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Summary  The  number  of  entries  in  the  sequence  databases  continues  to  increase  exponen-
tially —  the  UniProt  database  is  increasing  with  a  doubling  time  of  ∼4  years  (2%  increase/month).
Approximately  50%  of  the  entries  have  uncertain,  unknown,  or  incorrect  function  annotations
because these  are  made  by  automated  methods  based  on  sequence  homology.  If  the  potential  in
complete genome  sequences  is  to  be  realized,  strategies  and  tools  must  be  developed  to  facil-
itate experimental  assignment  of  functions  to  uncharacterized  proteins  discovered  in  genome
projects. The  Enzyme  Function  Initiative  (EFI;  previously  supported  by  U54GM093342  from  the
National Institutes  of  Health,  now  supported  by  P01GM118303)  developed  web  tools  for  visualiz-
ing and  analyzing  (1)  sequence  and  function  space  in  protein  families  (EFI-EST)  and  (2)  genome
neighbourhoods  in  microbial  and  fungal  genomes  (EFI-GNT)  to  assist  the  design  of  experimental
strategies for  discovering  the  in  vitro  activities  and  in  vivo  metabolic  functions  of  uncharacter-
ized enzymes.  The  EFI  developed  an  experimental  platform  for  large-scale  production  of  the
solute binding  proteins  (SBPs)  for  ABC,  TRAP,  and  TCT  transport  systems  and  their  screening
with a  physical  ligand  library  to  identify  the  identities  of  the  ligands  for  these  transport  sys-
tems. Because  the  genes  that  encode  transport  systems  are  often  co-located  with  the  genes
that encode  the  catabolic  pathways  for  the  transported  solutes,  the  identity  of  the  SBP  ligand

together with  the  EFI-EST  and  EFI-GNT  web  tools  can  be  used  to  discover  new  enzyme  functions

and new  metabolic  pathways.  T
novel pathway  for  ethanolamine
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Tools  and  strategies  for  discovering  novel  enzymes  and  meta

Introduction

More  than  20  years  have  passed  since  the  first  microbial
genome  sequencing  project,  for  Haemophilus  influenza  Rd,
was  completed,  providing  the  complete  set  of  sequences
for  the  1707  proteins  encoded  by  its  genome  (Fleischmann
et  al.,  1995).  Now,  the  number  of  protein  sequences  in  the
UniProt  database  (http://www.uniprot.org/)  exceeds  60M
and  is  increasing  at  the  rate  of  2%/month  (Fig.  1;  4  years  dou-
bling  time),  the  majority  of  the  sequences  are  obtained  from
microbial  genome  projects.  This  explosion  in  the  number
of  protein  sequences  provides  the  potential  for  discover-
ing  novel  enzymes  in  novel  metabolic  pathways,  a  boon  to
enzymologists,  chemical  biologists,  microbiologists,  and  sys-
tems  biologists.  However,  perhaps  50%  of  the  proteins  in
the  databases  have  incorrect,  uncertain,  or  unknown  func-
tions.  Therefore,  an  important  challenge  for  enzymology  is
to  devise  tools  for  mining  the  databases  for  novel  enzymes
and  experimental  strategies  for  determining  their  in  vitro
activities  and  in  vivo  metabolic/physiological  functions.

Indeed,  Dr.  Chaitan  Khosla  recently  identified  this  chal-
lenge  as  one  of  the  major  challenges,  and  opportunities,  for
contemporary  enzymology  (Khosla,  2015):

‘‘Enzyme  function  annotation.  It  has  long  been  appre-
ciated  that  assigning  function  to  enzymes  based  on
sequence  alone  is  difficult.  Although  enzymology  will
remain  a  predominantly  experimental  science  for  the
foreseeable  future,  one  cannot  avoid  a  sense  of  help-
lessness  when  one  considers  the  huge  (and  growing)
deficit  in  functionally  annotated  sequences.  By  now,
there  are  approximately  100  million  non-redundant  pro-
tein  sequence  entries  in  GenBank,  but  a  reliably  curated
protein  database  such  as  Swiss-Prot  contains  fewer  than
1  million  entries.  This  is  a  quintessential  ‘big  data’
problem,  where  the  rate  at  which  data  is  generated  con-
tinues  to  outpace  the  rate  at  which  it  is  curated.  It
is  unlikely  that  more  resource-intensive  curation  alone
can  solve  the  problem.  As  the  proverb  says,  this  may
be  a  situation  where  the  most  desirable  approach  will
involve  user-friendly  tools  that  teach  a  novice  how  to  fish
instead  of  serving  fish.  Such  tools  could  ideally  capture
the  essence  of  an  enzymologist’s  judgment  in  layers  of

increasing  sophistication,  depending  on  the  user’s  actual
needs.’’

Figure  1  Growth  of  the  UniProt  database.
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Sequence  homology  alone  usually  is  used  to  assign  the
n  vitro  activities  to  uncharacterized  enzymes;  indeed,  this
s  why  50%  of  the  proteins  in  the  sequence  databases  have
ncorrect  or  unknown  functions  (Schnoes  et  al.,  2009).  The
equence  databases,  UniProt  and  GenBank,  use  automated
rocedures  to  annotate  the  proteins  discovered  in  genome
rojects  (the  TrEMBL  database  in  UniProt)  the  function  asso-
iated  with  the  ‘‘closest’’  hit  in  the  database  is  assigned
s  the  function  of  the  newly  deposited  protein;  hence,
he  functions  often  are  incorrect.  To  solve  this  problem,
xperimentalists  require  tools  and  strategies  that  facilitate
nformed  mining  of  the  sequence  databases  as  well  as  facili-
ate  access  to  complementary  functional  information,  e.g.,
enome  context  in  the  case  of  microbial  proteins,  thereby
nabling  the  design  of  focused  experiment-based  assign-
ent  of  in  vitro  activities  and  in  vivo  functions.
The  Enzyme  Function  Initiative  [EFI;  formerly  NIH

54GM093342  (5/01/10-4/30/15);  now  P01GM118303,
/15/16-4/30/21  (Gerlt  et  al.,  2011)]  pioneered  the
evelopment  of  multidisciplinary  approaches  to  facil-
tate  functional  assignments;  these  included  genomic
nzymology/bioinformatics,  protein  production,  structure
etermination,  homology  modeling,  in  silico  ligand  docking,
xperimental  enzymology,  microbiology,  and  metabolomics.
n  the  EFI,  the  choice  of  targets  for  functional  assignment
as  guided  by  ‘‘genomic  enzymology’’,  an  ‘‘expansive

trategy  for  understanding  the  structural  bases  for  catal-
sis’’.  As  noted  by  Babbitt  and  Gerlt  who  popularized  the
erm  ‘‘genomic  enzymology’’  (Gerlt  and  Babbitt,  2001):
‘Until  the  early  1990s,  enzymologists  had  little  choice
ut  to  focus  their  studies  on  single  examples  of  specific
nzymes.  Now,  a  much  larger  informational  context  is
vailable,  allowing  enzymologists  to  include  the  genomic
ontext  (sequence  families,  structures,  and  functions)
elevant  to  study  of  their  favourite  enzyme,  rather  than
escribing  single-enzyme  phenomenology.’’  This  larger
ontext  can  be  expected  to  facilitate  the  assignment  of
unctions  to  uncharacterized  proteins  discovered  in  genome
rojects.

In particular,  the  EFI  developed  and  popularized
wo  large-scale  ‘‘genomic  enzymology’’  tools:  (1)
equence  similarity  networks  (SSNs)  to  allow  analysis
f  sequence—function  space  in  entire  protein  families,
ncluding  the  identification  of  isofunctional  groups  and
he  placement  of  restrictions  on  possible  reactions  and
ubstrates  and  (2)  genome  neighbourhood  networks  (GNNs)
o  allow  analysis  of  genome  context  (gene  clusters  and
perons),  thereby  providing  clues  about  the  reactions,
ubstrates,  intermediates,  and  products  in  the  metabolic
athways  in  which  novel  enzymes  participate.  These  were
sed  within  the  EFI  to  assign  activities  to  novel  enzymes
n  previously  unknown  metabolic  pathways.  As  a  result  of
hese  successes,  the  EFI  made  these  ‘‘genomic  enzymol-
gy’’  tools  available  to  the  community  with  ‘‘user  friendly’’
eb  tools  so  that  any  enzymologist  can  mine  the  sequence
atabases  for  novel  functions,  i.e.,  ‘‘teaching  a  novice  how
o  fish  instead  of  serving  fish’’.

This  article  provides  a  brief  description  of  the  EFI’s
‘genomic  enzymology’’  web  tools  for  generating  SSNs  and
NNs;  it  also  provides  an  example  of  the  use  of  these  tools

o  discover  and  annotate  novel  enzymes  in  a  novel  metabolic
athway.

http://www.uniprot.org/
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equence similarity networks, EFI-EST web
ool

r.  Patricia  Babbitt,  a  member  of  the  EFI  until  2013,
romoted  the  use  of  sequence  similarity  networks
SSNs)  to  allow  large-scale  visualization  and  analysis
f  sequence—function  space  in  entire  protein  families
Atkinson  et  al.,  2009).  An  SSN  is  the  multidimensional
omologue  of  a  one-dimensional  ‘‘BLAST’’  in  which
equence  relationships  relating  each  member  of  a homolo-
ous  protein  family  to  all  other  members  of  the  family  are
omputed,  visualized,  and  analysed.  A  symbol  (‘‘node’’)  in
he  SSN  represents  a  sequence;  lines  (‘‘edges’’)  connect
equence  pairs  to  indicate  relatedness  (Fig.  2A).  The
umerical  value  of  an  edge  (alignment  score)  is  derived
rom  the  BLAST  bit  score  from  the  sequence  alignment.
he  power  of  SSNs  is  that  as  the  alignment  score  threshold
sequence  identity)  for  drawing  edges  is  increased,  the
odes  segregate  into  clusters,  allowing  the  user  to  assess
he  convergence/divergence  of  sequence  and  function  as
he  sequences  (nodes)  segregate  into  putative  isofunctional
lusters.

SSNs  are  not  as  ‘‘rigorous’’  as  trees  and  dendro-
rams  in  analyzing  potential  evolutionary  relationships  that
equire  multiple  sequence  alignments  that  are  more  time-
onsuming  to  calculate  than  pairwise  sequence  identities
Fig.  2B);  however,  SSNs  provide  the  advantage  that  they  can
e  used  interactively  and,  also,  can  provide  the  user  with
nformation  about  each  protein  that  can  be  used  to  infer
onvergence  of  function,  e.g., phylogenetic  relationships,
embership  in  Pfam  and  InterPro  families,  and  availability

f  three-dimensional  structures.  SSNs  are  visualized  using

ytoscape,  ‘‘an  open  source  software  platform  for  visualiz-

ng  complex  networks  and  integrating  these  with  attribute
ata’’.

(

igure  2  Comparison  of  a  sequence  similarity  network  (Panel  A)  

ubgroup of  the  enolase  superfamily.
J.A.  Gerlt

Dr.  Babbitt  is  the  driving  force  behind  the  Structure—
unction  Linkage  Database  (SFLD)  (http://sfld.rbvi.ucsf.
du/django/)  that  provides  the  community  with  SSNs  for  a
mall  number  of  functionally  diverse  enzyme  superfamilies
or  which  functional  assignment  is  ‘‘nontrivial’’,  e.g., ami-
ohydrolase,  enolase,  isoprenoid  synthase,  and  radical  SAM
nzymes  (Akiva  et  al.,  2014).  The  functional  annotations  in
hese  SSNs  are  reviewed  and  updated  by  curators,  a  labour-
ntensive/expensive  process;  therefore,  the  SFLD  does  not
ave  the  capability  of  providing  the  community  with  SNNs
or  any  protein  family.

Therefore,  the  EFI  developed  the  EFI-Enzyme  Similar-
ty  Tool  (EFI-EST)  to  allow  ‘‘anyone’’  to  generate  the
SN  for  their  ‘‘favorite’’  protein  family,  with  the  node
ttribute  information  for  the  sequences  mined  primarily
rom  the  UniProtKB  database  ((http://www.uniprot.org/)
Gerlt  et  al.,  2015).  The  UniProtKB  database  provides
any  types  of  ‘‘bioinformatic’’  information;  the  SwissProt
atabase  provides  human-curated  functional  annotations
ined  from  the  literature.  EFI-EST  is  available  as  a  web

ool  (efi.igb.illinois.edu/efi-est/)  that  is  maintained  at  the
nstitute  for  Genomic  Biology,  University  of  Illinois,  Urbana-
hampaign.  The  protein  sequences  used  by  EFI-EST  are
btained  from  the  UniProt  database  and  are  updated  six
imes  per  year  with  each  update  of  the  InterPro  database.
he  choice  of  the  UniProt  database  instead  of  the  Gen-
ank  database  reflects  the  ability  of  the  community  to
orrect/update  the  annotations  in  the  UniProt  database;
nnotations  in  GenBank  can  be  changed  only  by  the  deposi-
or  of  the  entry.

Generation  of  an  SSN  using  the  EFI-EST  web  tools  involves
1)  In  the  first  step  (‘‘Start’’),  the  user  selects  the  method
for  collecting  the  sequences  for  the  SSN:

and  a  dendrogram  (Panel  B)  the  muconate  lactonizing  enzyme

http://sfld.rbvi.ucsf.edu/django/
http://sfld.rbvi.ucsf.edu/django/
http://www.uniprot.org/
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Figure  3  Screens  for  the  step  for  generating  a  SSN  with  the  EFI-EST  web  tool.  Left,  Start  to  input  sequence/Pfam  family.  Centre,
s.  Ri
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Data Set  Completed/Analyze  to  input  alignment  score  for  SSN
files.

Option  A,  a  query  sequence  to  collect  the  ‘‘closest’’
homologues  using  BLAST  (default  ≤5000  sequences);

Option  B,  any  combination  of  Pfam  (http://pfam.
xfam.org/)  and/or  InterPro  ((https://www.ebi.ac.uk/
interpro/)  families  (default  is  the  number  of  sequences
in  PF04055,  the  radical  SAM  superfamily;  currently,
≤175,000  sequences),  or

Option  C,  a  FASTA  file  for  upload  that  can  be  combined
with  any  combination  of  Pfam  and/or  InterPro  families.

(2)  In  the  second  step  (‘‘Analyze’’),  the  user  specifies
a  minimum  alignment  score  (measure  of  sequence
relatedness)  for  generating  the  SSN-sequence  pairs  with
edges  exceeding  the  alignment  score  are  collected  from
the  complete  set  generated  by  the  all-by-all  sequence
comparison.  The  user  is  assisted  in  the  selection  of  the
alignment  score  by  four  histograms/quartile  plots  gen-
erated  in  the  ‘‘Start’’  step,  with  the  most  essential
providing  the  relationship  between  the  alignment  score
and  percent  identity.

(3)  In  the  third/final  step  (‘‘Download’’),  the  user  down-
loads  the  SSN  as  one  or  more  xgmml  files.  The  user’s
RAM  limits  the  number  of  edges  that  can  be  displayed
by  Cytoscape:  with  4  GB  RAM,  an  SSN  with  <500,000
edges  can  be  opened;  with  128  GB  RAM,  an  SSN  with
<10,000,000  edges  can  be  opened.  Because  the  number
of  edges  is  unknown  until  after  the  all-by-all  sequence

comparison  is  performed,  EFI-EST  provides  not  only
the  full  network  (all  sequences,  if  the  network  has
≤10M  edges)  but  also  representative  node  (rep  node)
networks.  In  rep  node  networks,  sequences  sharing

f
T
t
i

ght,  Download  Network  Files  to  select/download  SSN  xgmml

greater  than  a  specified  percent  identity  are  collected
in  the  same  meta-node,  thereby  reducing  the  number  of
nodes  and  edges.  These  meta-nodes  contain  sequences
sharing  from  40  to  100%  sequence  identity,  in  increments
of  5%  (for  a  total  of  13  rep  node  networks).  The  user
downloads  the  file(s)  that  his/her  computer  can  open.

enome neighbourhood networks, EFI-GNT
eb tool

n  eubacteria,  archaea,  and  fungi,  the  genes  that  encode
etabolic  pathways  often  are  co-located  in  the  genome

n  operons  and  gene  clusters.  Thus,  the  genome  context
f  an  uncharacterized  enzyme  can  provide  important  clues
bout  its  in  vitro  enzymatic  activity  and  in  vivo  physiologi-
al  function  by  allowing  identification  of  functionally  related
roteins  that  participate  in  metabolic  pathways.  To  enable
his,  the  EFI  developed  genome  neighbourhood  networks
GNNs)  to  enable  large-scale  visualization  and  analysis  of
enome  context  for  one  or  more  isofunctional  clusters  in
he  SSN  for  a  protein  family  (Zhao  et  al.,  2014).

The  use  of  SSNs  and  GNNs  is  synergistic.  With  Cytoscape,
he  user  first  segregates  the  SSN  for  a  protein  family
from  EFI-EST)  containing  the  uncharacterized  enzyme(s)
nto  isofunctional  clusters,  e.g., using  known  functions

rom  SwissProt  to  choose  an  appropriate  edge  threshold.
hat  SSN  (or  a  subset  of  its  clusters)  is  the  input  for
he  EFI-Genome  Neighborhood  Tool  (EFI-GNT;  http://efi.igb.
llinois.edu/efi-gnt/)  that  interrogates  the  prokaryotic,

http://pfam.xfam.org/
http://pfam.xfam.org/
https://www.ebi.ac.uk/interpro/
https://www.ebi.ac.uk/interpro/
http://efi.igb.illinois.edu/efi-gnt/
http://efi.igb.illinois.edu/efi-gnt/
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Figure  4  Screens  for  the  step  for  generating  a  GNN  with  the  EFI-GNT  web  tool.  Left,  Start  screen  to  input  SSN  xgmml  file.  Right,
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ownload Network  Files  screen  to  download  SSN/GNN  xgmml.

ungal,  and  metagenome  ENA  database  for  the  genome
eighbours  of  the  query  sequences  within  a  user-specified
ene  window  (default  ±  10  genes).  The  neighbour  proteins
re  associated  with  their  Pfam  families  and  displayed  in  the
NN  (Fig.  3).

The  GNN  is  used  to  (1)  assess  whether  the  edge  threshold
as  appropriate  to  segregate  the  family  into  isofunctional
lusters,  i.e., the  genome  contexts  for  the  various  clusters
re  distinct  and  (2)  deduce  the  function/pathway  of  the
lusters  in  the  input  SSN  using  the  identities  of  the  neighbor
fam  families  and  the  locations  of  the  neighbours  in  the  SSNs
or  those  families  relative  to  known  functions.  For  pathway
iscovery,  the  sequences  in  an  ‘‘isofunctional’’  cluster  in  an
SN  often  are  encoded  by  diverse  species;  because  genome
eighbourhoods  often  are  not  conserved  phylogenetically,  a
NN  allows  identification  of  pathway  components  that  are
ot  proximal  in  the  genome  of  the  organism  that  encodes  the

arget  uncharacterized  enzyme.  With  the  identities  of  the
fam  families,  the  user  can  infer  the  types  of  reactions  in  the
etabolic  pathway.  With  experimental  information  about

he  identity  of  the  substrate  for  the  first  enzymes  in  the
athway,  the  user  can  infer  the  substrate,  intermediates,
roduct,  and  reactions  in  the  pathway  (vide  infra).

Generation  of  a  GNN  using  the  EFI-GNT  web  tool  involves
wo  steps  (Fig.  4):

1)  In  the  first  step  (‘‘Start’’),  the  user  uploads  the  xgmml
file  for  one  or  more  clusters  from  an  SSN  generated
with  EFI-EST  or  filtered/output  from  Cytoscape.  EFI-GNT
then  collects  the  proteins  encoded  by  genes  proxi-
mal  to  those  that  encode  the  query  sequences  in  the
input  SSN  from  the  ENA  database  (prokaryote,  archaeal,
fungal,  and  metagenome  sequences  that  provide  func-
tionally  relevant  genome  context  because  pathways  in
these  organisms  often  are  encoded  by  operons  and/or
gene  clusters).  The  user  can  specify  the  size  of  the
gene  ‘‘window’’  surrounding  the  query  (default  ±  10,
the  ‘‘signal  to  noise’’  for  functionally  linked  neighbours

often  can  be  increased  by  decreasing  the  window  size;
the  optimum  size  depends  on  the  complexity  of  the
operon/gene  cluster  than  encodes  the  components  of
the  pathway).  The  neighbours  are  collected  into  Pfam
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families  (∼80%  of  the  sequences  in  the  UniProt  database
are  associated  with  one  or  more  Pfam  families)  for  inclu-
sion  in  the  GNN.  The  sequences  not  associated  with  a
Pfam  family  are  provided  in  the  GNN  because  their  func-
tions  may  be  discovered  as  new  pathways  are  annotated.

(2)  In  the  second  step  (‘‘Download’’),  the  user  downloads
the  GNN.  In  the  current  configuration  of  EFI-GNT,  the
neighbor  Pfam  families  are  the  ‘‘hub’’  nodes  (Fig.  6A);
the  neighbours  identified  by  the  sequences  in  the  query
clusters  are  located  in  ‘‘spoke’’  nodes  for  each  query
cluster.  This  presentation  allows  the  user  to  assess
whether  multiple  clusters  in  the  input  SSN  share  genome
neighbours  with  the  same  function  (same  Pfam  fam-
ily,  assuming  that  the  genome  proximal  members  of  the
Pfam  family  are  orthologues).  The  user  can  determine
whether  the  input  SSN  was  segregated  into  isofunctional
clusters  or  ‘‘over-fractionated’’,  i.e., multiple  clusters
have  the  same  genome  contexts  because  the  user  sep-
arated  (accidentally  or  intentionally)  query  orthologues
into  multiple  clusters  because  of  either  conserved  func-
tions  in  divergent  clusters  or  phylogenetic  divergence.

Transport system solute binding protein
(sbp)-guided pathway discovery

The  considerable  use  of  the  synergistic  use  of  SSNs  and
GNNs  to  facilitate  the  assignment  of  novel  in  vitro  activities
and  in  vivo  metabolic  functions  to  uncharacterized  enzymes
discovered  in  genome  projects  is  best  established  with  an
example.

The  EFI  developed  an  experimental  platform  to  achieve
this  goal  by  exploiting  its  ability  for  large-scale  protein
production  and  ligand  screening  to  discover  the  ligand
specificities  of  the  extracellular/periplasmic  solute  binding
proteins  (SBPs)  for  microbial  ABC,  TRAP,  and  TCT  trans-
port  systems  (Vetting  et  al.,  2015).  Because  the  genes  that
encode  transport  systems  often  are  co-localized  on  the
genome  with  the  genes  that  encode  the  catabolic  pathway
for  the  transported  solute,  the  specificities  of  the  SBPs  can
be  used  to  identify  the  substrate  for  the  first  enzyme  in  the
catabolic  pathway  and  its  genome  neighbours  will  identify
the  enzymes  in  the  catabolic  pathway.  With  the  Pfam  family
membership  of  the  pathway  enzymes,  e.g., aldolase,  oxi-
dase,  transaminase,  or  kinase,  the  catabolic  pathway  for
the  SBP  ligand  can  be  inferred.

The  EFI  first  focused  on  the  SBPs  for  the  TRAP  (TRipartite
ATP-independent  Periplasmic)  transporters.  Although  not
as  ubiquitous  as  ABC  (ATP  Binding  Cassette)  transporters,
we  observed  that  the  genes  encoding  TRAP  transporters
frequently  are  colocated  with  genes  encoding  catabolic
pathways  for  acid  sugars  (substrates  for  members  of  the
enolase  superfamily,  one  of  the  functionally  diverse  super-
families  that  were  explored  by  the  EFI).  More  than  300
TRAP  SBPs  were  placed  in  the  EFI’s  protein  production
pipeline;  158  were  purified  after  heterologous  expression
in  Escherichia  coli. Differential  scanning  fluorimetry  (DSF,
aka  Thermofluor)  was  used  to  screen  the  purified  SBPs  for

‘‘hits’’  using  a  library  of  189  small-molecule  ligands  that  was
enriched  with  carbohydrate  derivatives  (including  all  D- and
L-hexoses,  pentoses,  and  tetroses,  their  aldonic  and  aldaric
acid  derivatives,  and  all  16  D-  and  L-hexuronic  acids)  but  also
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ncluded  D-  and  L-amino  acids,  aromatic  acids,  and  known
RAP  ligands  (24  known  at  the  time  of  the  study  in  2015).
ight-nine  purified  SBPs  yielded  a  DSF  ‘‘hit’’,  with  virtually
ll  of  these  carboxylate-containing  ligands  as  was  expected
ased  on  the  known  ligands.  Structures  were  determined
or  many  of  these  SBPs  in  the  presence  of  their  ligands,
roviding  a  valuable  database  of  experimental  structures  to
uide  homology  modelling  and  virtual  docking  to  identify  lig-
nds  for  SBPs  that  had  not  been  purified  or  for  prediction  of
igands  using  a  larger  virtual  ligand  library.

When  possible,  structures  were  also  determined  for
‘apo’’  SBPs.  Interestingly  and  importantly,  several  of  these
tructures  revealed  the  presence  of  tightly  bound  ligands
rom  the  E.  coli  metabolome  that  co-purified  with  the  SBP.
hese  included  orotic  acid,  glycerol  phosphate,  diglycerol
hosphate,  indole  acetate,  and  ethanolamine  that  were  not
resent  in  the  DSF  ligand  library.  The  co-purification  of  these
etabolites  suggests  that  these  are  in  vivo  ligands  for  SBPs,

hereby  allowing  these  to  be  used  for  catabolic  by  the  encod-
ng  organism.

The  SSN  for  the  TRAP  SBP  family  (Pfam  family  PF03480)
as  constructed,  and  the  DSF  ‘‘hits’’  were  mapped  to

he  SSN.  The  before/after  annotated  SSN  comparison  in
ig.  5  demonstrates  the  considerable  power  of  this  large-
cale  screening  approach  for  exploring  ligand  specificity
function)-sequence  space  in  the  family.  The  SSNs  in  the  Fig-
re  were  constructed  using  an  alignment  score  of  120  that
orresponds  to  ∼60%  sequence  identity.

As  described  in  the  next  section,  we  selected  the  clus-
er  from  this  SSN  that  contained  the  SBP  that  co-purified
ith  ethanolamine  (from  Chromohalobacter  salexigens) for
iscovery  of  a  novel  catabolic  pathway  for  ethanolamine.

iscovery of a novel pathway for
thanolamine catabolism

he  cluster  containing  the  ethanolamine-binding  SBP  from
.  salexigens  (68  sequences)  was  used  as  the  input  for
he  EFI-GNT  web  tool  so  that  the  pathway  for  catabolism
f  ethanolamine  could  be  identified.  The  total  GNN  con-
ains,  as  expected,  the  Pfam  families  for  the  membrane
omponents  of  the  TRAP  transport  system,  a  variety  of
ranscriptional  regulators,  and  several  candidates  for  the
atabolic  enzymes.

The  enzyme  families  that  frequently  co-occur  with  the
thanolamine-binding  SBPs  (Fig.  6)  include  the  glutamine
ynthase  family  (Gln-synt  C;  PF00120),  the  iron-dependent
lcohol  dehydrogenase  family  (Fe-ADH;  PF00465),  the  alde-
yde  dehydrogenase  family  (Aldeh;  PF00171),  and  the
ormylglutamate  amidohydrolase  family  (FGase;  PF05013).

 previous  study  had  identified  a  pathway  for  isopropy-
amine  catabolism  (to  L-alanine)  that  was  initiated  by
he  ATP-dependent  conjugation  of  isopropylamine  with  L-
lutamate  to  form  �-glutamylisopropylamide  (Fig.  7A;  de
zevedo  Wäsch  et  al.,  2002)).  In  analogy  with  this  path-
ay  and  using  the  Pfam  families  identified  by  the  GNN
s  a  guide,  we  postulated  a  previously  unknown  pathway

or  ethanolamine  catabolism  (Fig.  7B).  In  this  pathway,
-glutamylethanolamide  is  generated  by  the  member  of
he  glutamine  synthase  family  (PF00120;  ethanolamine  �-
lutamylase);  the  hydroxyl  group  is  successively  oxidized  to
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Figure  5  Comparison  of  the  ligand-specificity  annotated  SSNs  for  the  TRAP  SBP  family  (PF03480)  before  (Panel  A)  and  after  (Panel
B) the  EFI’s  large-scale  protein  production/ligand  screening  project.
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Figure  6  Selected  clusters  from  the  GNN  generated  with  th
families involved  in  the  ethanolamine  catabolic  pathway  in  Chr

an  aldehyde  and  then  a  carboxylate  group  by  members  of  the
iron-dependent  alcohol  dehydrogenase  family  (PF00465)  and
the  aldehyde  dehydrogenase  family  (PF00171),  respectively.
The  resulting  �-glutamylglycine  is  hydrolysed  to  glycine  and
L-glutamate  (the  latter  a  ‘‘catalyst’’  in  the  pathway)  by
a  member  of  the  formylglutamate  amidohydrolase  family
(PF05013).  The  ubiquitous  glycine  cleavage  pathway  oxi-
dizes  glycine  to  ammonia,  5,10-methylenetetrahydrofolate,
and  CO2,  thereby  providing  the  encoding  organism  with  the
ability  to  utilize  ethanolamine  as  sole  nitrogen  source.

We  determined  that  C.  salexigens  utilizes  ethanolamine
as  sole  nitrogen  source.  We  also  constructed  knockouts

of  the  genes  encoding  the  SBP  and  the  ethanolamine  �-
glutamylase  —  both  were  unable  to  utilize  ethanolamine  as
sole  nitrogen  source.  As  further  evidence  for  this  pathway,

s

c

Figure  7  Panel  A,  pathway  for  isopropylamine  catabolism  initiat
ethanolamine  catabolism  initiated  by  an  ethanolamine  �-glutamylas
ster  of  ethanolamine-binding  SBPs  showing  the  four  enzyme
alobacter  salexigens.

e  determined  that  the  genes  for  the  TRAP  transporter  (SBP
nd  two  membrane  components)  as  well  as  all  four  catabolic
nzymes  are  upregulated  in  the  presence  of  ethanolamine.
e  also  purified  the  ethanolamine  �-glutamylase  and  �-

lutamylglycine  hydrolase  (PF05013)  and  determined  their
inetic  constants;  these  were  consistent  with  the  in  vitro
ctivities  deduced  from  their  Pfam  membership.  And,
nally,  we  performed  metabolomic  studies  that  detected
he  presence  of  the  predicted  �-glutamylethanolamide,  �-
lutamylaminoacetaldehyde,  and  �-glutamylglycine  when
.  salexigens  was  grown  on  ethanolamine  as  sole  nitrogen
ource.  Thus,  this  pathway  for  ethanolamine  catabolism  is

ecure.

Prior  to  these  studies,  a  pathway  for  ethanolamine
atabolism  (sole  carbon  source)  had  been  identified

ed  by  an  isopropylamine  �-glutamylase.  Panel  B,  pathway  for
e.
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hat  uses  the  adenosylcobalamin-dependent  ethanolamine
mmonia  lyase  that  produces  acetaldehyde  and  ammonia
Garsin,  2010).  The  acetaldehyde  then  can  be  converted  to
cetyl-CoA,  acetyl  phosphate,  and  acetate,  providing  inter-
ediates  in  known  catabolic  pathways.

dditional examples of SBP-guided catabolic
athway discovery

e  have  used  the  ‘‘same’’  SBP-guided  strategy  (using  addi-
ional  clusters  in  the  TRAP  SBP  family  as  well  as  clusters
n  the  SSNs  for  ABC  SBP  families)  to  discover  additional
ovel  pathways  (Wichelecki  et  al.,  2015;  Huang  et  al.,  2015).
f  particular  note,  we  used  this  approach  to  assign  novel
inase  functions  to  many  members  of  a  Domain  of  Unknown
unction  (DUF1537,  PF07005)  (Zhang  et  al.,  2016).  The
ower  lies  in  the  large-scale  screening  of  SBPs  with  a  ligand
ibrary  to  identify  novel  candidates  for  previously  unknown
atabolic  pathways.  Approximately  20%  of  the  protein  fami-
ies  curated  by  Pfam  are  members  of  DUFs,  highlighting  the
xpected  occurrence  of  novel  enzymes  in  novel  metabolic
athways  amongst  the  uncharacterized  enzymes  discovered
n  genome  projects.

ummary

s  described  in  this  brief  review,  the  EFI  developed
‘genomic  enzymology’’  approaches,  including  publicly
ccessible  web  tools,  to  enable  the  community  to  mine  the
equence  databases  for  novel  enzymes  in  novel  metabolic
athways.  The  annotation  challenge  is  too  large  for  a  sin-
le  project  to  solve.  However  the  development  of  ‘‘user
riendly’’  tools  and  strategies  that  can  be  adopted  by  the
nzymology,  chemical  biology,  systems  biology,  and  micro-
iology  communities  has  the  potential  to  improve  the  quality
f  annotations  in  the  sequence  databases,  thereby  making
hem  more  useful  and  valuable  as  genome  projects  continue.

eferences

kiva, E., Brown, S., Almonacid, D.E., Barber II, A.E., Custer, A.F.,
Hicks, M.A., Huang, C.C., Lauck, F., Mashiyama, S.T., Meng, E.C.,
Mischel, D., Morris, J.H., Ojha, S., Schnoes, A.M., Stryke, D.,
Yunes, J.M., Ferrin, T.E., Holliday, G.L., Babbitt, P.C., 2014.
The Structure—Function Linkage Database. Nucleic Acids Res.
42, D521—D530, http://dx.doi.org/10.1093/nar/gkt1130.

tkinson, H.J., Morris, J.H., Ferrin, T.E., Babbitt, P.C., 2009.
Using sequence similarity networks for visualization of relation-
ships across diverse protein superfamilies. PLoS One 4, e4345,
http://dx.doi.org/10.1371/journal.pone.0004345.

e Azevedo Wäsch, S.I., van der Ploeg, J.R., Maire, T., Lebreton,
A., Kiener, A., Leisinger, T., 2002. Transformation of isopropy-

lamine to L-alaninol by Pseudomonas sp. strain KIE171 involves
N-glutamylated intermediates. Appl. Environ. Microbiol. 68,
2368—2375, http://dx.doi.org/10.1128/aem.68.5.2368-2375.
2002.
J.A.  Gerlt

leischmann, R.D., Adams, M.D., White, O., Clayton, R.A., Kirk-
ness, E.F., Kerlavage, A.R., Bult, C.J., Dougherty, B.A., Merrick,
J.M., 1995. Whole-genome random sequencing and assem-
bly of Haemophilus influenzae Rd. Science 269, 496—512,
http://dx.doi.org/10.1126/science.7542800.

arsin, D.A., 2010. Ethanolamine utilization in bacterial pathogens:
roles and regulation. Nat. Rev. Microbiol. 8, 290—295,
http://dx.doi.org/10.1038/nrmicro2334.

erlt, J.A., Babbitt, P.C., 2001. Divergent evolution of enzymatic
function: mechanistically diverse superfamilies and function-
ally distinct suprafamilies. Annu. Rev. Biochem. 70, 209—246,
http://dx.doi.org/10.1146/annurev.biochem.70.1.209.

erlt, J.A., Allen, K.S., Almo, S.C., Armstrong, R.N., Babbitt, P.C.,
Cronan, J.E., Dunaway-Mariano, D., Imker, H.J., Jacobson, M.P.,
Minor, W., Poulter, C.D., Raushel, F.M., Sali, A.S., Shoichet, B.K.,
Sweedler, J.V., 2011. The enzyme function initiative. Biochem-
istry 50, 9950—9962, http://dx.doi.org/10.1021/bi201312u.

erlt, J.A., Bouvier, J.A., Davidson, D.B., Imker, H.J., Sad-
khin, B., Slater, D.R., Whalen, K.L., 2015. Enzyme Function
Initiative-Enzyme Similarity Tool (EFI-EST): a web tool for gen-
erating protein sequence similarity networks. Biochim. Biophys.
Acta 1854, 1019—1037, http://dx.doi.org/10.1016/j.bbapap.
2015.04.015.

uang, H., Carter, M.S., Vetting, M.W., Al-Obaidi, N., Patskowsky,
Y., Almo, S.C., Gerlt, J.A., 2015. A general strategy for the dis-
covery of metabolic pathways: D-threitol, L-threitol, and erythri-
tol utilization in Mycobacterium smegmatis.  J. Am.  Chem. Soc.
137, 14570—14573, http://dx.doi.org/10.1021/jacs.5b08968.

hosla, C., 2015. Quo vadis, enzymology? Nat. Chem. Biol. 11,
438—441, http://dx.doi.org/10.1038/nchembio.1844.

chnoes, A.M., Brown, S.D., Dodevski, I., Babbitt, P.C., 2009.
Annotation error in public databases: misannotation of molec-
ular function in enzyme superfamilies. PLoS Comput. Biol. 5,
e1000605, http://dx.doi.org/10.1371/journal.pcbi.1000605.

etting, M.W., Al-Obaidi, N., Zhao, S., San Francisco, B., Kim, J.,
Wichelecki, D.J., Bouvier, J.T., Solbiati, J.O., Vu, H., Zhang, X.,
Rodinov, D.A., Love, J.D., Hillerich, B.S., Seidel, R.D., Quinn,
R.J., Osterman, A.L., Cronan, J.E., Jacobson, M.P., Gerlt, J.A.,
Almo, S.C., 2015. Experimental strategies for functional anno-
tation and metabolism discovery: targeted screening of solute
binding proteins and unbiased panning of metabolomes. Bio-
chemistry 54, 909—931, http://dx.doi.org/10.1021/bi501388y.

ichelecki, D.J., Vetting, M.W., Chou, L., Al-Obaidi, N., Bouvier,
J.T., Almo, S.C., Gerlt, J.A., 2015. ATP-binding Cassette (ABC)
transport system solute-binding protein-guided identification of
novel D-altritol and galactitol catabolic pathways in Agrobac-
terium tumefaciens C58. J. Biol. Chem. 290, 28963—28976,
http://dx.doi.org/10.1074/jbc.m115.686857.

hang, X., Carter, M.S., Vetting, M.W., San Francisco, B., Zhao,
S., Al-Obaidi, N.F., Solbiati, J.O., Thiaville, J.J., de Crécy-
Lagard, V., 2016. Assignment of function to a domain of unknown
function (DUF): DUF1537 is a new kinase family in catabolic
pathways for acid sugars. Proc. Natl. Acad. Sci. U. S. A.,
http://dx.doi.org/10.1073/pnas.1605546113.

hao, S., Sakai, A., Zhang, X., Vetting, M.W., Kumar, R.,
Hillerich, B., San Francisco, B., Solbiati, J., Steves, A.,
Brown, S., Akiva, E., Barber, A., Seidel, R.D., Babbitt, P.C.,

Almo, S.C., Gerlt, J.A., Jacobson, M.P., 2014. Prediction and
characterization of enzymatic activities guided by sequence sim-
ilarity and genome neighborhood networks. eLife 3, e03275,
http://dx.doi.org/10.7554/elife.03275.

dx.doi.org/10.1093/nar/gkt1130
dx.doi.org/10.1371/journal.pone.0004345
dx.doi.org/10.1128/aem.68.5.2368-2375.2002
dx.doi.org/10.1128/aem.68.5.2368-2375.2002
dx.doi.org/10.1126/science.7542800
dx.doi.org/10.1038/nrmicro2334
dx.doi.org/10.1146/annurev.biochem.70.1.209
dx.doi.org/10.1021/bi201312u
dx.doi.org/10.1016/j.bbapap.2015.04.015
dx.doi.org/10.1016/j.bbapap.2015.04.015
dx.doi.org/10.1021/jacs.5b08968
dx.doi.org/10.1038/nchembio.1844
dx.doi.org/10.1371/journal.pcbi.1000605
dx.doi.org/10.1021/bi501388y
dx.doi.org/10.1074/jbc.m115.686857
dx.doi.org/10.1073/pnas.1605546113
dx.doi.org/10.7554/elife.03275

	Tools and strategies for discovering novel enzymes and metabolic pathways
	Introduction
	Sequence similarity networks, EFI-EST web tool
	Genome neighbourhood networks, EFI-GNT web tool
	Transport system solute binding protein (sbp)-guided pathway discovery
	Discovery of a novel pathway for ethanolamine catabolism
	Additional examples of SBP-guided catabolic pathway discovery
	Summary
	References


