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Fundamental to the analytic K-homology theory of G. Kasparov [7, 8] is the
construction of the external product in K-homology

Ki (A)�K j (B) � Ki+ j (A�B).

This construction is modeled on the ``sharp product'' of elliptic operators over
compact manifolds [2], and involves some deep functional-analytic considerations
which at first sight may appear somewhat ad hoc.

A different approach to Kasparov's theory has recently been expounded by
N. Higson [5], following the lead of W. Paschke [9]. He constructs a ``dual
algebra'' D(A) for any separable C*-algebra A, in such a way that Ki (A) is canonically
identified with the ordinary K-theory of the dual algebra, K1&i (D(A)). Higson's
treatment covers the exactness and excision properties of K-homology, but stops
short of the Kasparov product; it is natural to ask whether the product itself can
be given a ``dual'' interpretation, in terms of the external product in ordinary K-theory.
It is the purpose of this article to show that this can indeed be done.

A more leisurely exposition of K-theory and K-homology from this perspective
will appear in [6]. � 1998 Academic Press

1. K-THEORY OF GRADED C*-ALGEBRAS

In this section we briefly review and reformulate a construction of K-theory
for graded C*-algebras, due to van Daele [12, 13]. We will consider Z�2-
graded complex C*-algebras. The whole discussion also applies to the real
case with only minor changes.

(1.1) Definition. A supersymmetry in a graded, unital C*-algebra is an
odd, self-adjoint, unitary element. We let SS(A) denote the space of super-
symmetries in A; it is equipped with the topology induced by the C*-norm.

We will confine our attention to those unital C*-algebras which contain
supersymmetries. From the point of view of K-theory this is no loss, as
there is a simple stabilization (see [12]) which converts any given C*-algebra
to a K-theoretically equivalent one containing supersymmetries. In fact,
this stabilization amounts to the (graded) tensor product with the Clifford
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algebra C1, 1 (which is just the algebra of 2_2 matrices equipped with the
``diagonal and off-diagonal'' grading).

Let the unital C*-algebra A be given. Let V(A) denote the disjoint union

V(A)= '
k # N

?0SS(Mk(A)).

Then V(A) is a semigroup, in fact a commutative semigroup, under the
operation of direct sum. Notice that, by construction, V(A) comes equipped
with a natural semigroup-homomorphism V(A) � N.

(1.2) Definition. We let G(A) be the Grothendieck group associated
to the semigroup V(A).

The semigroup homomorphism V(A) � N gives rise to a group homo-
morphism d: G(A) � Z. It is easily seen that van Daele's definition of K-theory
is equivalent to the following:

(1.3) Definition. For a unital C*-algebra A (containing supersymmetries),
we define K1(A)=Ker(d: G(A) � Z).

The associated short exact sequence of abelian groups

0 � K1(A) � G(A) � Z � 0

is of course split (since Z is free), but there is in general no canonical choice
of splitting. Such a choice of splitting amounts to the choice of a ``reference
supersymmetry'' in A, and allows us to view K1(A) as a direct summand
of G(A). This is the approach taken in [12], but it is then necessary to
investigate the dependence of the definition on the choice of reference super-
symmetry. For this reason we prefer the form of the general definition given
above. It will however prove to be the case that the dual algebras in which
we are interested are equipped with a canonical choice of reference super-
symmetry.

Consider the homomorphism G(A) � G(A�A) induced by the diagonal
map a [ (a, a). This homomorphism is split injective, and it is not hard to
see that its cokernel is canonically isomorphic to K1(A); one has a short
exact sequence

0 � G(A) � G(A�A) � K1(A) � 0 (V)

where the quotient map sends a supersymmetry (F, F $) over A�A to the
formal difference [F]&[F $] in K1(A).

In [12], after the definition of K1 has been extended in the usual way to
non-unital algebras, the higher K-theory groups Kn(A), n�2, are defined

287KASPAROV PRODUCTS AND DUAL ALGEBRAS



File: DISTL2 322403 . By:CV . Date:21:04:98 . Time:08:35 LOP8M. V8.B. Page 01:01
Codes: 2524 Signs: 1600 . Length: 45 pic 0 pts, 190 mm

by suspension: Kn(A)=K1(C0(Rn&1 �A). In terms of the groups G, we
may give an equivalent definition as follows.

(1.4) Proposition. Let A be a unital C*-algebra. Put Gn(A)=
G(C(Sn&1)�A). Then there is a split short exact sequence

0 � G(A) � Gn(A) � Kn(A) � 0

where the map G(A) � Gn(A) is induced by the inclusion of A as constant
A-valued functions on the sphere. Equivalently, there is a split short exact
sequence

0 � Kn(A) � Gn(A) � G(A) � 0

where the map Gn(A) � G(A) comes from evaluation at the north pole.

Notice that the exact sequence (V) is the case n=1 of this result. Finally,
we may give one last reformulation. Let Dn denote the n-disc, and note the
standard inclusion Sn&1 � Dn. It is clear that G is a homotopy functor,
and so, since Dn is contractible, G(C(Dn)�A)$G(A). Thus we obtain, by
rearranging the exact sequence above,

(1.5) Proposition. The group Kn(A) is the cokernel of the natural split
injection

G(C(Dn)�A) � G(C(S n&1)�A)

induced by the restriction of functions from Dn to S n&1.

In our discussion of products on higher K-homology groups we will also
need to make use of the following fact.

(1.6) Proposition. The group Kn+m+1(A) is (canonically isomorphic to)
the kernel of the natural map

G(C(Sm_S n)�A) � Gm+1(A)�Gn+1(A)

induced by the inclusions (at the north pole) of the two factors of the product,
Sm/�S m_Sn and S n/�S m_S n.

Proof. We need a form of excision for the G-groups (which may, for
instance, be deduced from the corresponding result for the K-groups, or
proved directly): if Y is a retract of X, then the kernel of the split surjection
G(C(X)�A) � G(C(Y)�A) is isomorphic to the kernel of the split
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surjection G(C(X�Y)�A) � G(A). Now S m is a retract of S m_S n, and S n

is a retract of (Sm_Sn)�Sm; moreover, ((Sm_Sn)�Sm)�Sn=Sm 7Sn=Sm+n.
The result follows from the second part of 1.4. K

This argument comes from [1, Corollary 2.4.8].

2. THE JOIN CONSTRUCTION AND THE EXTERNAL PRODUCT

Let X and Y be polyhedra, embedded in Rm and Rn respectively. We
regard both as embedded in Rm+n+1, by embedding Rm and Rn as skew
affine subspaces of Rm+n+1. The (external) join X V Y of X and Y is the
polyhedron in Rm+n+1 made up of the union of all line segments from
points of X to points of Y (see [11], Chapter 2). As a topological space,
X V Y is the quotient of X_Y_[0, 1] ? X ? Y by the equivalence relation
which identifies every point (x, y, 0) in the product with the corresponding
x # X, and every point (x, y, 1) in the product with the corresponding
y # Y. We note from [11] the standard calculations

Dp V Dq=D p+q+1, D p V Sq=D p+q+1, S p V Sq=S p+q+1

where D p denotes the p-disc and S p denotes the p-sphere.
We want to mimic this construction in C*-algebra theory. Let A and B

be C*-algebras. For definiteness, let us say that we will take the tensor
product A�B in the spatial (minimal) C*-norm; if A and B are graded we
of course take the graded tensor product, but we think it unnecessary to
introduce a special notation.

(2.1) Definition. The join of the unital C*-algebras A and B is the
C*-algebra A V B defined as follows: A V B consists of those continuous
functions f : [0, 1] � A�B, such that f (0) # A�1 and f (1) # 1�B. The
algebra A V B is equipped with the norm and involution it inherits as a
closed subalgebra of C[0, 1]�A�B.

It should be apparent that, for algebras of continuous functions on
polyhedra X and Y as above, C(X) V C(Y)=C(X V Y). The notation V is
also often used for free products of C*-algebras, but we will not follow this
usage here.

We will obtain products, both in K-theory and K-homology, from the
following fundamental construction. Pick functions s, c: [0, 1] � [0, 1]
such that s(0)=0, c(1)=0, and s2+c2=1; as suggested by the notation,
a natural choice is s(x)=sin ?x�2, c(x)=cos ?x�2, but others are possible.
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(2.2) Definition. Let A and B be unital (graded) C*-algebras. Then
there is defined an external product homomorphism

_: G(A)�G(B) � G(A V B)

by

[F]� [G] [ c�F�1+s�1�G.

The homomorphism so defined is independent of the choice of functions s
and c.

The verification that we do obtain a well-defined homomorphism in this
way is straightforward.

Let us use this construction to define the K-theory external product.
Notice that if A, A$, B and B$ are C*-algebras, then there is an inclusion

(A$�A) V (B$�B)/�(A$ V B$)�A�B.

In particular, for polyhedra X and Y, we have an inclusion

(C(X)�A) V (C(Y)�B)/�C(X V Y)�A�B.

If X=Sm&1, Y=S n&1, then X V Y=sm+n&1. Using the inclusion above
together with the external product of 2.2 we get a product

Gm(A)�Gn(B) � Gm+n(A�B).

Since the join of a sphere and a disc is a disc, we find that if x # Gm(A)
extends to an element of G(C(Dm)�A), then x_y, for any y # Gn(B),
extends to an element of G(C(Dm+n)�A�B). Thus, by 1.5, the product
on the G-groups passes to a product on K-theory,

Km(A)�Kn(B) � Km+n(A�B).

Let us verify that this description of the external product agrees with that
given by Atiyah in [1]. Let A=C(X), B=C(Y). Recall that the group

Km(A)=K&m(X)=K 0(X_Rm)

is generated by complexes of vector bundles over X_Rm, which are exact
outside a compact set; by ``rolling up,'' any such complex is equivalent to
a complex of length two. Such a complex may in turn be thought of as a
``cycle'' consisting of a Z�2-graded vector bundle over X_Rm, equipped
with an odd self-adjoint endomorphism D such that D2>0 outside a
compact set. In terms of this definition of K-theory, it is easy to describe
Atiyah's external product: given (VX , DX) over X_Rm and (VY , DY) over
Y_Rn, their external product is given by the (external, graded) tensor
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product bundle V=VX �VY over X_Y_Rm+n, and the endomorphism
D=DX �1+1�DY , whose square is positive outside a compact set.

The connection with our description of Km(A)=K1(C(Sm&1)�A�C1, 1)
is now simple, and is as follows. An element of Km(A) is given by a function
FX : X_Sm&1 � SS(Mk(C1, 1)) for some k. To this function we associate
the (trivial) graded vector bundle VX=Ck �Ck on X_Rm, together with
the endomorphism DX (x, r, %)=rF(x, %), where we have used polar coor-
dinates (r, %), r # R+, % # Sm&1, on Rm. Suppose that FX and FY are given,
construct the associated cycles (VX , DX) and (VY , DY), and form their
external product (V, D) as described above. We may coordinatise z # Sm+n&1

/Rm+n by (x, y, %), where x # S m&1, y # S n&1, % # [0, ?�2] and z=x cos %
+ y sin %; this choice of coordinates expresses the identity Sm+n&1=
Sm&1 V S n&1. Clearly then, for z # Sm+n&1,

D(z)=cos %(DX �1)+sin %(1�DY)

and thus (V, D) is the cycle corresponding to our definition of the external
product F=F1 _F2 . This shows that our definition agrees with Atiyah's.

3. DUALITY AND K-HOMOLOGY THEORY

Now we recall the rudiments of the ``duality'' approach to K-homology,
as described in [4, 5]. It makes for a small simplification to discuss K-homo-
logy only for ungraded C*-algebras, but the discussion can in fact be carried
through in general (cf. [6]).

Let A be an ungraded separable C*-algebra (unital or not) and let
_: A � B(H) be a representation of A on a Hilbert space. We make the
direct sum H=H�H into a graded Hilbert space in the natural way, and
allow A to act by the direct sum \=_�_.

We define D\(A) to be the graded C*-subalgebra of B(H) consisting of
those operators T such that T\(a)&\(a) T is compact for all a # A. We
define KD\(A) to be the ideal in D\(A) consisting of those T for which
T\(a) and \(a) T are both compact. And we define QD\(A) to be the
quotient:

QD(A)=D(A)�KD(A).

Except for the replacement of H by H=H�H, which has the effect of
tensoring with C1, 1 and therefore does not change the K-theory, these are
exactly the dual algebras introduced in [5], where D\(A) was denoted
D\(A), and KD\(A) was denoted D\(A, A).

Let F be a supersymmetry in QD\(A). We may lift it to an operator
(which we will also denote by F ) in D\(A), having the property that
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(F&F*) \(a) and (F 2&1) \(a) are compact for all a # A. It follows that
the triple (H, F, \) is a Fredholm module over A, that is a ``cycle'' for
Kasparov's [7] K-homology group K 0(A). By this construction we obtain
a homomorphism

:\ : K1(QD\(A)) � K0(A).

The following fact explains our interest in the construction.

(3.1) Proposition. If the representation \ is sufficiently large, then :\ is
an isomorphism; and the quotient map K1(D\(A)) � K1(QD\(A)) is also an
isomorphism.

Proof. See [5, Theorem 1.5]. We also refer to [5] for a precise explanation
of what is meant by ``sufficiently large'' in the statement of the proposition. K

Because of this proposition, we will sometimes omit explicit mention of
the sufficiently large representation \ from our notation for the dual algebras.
It is worth noting that, for the dual algebra QD(A) associated to a sufficiently
large representation, there is a canonical splitting of the short exact sequence

0 � K1(QD(A)) � G(QD(A)) � Z � 0

which defines the group K1 . Recall that a Fredholm module (H, F, \) is called
degenerate if F2=1, F=F*, and F\(a)=\(a) F for all a # A. Analogously, we
will call a supersymmetry F # D\(A) degenerate if it commutes ``on the
nose'' with \(A). An example of such a degenerate supersymmetry is the
matrix ( 0

1
1
0).

Now a simple Eilenberg swindle argument gives the following

(3.2) Lemma. All degenerate supersymmetries in D\(A), for \ sufficiently
large, give rise to the same element of G(D\(A)).

We can therefore split the exact sequence, by sending the generator of Z
to the canonical degenerate class in G(QD(A)). This allows us to regard
K1(QD(A)) as a summand in G(QD(A)): thus every supersymmetry in
QD(A) gives rise to a K-theory class, with degenerates giving rise to the
zero class; this is the beginning of the construction of an inverse map from
K-homology to the K-theory of the dual algebra.

Finally we recall the statement of the Kasparov technical theorem
[7, 8, 3]:

(3.3) Theorem. Let H be a separable Hilbert space and let E1 and E2 be
separable C*-subalgebras of B(H) which are ``essentially orthogonal,'' that
is, E1 } E2 �K. Let 2 be a separable linear subspace of B(H) which derives
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E1 , in the sense that [2, E1]�E1 . Then there is a positive operator X # B(H)
with &X&�1 which essentially separates E1 and E2 and essentially commutes
with 2, that is:

(i) (1&X) } E1 �K;

(ii) X } E2 �K;

(iii) [X, 2]�K.

The result also holds in the graded case, where we interpret [ . , . ] as graded
commutator; in this case the operator X may be taken to be even.

4. THE KASPAROV PRODUCT IS THE DUAL
OF THE EXTERNAL PRODUCT

In this section we investigate the join of two dual algebras. Let A1 and
A2 be (ungraded) separable C*-algebras, and let \1 and \2 be representa-
tions of A1 and A2 on graded Hilbert spaces H1 and H2 , as in the previous
section. Let \=\1 �\2 be the tensor product representation of A=A1 �A2

on H=H1 �H2 (graded tensor product!). Let Dj ( j=1, 2) be separable
C*-subalgebras of D\j

(Aj). We will construct a C*-homomorphism

.: D1 V D2 � QD\(A). (-)

There is a choice involved in the construction of ., but we will see that up
to homotopy the result is independent of the choice.

The construction (which is modeled on Kasparov's, see [7]) begins by
an application of the technical theorem. Define E1=K(H1)�\2(A2)+K(H)
and E2=\1(A1)�K(H2)+K(H), and let 2 be the closed linear span of
(\1(A1)+D1)�1 and 1� (\2(A2)+D2). Then E1 , E2 and 2 satisfy the
hypotheses of the graded technical theorem; let X be an operator of the
kind produced by the theorem. (Note that the space of suitable operators
X is affine, and hence connected.)

Recall that D1 V D2 is a subalgebra of C([0, 1])�D1 �D2 . Since the
spectrum of X is contained in [0, 1], we may define an operator f (X) # B(H)
for each f # C[0, 1]. Moreover, by construction X (and therefore each f (X))
commutes modulo compacts with D1 �D2 . It follows that the formula

.: f �d1 �d2 [ [ f (X)�d1 �d2]

gives a well-defined C*-homomorphism from D1 V D2 to the Calkin algebra
Q(H). We need to show that the image of this homomorphism is contained
in QD\(A).
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For this purpose we consider separately the compactness of [.( f �d1

�d2), \(a)] in three cases:

(i) f (x)=x, and d1=1;

(ii) f (x)=1&x, and d2=1;

(iii) f (0)= f (1)=0.

The join algebra is spanned by generators of these three sorts, so it is
enough to consider them separately.

In the first case, we need to show that X(l�d2) commutes compactly
with \(a); it is enough to consider a=a1 �a2 . Then (using t to denote
equality modulo compact operators)

[X(1�d2), \(a)]tX(\1(a1)� [d2 , \2(a2)])t0

using the second and third properties of X provided by the technical
theorem, and the fact that d2 commutes compactly with \2(a2). This proves
the first case, and the second is entirely analogous.

As for the last case, note that any function f with f (0)= f (1)=0 can be
uniformly approximated by functions of the form x [ x(1&x) g(x), with g
continuous. The operator g(X) commutes (modulo compacts) with the image
of \. Consequently, it is sufficient to prove the third case for f (x)=x(1&x).
But now

X(1&X) d1 �d2 t(X1�d2) } ((1&X) d1 �1)

is equal (modulo compacts) to the product of two elements of D\(A), so
itself must belong to D\(A).

We have now completed the construction of the homomorphism .
advertised in equation (-). We note that the only element of indeterminacy
in the construction lay in the choice of the operator X. Since any two
choices of X are linearly homotopic, we see that . is uniquely determined
up to homotopy, as was previously claimed.

Since . is determined up to homotopy, we obtain from it a homo-
morphism on the level of the G-groups

G(D1 V D2) � G(QD\(A))

which is independent of all choices. Composing this with the external
product of 2.2 we obtain a homomorphism

G(D1)�G(D2) � G(QD\(A)).
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Finally, it is apparent that the G-group of any C*-algebra is the direct limit
of the G-groups of its separable subalgebras. We may therefore pass to the
direct limit to obtain a product homomorphism

_: G(D\1
(A1))�G(D\2

(A2)) � G(QD(A)). (�)

Now (3.1), for sufficiently large representations, the K-homology group
K0(Ai) is isomorphic to K1(D(Ai)), that is the kernel of the ``dimension''
map d: G(D(Ai)) � Z. It is evident that d(x_y)=d(x) d( y), so the product
(�) on the G-groups passes to a product on K-homology. The following is
the main observation of this paper.

(4.1) Theorem. The product on K-homology, obtained from the external
product on K-theory of the dual algebras by the procedure outlined above,
coincides with the Kasparov product.

The proof is immediate. Indeed, following through the construction above,
we see that it gives as the product of two supersymmetries Fj # D\j

(Aj), the
supersymmetry

F=(1&X2)1�2 F1 �1+X1�F2

in QD\(A). But this is exactly Kasparov's expression for the ``sharp product''
of two Fredholm modules.

Remark. One can also give a similar treatment of the ``slant product''
between K-homology and K-theory, but we will not do this here.

Finally let us treat briefly the case of products on higher K-homology:

K&n1(A1)�K&n2(A2) � K&n1&n2(A1 �A2). (VV)

Let Dj be separable subalgebras of QD\j
(Aj) as above. Then K&nj (Aj) is

the direct limit (taken over separable subalgebras Dj) of the groups

Hj=Ker(Gnj+1(Dj) � G(Dj)).

There is an inclusion of algebras

(C(S n1)�D1) V (C(Sn2)�D2) � C(Sn1_S n2)� (D1 V D2).

Using 1.6 this gives us a product

H1 �H2 � Kn1+n2+1(D1 V D2) � Kn1+n2+1(QD\(A))=K &n1&n2(A).

Taking the direct limit over separable Dj , as before, we obtain the product
(VV) that was required.
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Remark. It is interesting to contrast the use of the join construction in
the higher external product in K-theory (Section 2) and in K-homology
(above). In K-theory the join parameter t # [0, 1] becomes an extra ``spatial''
variable (a suspension coordinate). In K-homology the join parameter is
represented ``spectrally'' by the extra operator X. Compare [10] for a related
discussion.
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