0 and

u(τ − η(uτ )) = ϕ(τ − η(uτ )), u(τ − η(uk
τ )) = ϕ(τ − η(uk

τ )). Hence, see (15) and properties (2), (5),

Jk
2(t1) � LB

t1∫
0

∥∥ϕ(
τ − η

(
uk

τ

)) − ϕ
(
τ − η(uτ )

)∥∥dτ � LB L

t1∫
0

∣∣η(
uk

τ

) − η(uτ )
∣∣dτ

� LB LLηt1 max
s∈[−r,t1]

∥∥uk(s) − u(s)
∥∥.

Finally, we get (see the last estimate and (14))(
1 − LBt1[1 + LLη]) max

s∈[−r,t1]
∥∥uk(s) − u(s)

∥∥ �
∥∥ϕk − ϕ

∥∥
C .

Choosing small enough t1 > 0 (to have 1 − LBt1[1 + LLη] > 0) i.e.

t1 ≡ min

{
tϕ; tϕk ; 3

4
η(ϕ);q

(
LB [1 + LLη])−1

}
for any fixed q ∈ (0,1), (17)

we get

max
s∈[−r,t1]

∥∥uk(s) − u(s)
∥∥ �

(
1 − LBt1[1 + LLη])−1∥∥ϕk − ϕ

∥∥
C . (18)

It is easy to see that (18) particularly implies the uniqueness of mild solutions to I.V.P. (1), (4) in case when ϕk = ϕ .
It gives us the possibility to define the evolution operator St : C → C by the formula Stϕ ≡ ut , where u(t) is the

unique mild solution of (1), (4) with initial function ϕ .
Our next goal is to prove that pair (St , C) constitutes a dynamical system (see the properties (1)–(4) as they are for-

mulated in Theorem 1). As in [31, p. 3981], properties 1, 2 are consequences of the uniqueness of mild solutions. Property 3
is given by Proposition 1 since the solution is a continuous function.

Let us prove property 4. We consider any sequence {ϕk}∞k=1 ⊂ C , which converges (in space C ) to ϕ . Denote by uk(t) the
(unique!) mild solution of (1), (4) with the initial function ϕk and by u(t) the (unique!) mild solution of (1), (4) with the
initial function ϕ .

One could think that (18) already provides the continuity with respect to initial data, but there is an important technical
property used in developing (18), i.e. the choice of t1 (see (17) and Remark 11). In contrast to the previous study, now we
have infinite set of functions {ϕk}∞k=1 ⊂ C , so it may happen that t1 = tk

1 → 0 when k → ∞.
We recall (see the text after (16)) that two time moments tϕ, tϕk > 0 have been chosen such that for all t ∈ (0, tϕ] one

has ut ∈ Uα(ϕ) and for all t ∈ (0, tϕk ] one has uk
t ∈ Uα(ϕ). Now our goal is to show that an infinite number of moments tϕ ,

{tϕk }∞k=1 could be chosen in such a way that

t2 ≡ inf{tϕ, tϕ1 , tϕ2 , . . . , tϕk , . . .} > 0 and ut, uk
t ∈ Uα(ϕ) for all t ∈ (0, t2].

To get this, we use the standard proof of the existence of a mild solution by a fixed point argument (see e.g. [45, p. 46,
Theorem 2.1]). More precisely, let U be an open subset of C and F̃ : [0,b] × U → L2(Ω) be continuous. Here we use
notations of [45, p. 46] chosen as follows. Constants δ > 0 and N > 0 are such that ‖ F̃ (ψ)‖ � N for all ψ ∈ Bδ(ϕ) ≡ {ψ ∈ C :
‖ψ − ϕ‖C � δ}. Since the operator Ã is positive we use ‖e− Ãt‖ � M = 1 for all t � 0. The time moment t′ < r is chosen so
that if 0 � t � t′ then ‖ϕ(t + θ) − ϕ(θ)‖ < δ/3 for all θ ∈ [−r,0] and ‖e− Ãtϕ(0) − ϕ(0)‖ < δ/3. Set t3 ≡ min{t′;b; δ/(3N); δ}
and Y1 ≡ {y ∈ C([−r, t3]; L2(Ω)): y(0) = ϕ(0))}. For ϕ ∈ C and any y ∈ Y1 we consider the extension function ŷ as follows

ŷ(s) ≡
[

ϕ(s) for s ∈ [−r,0];
y(t) for s ∈ (0, t ].
3
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Let Y2 ≡ {y ∈ Y1: ŷt ∈ Bδ(ϕ) for t ∈ [0, t3]}. Consider a mapping G on Y2 as follows

G(y)(t) ≡ e− Ãtϕ(0) +
t∫

0

e− Ã(t−τ ) F̃ ( ŷτ )dτ .

One can check (see [45, pp. 46, 47, Theorem 2.1]), that G maps Y2 into Y2. The solution is given by a fixed point y = G(y).
For our goal it is sufficient to choose δ � α and t2 � t3 to get ut , uk

t ∈ Uα(ϕ) for all t ∈ (0, t2]. Here we use ϕk instead of ϕ
when necessary. The crucial point here is the possibility to choose t′ (and hence t3 and t2) independent of k ∈ N . The choice
of t′ < r so that if 0 � t � t′ then ‖ϕ(t + θ) − ϕ(θ)‖ < δ/3 and ‖ϕk(t + θ) − ϕk(θ)‖ < δ/3 for all k ∈ N and all θ ∈ [−r,0]
is possible due to the convergence of ϕk (to ϕ in C ). Since the points of a convergent sequence form a precompact set in
C they are equicontinuous. Now estimate (18) can be applied to our case and this completes the proof of property (4) and
Theorem 2. �

Discussing assumptions of Theorem 2, let us present a constructive example of the function Θ� which satisfies assump-
tion (2). Consider any compact and convex set KC ⊂ C LL ⊂ C . For example, for any compact and convex set K ∈ L2(Ω),
the set {ϕ ∈ C LL: ∀θ ∈ [−r,0],ϕ(θ) ∈ K } is compact (by Arzela–Ascoli theorem) and convex. First, constructing Θ� , we set
Θ�(ϕ) = 0 for all ϕ ∈ KC . Second, we take any p ∈ (0, r] and set Θ�(ϕ) = p for all ϕ ∈ C such that distC (ϕ, KC ) � 1. Third,
for any ϕ ∈ C such that distC (ϕ, KC ) ∈ (0,1) we set Θ�(ϕ) = p · distC (ϕ, KC ) ∈ (0, p). By construction, Θ� satisfies (2).

As for asymptotic behavior, we study of the long-time behavior of the dynamical system (St , C), constructed in Theo-
rems 1 and 2. Similar to [31, Theorem 2] we have the following result.

Theorem 3. Assume all the assumptions of Theorem 1 or 2 are satisfied and additionally mapping B (see (2)) is bounded. Then the
dynamical system (St , C) has a compact global attractor A which is a compact set in all spaces Cδ ≡ C([−r,0]; D(Aδ)), ∀δ ∈ [0, 1

2 ).

Lemma. Let all the assumptions of Theorem 2 be satisfied and the mapping B is bounded. Then there exists a constant L̃ > 0 such that
the global attractor A (see Theorem 3) is a subset of C LL̃ (cf. condition (2) in Theorem 2).

Remark 12. Lemma gives a possibility to consider system (1), (4) with a state-dependent delay function η which does not
ignore values of its argument ϕ for all points ϕ ∈ A.

Proof of Lemma. Consider any solution ut ∈ A. Let us denote f (t) ≡ F (ut) and prove that f is Hölder continuous.
We recall that for a dissipative dynamical system [37], (St , C) we have a set B1 ⊂ C (a ball B1 ≡ {ψ: ‖ψ‖C � R0}) such

that for all ϕ ∈ C there exists tϕ � 0 such that Stϕ ∈ B1 for all t � tϕ (for more details, see e.g. [6,37]). We will need the
following property, proved in [31, estimate (29) with δ = 0]∥∥u(t1) − u(t2)

∥∥ � L0|t1 − t2|1/2 (19)

for any solution, belonging to B1 (in particular, for any solution belonging to the attractor A ⊂ B1).
In (19) the constant L0 is independent of solution u.
One can check that∥∥ f (t1) − f (t2)

∥∥ � LB · ∥∥u
(
t1 − η(ut1)

) − u
(
t2 − η(ut2)

)∥∥. (20)

Using (19), the Lipschitz property of η (see (5) in Theorem 2), we get from (20) that∥∥ f (t1) − f (t2)
∥∥ � LB L0 · ∣∣t1 − η(ut1) − (

t2 − η(ut2)
)∣∣1/2

� LB L0 · (|t1 − t2| +
∣∣η(ut1) − η(ut2)

∣∣)1/2

� LB L0 · (|t1 − t2| + Lη‖ut1 − ut2‖
)1/2

� LB L0 · (|t1 − t2| + LηL0|t1 − t2|1/2)1/2

� LB L0 · (|t1 − t2|1/2 + (LηL0)
1/2|t1 − t2|1/4).

Finally, for |t1 − t2| < 1 one has∥∥ f (t1) − f (t2)
∥∥ � LB L0 · {1 + (LηL0)

1/2}|t1 − t2|1/4. (21)

Let us consider any ψ ∈ A. It is well known that the attractor consists of whole trajectories i.e. us ∈ A, ∀s ∈ R . We take
any t0 > r > 0 and get ϕ ∈ A such that St0ϕ = ψ . Consider the variation of constants formula for parabolic equations (with
Ã ≡ A + d · E , see (8))

u(t) = e− Ãtϕ(0) +
t∫

e− Ã(t−τ ) F (uτ )dτ . (22)
0
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To estimate the first term in the above formula (22) we first prove that∥∥e− Ãt1 v − e− Ãt2 v
∥∥ � 1

et1
|t1 − t2| · ‖v‖, 0 < t1 < t2. (23)

Since A and Ã are densely-defined self-adjoint positive linear operators in L2(Ω) with compact resolvent we consider the
orthonormal basis (of L2(Ω)) {ek}∞k=1 which consists of eigenvectors of the operator Ã, so

Ãek = λkek, 0 < λ1 < λ2 < · · · < λk → +∞.

Consider for any v ∈ L2(Ω) and any t2 > t1 > 0,

∥∥e− Ãt1 v − e− Ãt2 v
∥∥2 =

∞∑
k=1

(
e−λkt1 − e−λkt2

)2
v2

k , (24)

where vk ≡ 〈v, ek〉L2(Ω) . It is easy to see that for any μ > 0 one has∣∣e−μt1 − e−μt2
∣∣ � |t2 − t1| · max

τ∈[t1,t2]μe−μτ = |t2 − t1| · μe−μt1

and supk∈N |e−λkt1 − e−λkt2 | � |t2 − t1| · supμ>0 μe−μt1 = 1
et1

|t1 − t2|. We substitute this and ‖v‖2 = ∑∞
k=1 v2

k into (24) to get
(23).

The estimate (23) gives the uniform (w.r.t. ϕ ∈ A) Lipschitz property of the first term e− Ãtϕ(0) in (22) for t > t0 > 0. As
discussed (see the text before (19)), we have ‖ϕ(0)‖ � R0 for all ϕ ∈ A due to the dissipativeness of the dynamical system
(St; C) (for more details, see [31, estimate (23)]).

To prove that the second term in (22) is Lipschitz for t > t0 we need

Definition 2. (See [15, Definition 1.3.1].) We call a linear operator A in a Banach space X a sectorial operator if it is
a closed densely defined operator such that, for some ψ in (0,π/2) and some M � 1 and real a, the sector

Sa,ψ = {
λ: ψ �

∣∣arg(λ − a)
∣∣ � π, λ 
= a

}
is in the resolvent set of A and∥∥(λ − A)−1

∥∥ � M/|λ − a| for all λ ∈ Sa,ψ .

to use the following:

Proposition 2. (See [15, Lemma 3.2.1].) Let Ã be a sectorial operator in Banach space X. Assume function f : (0, T ) → X is locally
Hölder continuous and

∫ ρ
0 ‖ f (s)‖X ds < ∞ for some ρ > 0. Denote by Φ(t) ≡ ∫ t

0 e− Ã(t−s) f (s)ds for t ∈ [0, T ). Then function Φ(·) is
continuous on [0, T ), continuously differentiable on (0, T ), Φ(t) ∈ D( Ã) for 0 < t < T and dΦ(t)/dt + ÃΦ(t) = f (t) for 0 < t < T
and Φ(t) → 0 in X as t → 0+.

Remark 13. Our operator Ã is sectorial since any self-adjoint, densely defined operator bounded from below in a Hilbert
space is sectorial (see e.g. [15, Example 2, p. 26]).

We apply the above Proposition 2 to f (t) ≡ F (ut) and use (21). The property
∫ ρ

0 ‖ f (s)‖X ds < ∞ for some ρ > 0 follows
from the dissipativeness ‖u(t)‖ � R0, the continuity of F : C → L2(Ω) and of the continuity of the mild solution u. One
uses the continuous differentiability of Φ on [t0 − r, t0] ⊂ (0, T ) which implies that maxt∈[t0−r,t0] ‖Φ ′(t)‖ ≡ MΦ;1 < ∞. In
our case Φ represents the second term in (22) which is proved to be Lipschitz continuous with Lipschitz constant MΦ;1
independent of u.

We notice that the independence MΦ;1 of solutions belonging to the attractor follows from the detailed proof of Propo-
sition 2 [15, Lemma 3.2.1] using the boundedness of A ⊂ C .

On the other hand one can also use the following:

Proposition 3. (See [15, Lemma 3.5.1].) Let Ã be a sectorial operator in the Banach space X and f : (0, T ) → X satisfy∥∥ f (t) − f (s)
∥∥ � K (s)(t − s)γ for 0 < s < t < T < ∞,

where K : (0, T ) → R is continuous with
∫ T K (s)ds < ∞.
0
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Then for every β ∈ [0, γ ) the function

Φ : (0, T ) � t �→
t∫

0

e− Ã(t−s) f (s)ds ∈ Xβ ≡ D
(

Ãβ
)

is continuously differentiable with∥∥∥∥dΦ(t)

dt

∥∥∥∥
β

� Mt−β
∥∥ f (t)

∥∥ + M

t∫
0

(t − s)γ −β−1 K (s)ds (25)

for 0 < t < T . Here M is a constant independent of γ ,β, f (·).

For the definition and properties of spaces Xβ we refer to [15]. In our case we use Proposition 3 with γ = 1
4 , K (s) ≡

LB L0 ·{1+(LηL0)
1/2} (see (21)) and β = 0 (it implies Xβ = X0 = L2(Ω)). The boundedness of the global attractor implies that

‖ f (t)‖ � C with C independent of solutions. Hence (25) gives the uniform boundedness of ‖ dΦ(t)
dt ‖ � Ĉ for t ∈ [t0 − r, t0] ⊂

R+ and guarantees the independence MΦ;1 from solutions. The proof of Lemma is complete. �
Remark 14. One can also easily extend the method developed here to the case of non-autonomous nonlinear delay
terms, for example, using another nonlinear function b̂ : R × R → R (see Remark 2) instead of b to have ( F̂ (t, ut))(x) =
b̂(t, u(t − η(ut), x)) or ( F̂ (t, ut))(x) = ∫

Ω
b̂(t, u(t − η(ut), y)) f (x − y)dy in Eq. (1).

As an application we can consider the diffusive Nicholson’s blowflies equation (see e.g. [36]) with the state-dependent
delay. More precisely, we consider Eq. (1) where −A is the Laplace operator with the Dirichlet boundary conditions, Ω ⊂ Rn0

is a bounded domain with a smooth boundary, the function f (see Remark 2) can be, for example, f (s) = 1√
4πα

e−s2/4α , as

in [35] (for the non-local in space nonlinearity) or Dirac delta-function to get the local in space nonlinearity, the nonlinear
function b is given by b(w) = p · we−w . Function b is bounded, so for any continuous delay function η, satisfying (Ĥ), the
conditions of Theorems 1, 2 are valid. As a result, we conclude that the initial value problem (1), (4) is well-posed in C and
the dynamical system (St , C) has a global attractor (Theorem 3).

As another application we propose the diffusive model of Hematopoiesis with the state-dependent delay:

∂u(t, x)

∂t
= �u(t, x) − du(t, x) + βu(t − η(ut), x)

1 + um(t − η(ut), x)
, (t, x) ∈ Ω, β ∈ R, m � 1

with the Neumann boundary conditions ∂u(t,x)
∂n = 0, x ∈ ∂Ω . For the case of constant delay η(ut) ≡ τ > 0 see [43]. The model

of Hematopoiesis when u does not depend on the spatial variable x ∈ Ω was first proposed by Mackey and Glass [21]. One
can easily check that the nonlinearity B (see (2)), given by B(v) = βv(1 + vm)−1, is bounded and globally Lipschitz provided
m = 2k, k ∈ N.

In conclusion, we notice that in the current article the emphasis is on the delay term and its properties, not on the partial
differential operator. We believe that the type of state-dependent delay studied here is important for partial differential
equations modeling real world phenomena. We hope that the approach developed here to study the state-dependent delay
will be successfully used for other delay PDEs in spite of the necessity to use essentially different methods to work with
other partial differential operators/ boundary value problems.
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