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ABSTRACT Intracellular calcium release is a prime example for the role of stochastic effects in cellular systems. Recent
models consist of deterministic reaction-diffusion equations coupled to stochastic transitions of calcium channels. The resulting
dynamics is of multiple time and spatial scales, which complicates far-reaching computer simulations. In this article, we
introduce a novel hybrid scheme that is especially tailored to accurately trace events with essential stochastic variations, while
deterministic concentration variables are efficiently and accurately traced at the same time. We use finite elements to efficiently
resolve the extreme spatial gradients of concentration variables close to a channel. We describe the algorithmic approach and
we demonstrate its efficiency compared to conventional methods. Our single-channel model matches experimental data and
results in intriguing dynamics if calcium is used as charge carrier. Random openings of the channel accumulate in bursts of
calcium blips that may be central for the understanding of cellular calcium dynamics.

INTRODUCTION

Calcium signaling regulates numerous cellular functions as

diverse as gene expression, secretion, muscle contraction,

and synaptic plasticity. A major class of Ca21 signals are

triggered by the binding of extracellular ligands to cell

surface receptors, resulting in the activation of well-known

second messenger pathways (1–5) to evoke Ca21 release

from intracellular storage compartments—principally the endo-

plasmic reticulum (ER) and the sarcoplasmatic reticulum.

Information is encoded in the spatiotemporal patterning of

the resulting increases in cytosolic Ca21 concentration,

which may be organized as localized transients (6), propa-

gating waves (7–11), and global oscillations (1,12–15).

Inositol 1,4,5-trisphosphate (IP3) receptor channels (IP3R)

are present in the ER membrane and regulate the liberation of

Ca21 in response to the binding of Ca21 and IP3 to receptor

sites on the channel: that is to say, the open probability of the

IP3R channel depends on the cytosolic calcium concentration

as well as the IP3 concentration (see (16–19) for reviews).

This feedback provides a self-amplifying release mechanism

(calcium-induced calcium release), so that the calcium flux

increases nonlinearly with concentrations of IP3 and Ca
21. In

particular, Ca21 released by one channel diffuses in the

cytosol and thus increases the open probability of neighbor-

ing channels, thereby enabling complex spatiotemporal

signals.

Experimental observation of local, random release events

called ‘‘puffs’’ indicates that IP3R channels are grouped into

clusters on the ER membrane containing a few tens of

channels (20–23), whose opening is concerted by local diffu-

sion of Ca21 and calcium-induced calcium release between

adjacent channels. These clusters in turn are randomly dis-

tributed across the ER membrane at spacings of a few mi-

crometers. Puffs are now considered to be elemental events

of Ca21 signaling (24), underlying global oscillations and

waves. Subsequent theoretical studies demonstrated that the

observed local calcium elevations are not random due to the

small numbers of Ca21 ions, but rather due to the random

binding and dissociation of Ca21 and IP3 at the regulatory

binding sites of the IP3R (see (11,25–29) and (30) for the

ryanodine receptor channel).

It is therefore important for the understanding of calcium

signaling, to develop accurate models for stochastic transi-

tions of single channel states. The available experimental

data are of two categories: First, there are patch-clamp ex-

periments of single channel currents. IP3Rs are inserted into

bilayer membranes or are studied in the nuclear membrane

and exposed to fixed concentrations of Ca21 and IP3. It is

crucial to note that in these experiments a charge carrier dif-

ferent from calcium is used, so that the ions moving through

the channel do not bind to receptor sites on the channel and

thereby modify the channel gating. Recordings of single-

channel currents are then analyzed to obtain, for instance,

open probabilities, mean open and mean close times. Several

IP3R models (31–36) have been developed to describe

experimental data obtained from IP3Rs reconstituted in

bilayer membranes, with the De Young-Keizer model (32) in

particular being widely applied. However, there are signif-

icant differences in behavior of the reconstituted IP3Rs

versus that of IP3Rs in their native environment of the nuclear

envelope (37,38), and only a few models have incorporated

IP3R data obtained for the latter (39,40). On the other hand,

models that do exist for nuclear receptors are not dynamic
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models, i.e., they cannot elucidate channel kinetics. There-

fore, we have developed a DeYoung-Keizer-like model

based on data obtained from patch-clamp of nuclear IP3Rs

that consistently reproduces experimental data (41). The

model comprises four identical, independent subunits, each

with nine different states. A channel opens when at least

three of its subunits undergo a conformational change to an

active state after binding IP3 and Ca21.

In a second type of experiment, one studies IP3R channels

under physiological conditions in intact cells by using

fluorescent indicator dyes to monitor Ca21 liberation into the

cytosol. The resolution of such imaging techniques is

sufficient to detect presumptive single-channel signals

(christened ‘‘blips’’) (6,21), but it is difficult to study these

events in isolation because the opening of one channel

usually triggers openings of multiple adjacent channels in the

cluster (42). Because the blips form the smallest fundamental

building block from which cellular calcium signals are

generated, it is important to understand the behavior of IP3Rs

under physiological conditions where the gating of an

individual channel is modulated by the large (.1000-fold)

changes in local Ca21 concentration that result from Ca21

flux through that channel.

To that end, we simulate stochastic IP3R channel state

dynamics under conditions of no Ca21 feedback (K1 as the

charge carrier), and where Ca21 is the charge carrier. The lat-

ter events we refer to as ‘‘blips with calcium carrier.’’ The

transitions during a patch-clamp experiment (i.e., no Ca21

feedback) can be simulated by a Markovian scheme with

constant transition rates. A standard method (two-state

Markovian scheme) is to compile a list of all transitions of

the channel in models such as the DYK, and fix a sufficiently

small time-step dt. The occurrence of each of the stochastic

transitions during a specific simulation time step is deter-

mined by comparison of a computer random number with the

product of the corresponding rate and dt (27,43). Another,
much more efficient method, is the so-called Gillespie

algorithm, which determines the time of each transition by

using one random number, while a second random number is

used to determine the specific next reaction that is to occur

(44). Thus, it needs as many steps (and twice as many ran-

dom numbers) as transitions occurring, which is far less than

for the standard method.

While the Gillespie method provides an efficient means

for the study of stochastic channel transitions, the simulation

of blips with calcium carrier poses a number of additional

problems, which we will briefly outline.

1. The spatiotemporal evolution of free calcium and calcium-

binding buffers needs to be simulated simultaneously with

the evolution of channel states. In this work, we consider

the diffusion and chemical reactions of these species as

deterministic processes. This strategy should be princi-

pally proven by simulating the full system stochastically

and comparing the results with those from the reduction

approach. In view of the large number of calcium ions and

buffer proteins our assumption is, however, generally

accepted (35,43,45) and we will not address its validity in

the current publication.

2. The spatial extent of a channel is ;10–30 nm. Strong

currents of calcium through the membrane lead to very

localized calcium concentrations around an open chan-

nel. On the other hand, released calcium diffuses rapidly

over distances of several micrometers. To cope with the

resulting range of length scales we chose the finite ele-

ment method and resolve the calcium profile at nanome-

ter scales close to the channel mouth, while utilizing

larger and computationally more tractable grid lengths far

from the channel.

3. The timescale of calcium flux upon opening of a channel is

in microseconds. This timescale cannot be ignored since

the binding of calcium to the channel can occur on

timescales as short as tens of microseconds. However,

simulations need to trace the evolution formany seconds to

achieve statistically significant estimates of stochastic

channel gating. This gap of timescales necessitates an

efficient time-stepping method including time adaptivity

for both the stochastic and deterministic equations of our

model.

4. A fourth problem,which is at the focus of this article, is that

huge and fast concentration changes upon channel open-

ings and closings have a strong impact on the stochastic

dynamics of channel binding and unbinding. As men-

tioned above, the rate of calcium binding may increase by

three orders of magnitude upon channel opening owing to

the enormous local calcium concentration increase. This

implies that the classical Gillespie algorithm, which rests

on the assumption of time-independent rates between suc-

ceeding stochastic events, cannot be used. Instead, we

chose a special, so-called hybrid method to couple sto-

chastic and deterministic simulations. This method was

described recently for ordinary differential equations

(ODEs) coupled to Markov processes (46,47) and allows

for an adaptive step-size integration of the deterministic

equations while at the same time accurately tracing the

stochastic reaction events.

In this article, we describe the application of the hybrid

method introduced by Alfonsi et al. (46) to the calcium

system and thus for the first time, to our knowledge, to a

spatially extended system described by partial differential

equations (PDEs). A second novelty of our approach is the

following: The hybrid method assumes that all stochastic

events cause a change in the deterministic variables, which is

not the case in the Ca21 system. A special feature of the

Ca21 system is that the binding/unbinding of Ca21 ions and

IP3 may not change the open/close state of a channel.

Therefore, we devised a new hybrid method by combining

the adaptive simulation scheme of the deterministic reaction-

diffusion dynamics and the simulation technique for stochastic
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binding/unbinding of Ca21 and IP3, which may or may not

change the open/close change of the channel. In this article,

we describe in detail our hybrid method and, as an example,

simulations of calcium blips for a single IP3R channel. We

also compare our hybrid simulation results to results ob-

tained with a simpler method, which uses the Euler scheme

for Ca21 diffusion simulation and the two-state Markovian

approach with sufficiently small time steps for the stochastic

channel dynamics (43,48,49), exploiting spherical symmetry

properties of a reduced problem. We find good agreement

between both methods and conclude that the fastest method

for blip simulations would be a hybrid code for stochastic

Gillespie transitions coupled to a simulation of a reduced

one-dimensional reaction-diffusion equation. On the other

hand, our final aim is the simulation of Ca21 release from

channel clusters, where spherical symmetry cannot be used.

Thus, in the future we will take full advantage from our

three-dimensional finite element/hybrid method.

The article is organized as follows: First, we introduce

the basic model of calcium dynamics, which includes the

description of all deterministic processes by partial differ-

ential equations and the stochastic model of channel state

transitions, and discuss the adaptive scheme to solve the

deterministic and stochastic equations involving the newly

developed hybrid algorithm. We then present results of

simulations, first for the purely stochastic model of a single

channel with a carrier different from calcium, and then the

results for simulations of the full set of equations with cal-

cium as carrier. In the conclusions, we analyze the efficiency

and accuracy of the method and briefly discuss the relevance

of our results for present problems in calcium dynamics.

MODEL OF CALCIUM DYNAMICS

In the following we will describe each of the components of

the model and the equations that we use. As sketched above

the model will consist of PDEs for concentration fields and a

Markovian description of discrete stochastic quantities. The

concentration fields are the calcium concentration in the

cytosol and the buffer concentrations. Stochastic quantities

are the discrete states of channel subunits, which determine

the open/close state of a channel. The coupling works in the

following way: random opening and closing of the channels

causes fluctuations of certain source terms in the PDEs,

while concentrations enter the transition rates of the Markov

processes.

Partial differential equations for the
concentration fields

The calcium concentration is determined by diffusion, the

transport of calcium through the ER membrane, and the

binding and unbinding of buffer molecules. Here we do not

include buffers within the ER. In the cytosol, we consider

three types of buffers: an exogenous mobile buffer with slow

reaction kinetics; a stationary buffer with fast kinetics; and an

exogenous dye buffer.

All buffers are assumed to be distributed homogeneously

at initial time. Total concentrations of mobile, stationary, and

dye buffer are denoted by Bm, Bs, and Bd, the amount of buffer

bound to calcium by bm, bs, and bd, respectively. Experi-
mentally, the amounts of exogenously added mobile and

dye buffers are controlled. The amount of endogenous sta-

tionary buffer, comprising contributions from different cal-

cium stores such as mitochondria, is not well characterized.

The buffers are subject to binding and unbinding of

calcium, which is modeled using mass-action kinetics:

@c

@t
¼ D=

2
c� k

1
s ðBs � bsÞc1 k

�
s bs

� k
1
m ðBm � bmÞc1 k

�
mbm

� k
1
d ðBd � bdÞc1 k

�
d bd;

@bs

@t
¼ k

1
s ðBs � bsÞc� k

�
s bs;

@bm

@t
¼ Dm=

2bm 1 k1
m ðBm � bmÞc� k�mbm;

@bd

@t
¼ Dd=

2
bd 1 k

1
d ðBd � bdÞc� k

�
d bd: (1)

Here, the k6l ðl ¼ s;m; dÞ denote the on and off rates of

calcium reacting with the corresponding buffer proteins. The

equations are solved in a domain next to an idealized plane

membrane patch of (8 mm)2. In the direction perpendicular

to the membrane, we consider a spatial extent of 5 mm. All

boundary conditions except for c at the membrane are no-

flux conditions. The boundary condition for c at the ER

membrane models the transport through the ER membrane,

D@zc ¼ �J; at z ¼ 0; (2)

and comprises three contributions:

J ¼ PcSðr~; tÞðE� cÞ � Pp

c
2

K
2

d 1 c
2 1PlðE� cÞ: (3)

Calcium moves from the ER to the cytosol through IP3 re-

ceptors and by a small leak contribution, which are modeled

by terms with coefficients Pc and Pl, respectively. In the

other direction, calcium is resequestered into the ER by

pumps (Pp). The action of pumps is assumed to be coop-

erative in calcium and modeled with a quadratic c depen-

dence. Kd is the dissociation constant of the pumps.

The first term in Eq. 3 represents the current through the

channel. The current in the open state of the channel was

found to depend on the cross-membrane difference of the

Ca21 concentration (50). For values of the cross-membrane

difference in a physiological environment, the current can be

approximated by a linear dependence on (E � c), where E
denotes the concentration of free Ca21 in the ER. Further-

more, it was found that the current I through a single channel
in the open state is ;0.1 pA under physiological conditions,
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an estimate obtained by analysis of patch-clamp experiments

on single IP3 channels expressed on membrane bilayers (50)

and detailed simulations of the physiological situation (51).

The current through an open channel is modeled by a

boundary term, which is constant and non-zero in a specified

channel region. Following Thul and Falcke (51), we model

the source area of a channel by a disk of radius Rs ¼ 6 nm.

This radius is an approximation for the radius of the Donnan

potential down to which we can assume lumenal and cyto-

solic diffusion properties to hold (52). The corresponding

total current through this membrane area is derived from

I ¼ pð6 nmÞ2PcðE� cÞ2F; (4)

where F is the Faraday constant. With a Ca21 concentration

in the ER of E ¼ 700 mM and neglecting c, which is close to
zero if the channel is closed, we obtain a cross-membrane

difference of 700 mM, resulting in Pc ¼ 6.32 3 106 nm/s.

The position of the model channel in the box of coor-

dinates (0, 8 mm) 3 (0, 8 mm) 3 (0, 5 mm) is given by

X~ ¼ ð4 mm; 4 mm; 0Þ in the center of the ER membrane.

The channel flux term in Eq. 3 is controlled by the channel

state through the factor Sðr~; tÞ; which is defined by

Sðr~; tÞ ¼ 1; if k r~� X~ k ,Rs and the channel is open;
0; otherwise:

�

Stochastic model of channel gating

To discuss the dynamics of a single IP3R we adopt a version

of a newly developed stochastic model for the gating of

subunits (41), which is based on the DeYoung-Keizer model

(32,53). According to the DeYoung-Keizer model, an IP3R

consists of four identical subunits. There are three binding

sites on each subunit: An activating site for Ca21, an

inhibiting Ca21 site, and an IP3 binding site (see Fig. 1). The

three binding sites allow for eight different states Xijk of each

subunit. The index i indicates the state of the IP3 site, j the
one of the activating Ca21 site, and k the state of the

inhibiting Ca21 site. An index is 1 if an ion is bound and 0 if

not. Rates of transitions involving binding of a molecule are

proportional to the concentration of the respective molecule.

A further transition from X110 to a state denoted by XACT

is introduced. It represents a conformational change of the

subunit related to the channel opening. We assume that the

channel is open if at least three of the subunits are in

the XACT state.

The binding and dissociation of Ca21 and IP3 as well as the

conformational change are stochastic events rendering the

opening and closing of the channel a stochastic process. That

stochastic process is coupled to the concentration of cytosolic

Ca21 since the binding probabilities per unit time depend on

it, and vice versa, the open/close state of a channel determines

the concentration field.

We associate stochastic variables X000, X001, . . . , XACT

with each channel. These variables count the numbers of sub-

units that are in the respective state, with the sum of all nine

variables equal to 4.

Estimation of the calcium concentration on the cytosolic

face of the membrane is crucial for comparison with ex-

periments where calcium is used as charge carrier. Due to

the strong gradients of calcium around an open channel,

the exact position of regulatory Ca21 binding sites may be

important for the transition rates in the model. Here, how-

ever, we do not study this dependence and simply assume

that each of the Ca21 binding processes is determined by

the Ca21 concentration in the center of the channel.

Numerical method

Our numerical method consists of a coupled solver for the

deterministic set of PDEs and the stochastic solver. In view

of the multiple scales in length and time, we employ an un-

structured finite element method and an adaptive linear

implicit time-stepping for the deterministic part. The sto-

chastic solver is based on the Gillespie method (44), which is

adaptive in the sense that its time step follows the evolution

of transition probabilities. A complication arises since the

usual Gillespie method solves stochastic processes where the

so-called propensities are constant during subsequent tran-

sitions (see below). However, for channels with Ca21 as

carrier, the propensities may change rapidly due to channel

openings and closings. This problem is solved by devising

the hybrid method described in Simulation with Calcium as

Carrier: Bursts of Blips.

FIGURE 1 The stochastic model of channel gating is given by 26 possible

transitions of each of the four subunits. The values p and c denote the con-
centrations of IP3 and Ca21, respectively.
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Finite element method for integration of the partial
differential equations

We discretized the spatial domain by linear finite elements

(tetrahedra). This method is particularly useful when spatial

resolution needs to be very high in some regions only. For

our simulations of calcium blips, we employ a grid with a

very fine resolution in the channel area of radius 6 nm. There

the grid length is smaller than 1 nm. With increasing distance

from the channel, the grid is coarsened up to 500 nm. The

grid consists of ;30,000 points. Details of the method and

the spatial gridding procedure can be found in a forthcoming

publication.

The finite element discretization results in a coupled set of

ODEs, which are solved by a Krylov-W method with three

stages (55). This method is a linear-implicit Runge-Kutta

method of order 2, with an embedded scheme of order 1.

Solutions of both orders are used to calculate an approxi-

mation of the time-stepping error and to adapt the temporal

time step. The arising linear systems are solved by the

BiCGSTAB method (56).

The stationary Ca21 concentration gradient around an

open channel is shown in Fig. 2. Here we have plotted

[Ca21] against the distance from the channel center on the

membrane and vertical to the membrane. The maximum

calcium concentration at the channel is ;112 mM.

Hybrid algorithm

The algorithm is based on a recently introduced approach for

simulating hybrid models of chemical reaction kinetics in

spatially homogeneous systems (46). For the sake of clarity,

we introduce our hybrid method for a single channel

system—the generalization to multichannel systems will be

obvious.

Recall that X000, X001, . . . , XACT are random variables

counting the number of subunits that are in the respective

state. The channel changes its state if the occupation of one

of the binding sites changes. Such changes are modeled as

stochastic events, denoted by R1, . . . ,Rm. The event dy-

namics is defined in terms of the associated propensity func-

tions a1, . . . , am that characterize the probability per unit

time that the corresponding event takes place. The propen-

sities are proportional to the number of subunits Xsu in the

corresponding subunit state of the transition, hence ai ¼
Xsuri, where ri denotes the transition rate. For instance, de-

noting the transition from X100 to X101 by R1, we define a

propensity a1 ¼ X100a2c (see Fig. 1). The product aidt is the
probability that the event Ri occurs in a given infinitesimal

time interval dt.
The Gillespie algorithm allows for simulation of stochas-

tic event systems (44). Given the actual time t, the probability
that the next stochastic event occurs in the infinitesimal

time interval [t1 t, t1 t1 dt] and is an Ri event, is given by

Pðt; iÞdt ¼ ai expð�a0tÞdt; (5)

where a0 ¼ +
j
aj is the sum of all propensities. The prob-

ability density P(t, i) can be realized by drawing two random
numbers r1 and r2 from a uniform distribution in the interval

[0, 1], and choosing t and i such that

a0 � t ¼ lnð1=r1Þ; +
i

j¼1

aj # a0 � r2 , +
i11

j¼1

aj: (6)

In this way, the next event to occur is Ri, and it will occur

after time t.
The Gillespie method rests on the assumption that during

successive stochastic events the propensitiesai do not change.

However, when linking the stochastic channel dynamics to

the calcium dynamics, we expect the propensity ai to change

in time due to its dependence on the local calcium concen-

tration c. This effect will be particularly strong for openings

and closings of channels, since after such events the local

calcium concentration c changes dramatically by three or four

orders of magnitude.

To resolve this problem we adopt the recently introduced

hybrid method by Alfonsi et al. (46). Within their setting the

time t to the next stochastic event is determined by solving

Z t1t

t

a0ðs; cÞds ¼ j; (7)

with j ¼ ln(1/r1), where the sum of propensities a0 may

explicitly depend both on time s and the local calcium

concentration. Note that the above equation simplifies to the

equation, which determines t in Eq. 6 in the case of constant
a0. To determine the time of the next reaction t, Eq. 7 is

conveniently rewritten in differential form by introducing a

variable g(t) and solving

_gðsÞ ¼ a0ðs; cÞ; (8)

with initial condition g(0) ¼ 0, along with the deterministic

equations for c and buffers. A reaction then occurs whenever

g(s) reaches the value j. As before the specific event, Ri, is

determined based on a second random number r2, satisfying

FIGURE 2 The stationary Ca21 concentration for an open channel directly

at the ER membrane (solid) and perpendicular to the membrane (dashed) as

calculated with the finite element discretization.
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the second condition in Eq. 6 with propensities evaluated at

the event time t 1 t.
A special feature of the calcium system is that not all

stochastic events change the open/close state of a channel.

An event resulting in an opening or closing of the channel

occurs only if the number of subunits in the state XACT

changes between 2 and 3 and will be called a ‘‘channel

transition’’ in the following. A channel transition has an

impact on the local calcium concentration c, while non-

channel transitions do not change the local calcium concen-

tration. Below, the algorithmic realization of our hybrid

approach is given. Along the computation of the determin-

istic part of the calcium dynamics, the stochastic events are

traced via Eq. 7 or 8. If a non-channel transition occurs, the

stochastic event is performed. The stochastic channel

dynamics is updated correspondingly, while there is no

influence on the calcium concentration. On the other hand, if

a channel transition takes place, both the channel and the

calcium dynamics do change. This typically requires a

readjustment of the deterministic time step.

The outline of the algorithmic realization is as follows

(here we use only c as deterministic variable):

1. Initialization

Set told ¼ 0, Dt . 0, cold ¼ c0, X ¼ X0, gold ¼ 0 and

draw a uniform random number r1 in [0,1] defining

j ¼ ln(1/r1).
2. Deterministic step

Compute cnew and gnew based on cold, gold, and Dt.
If the local error criterion (provided by the Krylov-W

method) is not met, reduce the step size Dt and go

to 2., otherwise define tnew ¼ told 1 Dt and set the

new step size Dt according to the time-stepping

code prediction.

3. If gnew , j (no stochastic event),

Set cold ¼ cnew, gold ¼ gnew, told ¼ tnew, and go to 2.

Else (gnew $ j, some stochastic event occurs in the

time interval [told, tnew]),
Determine the event time ts 2 [told, tnew] by (linear)

interpolation, and compute the corresponding

calcium concentration cs at the event time ts by

(linear) interpolation.

Draw a uniform random number r2 in [0, 1] and

determine the stochastic event Ri according to Eq.

6 based on cs.
If the next event Ri is not a channel transition,

Perform the stochastic event Ri to determine the new

channel state X.
Set gold ¼ 0 and recompute gnew based on cs, gold

and the remaining time (tnew – ts).
Draw a new uniform random number r1 in [0, 1]

defining j ¼ ln(1/r1), and go to 3.

Else (the next event Ri is a channel transition),

Perform the channel transition Ri to determine the

new channel state.

Set gnew ¼ 0, and draw a new uniform random

number r1 in [0, 1] defining j ¼ ln(1/r1).
Set tnew ¼ ts, and define new step size Dt ¼ Dtchannel
(a sufficiently small number).

Set cold ¼ cs, and go to 2.

Note that Dtchannel should be smaller than or similar to the

timescale of stochastic transitions after a channel opening/

closing, since we linearly interpolate the deterministic so-

lution to determine stochastic transitions between succeeding

deterministic time steps. Therefore, fast changes of the deter-

ministic variables after a channel opening/closing need to be

approximated numerically at timescales comparable to the

stochastic transitions. In our simulations described below,

Dtchannel is set to 10�5 s.

RESULTS FOR THE DYNAMICS OF A
SINGLE CHANNEL

Simulations with fixed calcium concentration

In this section, we present results of simulations to test the

hybrid method applied to the calcium system. We begin with

simulations where the calcium concentration in the cytosol is

held fixed to a certain value. Fig. 3, a–c, show the open

fraction, mean open time, and mean close time for different

calcium concentrations in the cytosol. The connected dots

correspond to runs with the hybrid program for 100 s each.

The IP3 level was set to 10 mM in these simulations. The plot

of the open probability (Fig. 3 a) clearly shows the bell-

shaped curve typical for IP3 receptor channels. Further, one

can observe a distinct maximum in the mean open time and a

minimum in the mean close time for cytosolic calcium

concentrations at ;5 mM.

Our model of channel gating was originally obtained by

fitting the experimental data of Mak et al. (38). Their results

are shown in Fig. 3 by small dots. A detailed description of

the parameter estimation by fitting to experimental data can

be found in a forthcoming publication (41).

We also compared our results to those from simulations

based on a standard Markovian method and found satisfying

agreement. This data is shown in Fig. 3 by blue squares.

Simulation with calcium as carrier: bursts of blips

We will now present hybrid simulations of our model for a

calcium carrying channel. In this problem, the resting free

calcium concentration is set to 0.05 mM, but the opening of

the channel and the ensuing calcium current lead to large

local cytosolic values of [Ca21] of;110 mM, thereby vastly

increasing the probability of further Ca21 binding.

Fig. 4 shows the evolution of the number of activated

subunits for a test run of 35 s. Here the IP3 concentration was

set to 0.1 mM. During the 35-s interval, there are five bursts

of channel openings and closings, which are typical for all
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runs that we have performed. These bursts consist of rapid

openings and closings on a millisecond timescale reflecting

the transitions between the states X110 and XACT.

The evolution of a typical burst is shown in Fig. 5 in terms

of the number of subunits in the active state XACT and the

Ca21 concentration at the channel mouth. The first opening of

the channel after;7.43 s leads to a rapid increase of the local

Ca21 concentration, which reaches a stationary value within a

few microseconds. Since activation is a fast process provided

that the Ca21 concentration is high, all four subunits are

activated within a short time. The switching of subunits

between the states X110 and XACT leads then to the repeated

openings and closings of the channel lasting ;550 ms.

It is less clear what causes the termination of a burst. We

observed that often the termination of a burst is related to

inhibition of one subunit, leaving three noninhibited and

activated subunits. The deactivation of one further subunit

causes the Ca21 concentration to collapse to values below

1 mMwithin 1 or 2 ms, leaving only residual calcium around

the channel, which persists for ;100 ms (see Fig. 5). Con-

sequently, the probability for subsequent binding of Ca21 to

activating sites is small, which can lead to a prolonged

closure of the channel.

We have made a series of simulations to determine the

open fraction, mean open time, and mean close time for

different IP3 concentrations. The open fraction is shown in

Fig. 6 a. It increases with increased levels of [IP3]. The

values are always far from the maximum 80% found for

channels without Ca21 carrier (compare Fig. 3).

Fig. 6, b and c, show the estimated mean open and mean

close times for different IP3 concentrations. The mean open

time depends significantly on the IP3 concentration and

increases from ;5 to 8 ms. The mean close time reaches

FIGURE 3 Open fraction (a), mean open (b), and mean close time (c)

versus cytosolic [Ca21] for [IP3] ¼ 10 mM. (Connected large dots) Hybrid
simulations for runs of 100 s. (Small dots) Data from experimental work of

Mak et al. (38). (Blue squares) Two-stateMarkovianmethod for runs of 105 s.

FIGURE 4 The evolution of the number of subunits in state XACT for a

simulation run with [IP3] ¼ 0.1 mM. The channel is open if XACT ¼ 3 or 4.

The resting concentration of Ca21 was 0.05 mM.

FIGURE 5 The Ca21 concentration at the channel mouth and the number

of subunits in the active state, XACT, during the second burst shown in Fig. 4.

After the last closing of the burst, residual Ca21 decays in ;100 ms.
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values of ;200 ms for small IP3 concentration and reduces

to ;40 ms for larger IP3 concentration.

We have again compared the results of our simulations

using the hybrid method with results of the two-state

Markovian method. To calculate the cytosolic Ca21 con-

centration we exploited spherical symmetry to simplify the

Laplace operator according to the numerical scheme intro-

duced by Smith et al. (57). The spatial grid distance used in

these simulations was dx ¼ 15 nm. Results of these simu-

lations, supporting the data obtained by the hybrid method,

are shown in Fig. 6 by squares.

Inspection of time series showed that the duration of bursts

depends on the IP3 concentration. For small concentration

values, below those of the example shown in Fig. 4, we find

typical burst durations of 300 ms and less. This behavior is

presumably related to the binding of IP3 to,4 subunits if the

IP3 concentration is low. Then the chance for the termination

of a series of blips is much higher than with all four subunits

available for activation.

CONCLUSIONS

In this article, we have described the first computational

approach to intracellular calcium dynamics, which takes into

account the coupling of stochastic and deterministic evolu-

tion equations in an accurate and efficient way. The strong

localization of Ca21 ions around an open channel necessi-

tates the use of finite elements. This method has also been

successfully used by other groups (58–60). Here we con-

centrated on the additional problem of fast temporal scales,

which arise from the channel gating and local relaxation

of calcium concentrations. The hybrid algorithm to reliably

link the stochastic transitions to deterministic concentration

variables was described in detail in this article. The hybrid

method is an extension of the exact Gillespie method for

chemical master equations, and is in general used to accel-

erate the update of species with large quantities. We have

adapted the hybrid method of Alfonsi et al. (46) to simulate

DYK-type schemes where only a few of the transitions lead

to direct changes in deterministic concentrations. Further-

more, to our knowledge we have used the hybrid method

for the first time in conjunction with reaction-diffusion

equations, that is, in systems, where the concentration vari-

ables exhibit spatial dependence. The results of extensive

simulations were compared with results of a standard two-

state method. This method gives accurate results for suffi-

ciently small time-steps. Using a time step of 10�5 s for the

two-state method, a satisfactory agreement of both methods

was found.

The advantage of the hybrid method is a much larger

typical time step and a reduced number of required random

numbers. For a run of 35 s as shown in Fig. 4, the two-state

Markovian method needed 3,500,000 steps and 3,500,000

random numbers. The hybrid simulation required ;36,400

steps of the deterministic solver for the same run, where most

of the steps are required for output at every millisecond, and

two random numbers per transition, i.e., at;12,000 random

numbers (for the run shown in Fig. 4, we found ;6000 sto-

chastic transitions.)

We note that, within the current problem of single-channel

simulations, a one-dimensional spatial discretization of a spher-

ically symmetric channel can be used, as was done in our

simulations using the two-state method. This approach has

the advantage of speeding up the deterministic simulation

step considerably compared to the fully three-dimensional

simulations used with the hybrid code. Therefore we found

that the total simulation times using the hybrid code were

higher than for the two-state method based on the one-

dimensional model exploiting spherical symmetry. How-

ever, the ultimate goal of our research is the simulation of

one or several clusters of channels. We plan to simulate the

release of calcium from ;20 to 60 channels per cluster,

which are located on a plane membrane patch. Here, spher-

ical symmetry cannot be used, and the full advantage of

hybrid modeling is apparent.

FIGURE 6 Open fraction (a), mean open duration (b), and mean close

duration (c) versus IP3 concentration using calcium carrier. (Circles) Hybrid

simulations (simulation time: 200 s); (squares) simulation with two-state

Markovian method (150 s).
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A possible improvement of our simulation technique

regards the time step for the deterministic equation. Here we

use an implicit solver, which allows large time steps even if

fast relaxation processes occur. However, we need to accu-

rately trace the evolution of propensities and thus of the Ca21

concentration and cannot, in the current computer code, take

advantage of large time steps. The use of time-stepping

techniques with dense output may mitigate this problem (61).

Such methods allow large time steps but provide the solution

at intermediate times with much higher accuracy than the

linear interpolation that we are using in the current code.

We want to stress that the hybrid method can be

generalized for use in models of many different biochemical

systems. Fast timescales and the existence of processes with

large and small numbers of molecules often prohibit efficient

simulation of the complete chemical master equation. The

solution that we propose is the simulation of ODEs or PDEs

coupled to stochastic molecular processes, which are expected

to introduce relevant fluctuations. We have shown in this

article that the coupling of both systems can be efficiently

performed with the hybrid method.

We are aware of the fact that such a method, in principle,

needs to be validated solving the channel as well as the cal-

cium and the buffer dynamics fully stochastically, according

to the reaction-diffusion master equation (62–64). Due to the

large amount of calcium and buffer molecules in the system,

this would not even be feasible on supercomputers, since the

computational effort scales with the number of reactions

(including diffusion as a first-order, i.e., pseudo reaction; see,

e.g., (64)). However, pursuing along a similar line as in

Alfonsi et al. (46), we may justify our new approach. Since

calcium and dye buffer concentrations are high, as are the

diffusion and binding rate constants for calcium-dye binding

processes, the resulting propensities will be large. As a con-

sequence, all diffusion reactions as well as the calcium dye-

binding processes can be modeled deterministically. However,

the propensities corresponding to the channel dynamics will

be small to moderate, since the associated rate constants are

small. This finally results in the herein presented model, a

deterministic reaction-diffusion model for calcium and the

dye buffer, coupled to a stochastic model of the channel

kinetics. The proposed algorithmic realization is therefore

based on the same theoretical justification as the method in

Alfonsi et al. (46).

We finally discuss the relevance of our work for the

understanding of calcium dynamics. First of all, our model

uses an additional active state compared to the DYK model.

This additional state enables us to fit short mean open and

mean close times, which were found in experimental data

and which could not be fitted using the DYK model.

Furthermore, we found that the existence of the additional

conformational change results in bursts of rapid openings

and closings if calcium is used as a carrier, similar to that

found by Swillens et al. (35). In this and in further respects

the nine-state model for subunit dynamics will be a better

model for ongoing studies of calcium dynamics. For in-

stance, the existence of two timescales of activity inherent

to the nine-state model (i.e., the mean open time and the

duration of a burst) may well have consequences for the

dynamics of clusters of channels and will be studied in more

detail in the future.

APPENDIX

In Table 1 we provide the complete list of parameters of our model.

S. R. and C. N. are supported by grants No. FA 350/6-1 and No. WA 633/

16-1 of the Deutsche Forschungsgemeinschaft within the priority program

SPP No. 1095 ‘‘Analysis, Modeling, and Simulation of Multiscale

Problems’’. W.H. acknowledges financial support by the DFG Research

Center Matheon ‘‘Mathematics for Key Technologies: Modeling, Simula-

tion, and Optimization of Real-World Processes’’. I. P. acknowledges

TABLE 1 List of parameters

Parameter Value Unit

Channel flux coefficient P 6.32 3 106 nm s�1

Single channel radius Rs 6 nm

Pump flux coefficient Pp 40000 nm mM s�1

Pump dissociation coefficient Kd 0.2 mM

Ca21 concentration in ER, E 700 mM

Ca21 concentration in cytosol at rest, c0 0.05 mM

Leak flux coefficient Pl ¼ Ppc
2
0=Eðc201K2

dÞ 3.36 nm s�1

Diffusion coefficient D of free cytosolic Ca21 200 mm2 s�1

Diffusion coefficient Dm of mobile buffer 200 mm2 s�1

Diffusion coefficient Ddye of dye buffer 15.0 mm2 s�1

On-rates of fast buffers:

k1s 50 (mM s)�1

k1m 5 (mM s)�1

k1dye 150 (mM s)�1

Dissociation constants of buffers Ki ¼ k�i =k
1
i :

K1
s 2 mM

K1
m 0.15 mM

K1
dye 2 mM

Total concentrations of buffers:

Bs 80 mM

Bm 300 mM

Bdye 40 mM

Subunit kinetics, note bi ¼ aidi
IP3 binding

a1, a3 80 (mM s)�1

d1 0.008 mM

d3 0.5 mM

Inhibiting, with IP3
a2 0.04 (mM s)�1

d2 12 mM

Inhibiting, without IP3
a4 0.4 (mM s)�1

d4 0.192 mM

Activating

a5 15 (mM s)�1

d5 0.8 mM

Open conformational transition

a0 550 mM

b0 80 mM
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