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Abstract

We study the question of asymptotic stability, as time tends to infinity, of solutions of dissipative anisotropic Kirchhoff systems,
involving the p(x)-Laplacian operator, governed by time-dependent nonlinear damping forces and strongly nonlinear power-like
variable potential energies. This problem had been considered earlier for potential energies which arise from restoring forces,
whereas here we allow also the effect of amplifying forces. Global asymptotic stability can then no longer be expected, and should
be replaced by local stability. The results are further extended to the more delicate problem involving higher order damping terms.
© 2008 Elsevier Inc. All rights reserved.

Keywords: Dissipative anisotropic p(x)-Kirchhoff systems; Time-dependent nonlinear damping forces; Strongly nonlinear potential energies;
Local and global asymptotic stability

1. Introduction

In this paper we investigate the asymptotic behavior of solutions of the dissipative anisotropic p(x)-Kirchhoff
systems of the form{

utt − M
(
I u(t)

)
�p(x)u + Q(t, x,u,ut ) + f (x,u) = 0 in R

+
0 × Ω,

u(t, x) = 0 on R
+
0 × ∂Ω,

(1.1)

where u = (u1, . . . , uN) = u(t, x) is the vectorial displacement, N � 1, R
+
0 = [0,∞), Ω is a bounded domain of R

n,
M is given by

M(τ) = a + bγ τγ−1, τ � 0, (1.2)

with a, b � 0, a +b > 0 and γ > 1, and I u(t) = ∫
Ω

{|Du(t, x)|p(x)/p(x)}dx is the natural associated p(x)-Dirichlet
energy integral. In the problem (1.1) the operator �p(x) denotes the p(x)-Laplacian operator, that is �p(x)u =
div(|Du|p(x)−2Du). The study of p-Kirchhoff equations involves the quasilinear homogeneous p-Laplace operator
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and is based on the theory of standard Sobolev spaces W
1,p

0 (Ω) for weak solutions, cf. [6]; see also [7] for wave
equations and [4] for the elliptic case. For the nonhomogeneous p(x)-Kirchhoff operators the natural setting is the
one of variable exponent Sobolev spaces, which have been used in the last decades to model various phenomena, see
[5,10–18], as well as [23,24] and references therein. Indeed, in recent years, there has been an increasing interest in
studying systems involving somehow nonhomogeneous p(x)-Laplace operators, motivated by the image restoration
problem, the modeling of electrorheological fluids (sometimes referred to as smart fluids), as well as the thermo-
convective flows of non-Newtonian fluids: details and further references can be found in [2] and [17]. For the regularity
of weak solutions we refer to [1].

Throughout the paper we assume

Q ∈ C
(
R

+
0 × Ω × R

N × R
N → R

N
)
, f ∈ C

(
Ω × R

N → R
N

)
.

The function Q, representing a nonlinear damping, verifies the condition(
Q(t, x,u, v), v

)
� 0 for all arguments t, x, u, v, (1.3)

where (·,·) is the inner product of R
N . The external force f is assumed to be derivable from a potential F , that is

f (x,u) = ∂uF (x,u), (1.4)

where F ∈ C1(Ω × R
N → R

+
0 ) and F(x,0) = 0.

Moreover, when the first eigenvalue μ0 of �p(·) in Ω , with zero Dirichlet boundary conditions, is positive, that is

μ0

∫
Ω

|ϕ(x)|p(x)

p(x)
dx �

∫
Ω

|Dϕ(x)|p(x)

p(x)
dx (1.5)

for all ϕ ∈ W
1,p(·)
0 (Ω), we allow (f (x,u),u) to take negative values. In other words we assume that(

f (x,u),u
)
� −aμ|u|p(x) in Ω × R

N, (1.6)

for some μ ∈ [0,μ0p−/p+), with 1 < p− � p(x) � p+ in Ω , where p+ = supx∈Ω p(x) and p− = infx∈Ω p(x), see
Section 2 for details. The most interesting case occurs when p− < p+, that is in the so-called nonstandard growth
condition of (p−,p+) type, cf. [2]. In particular, in the applications, the function p is supposed to satisfy the usual
request 1 < p− � p+ < n. In this paper we need and assume the stronger condition 2n/(n + 2) � p− � p+ < n, in
order to get the necessary embeddings.

In studying asymptotic stability, (1.6) leads to different situations when μ0 = 0 or μ0 > 0. As a matter of fact in
general μ0 may be zero; in [10, Theorems 3.3 and 3.4] are given sufficient conditions under which μ0 > 0, as in the
standard p-Laplacian model. When μ0 = 0 we take in (1.6) also μ = 0. Therefore, when either μ0 = 0 or a = 0,
that is in the latter case when (1.1) is degenerate, then (1.6) reduces to the more familiar condition (f (x,u),u) � 0,
namely f is of restoring type.

Throughout the paper we consider a growth condition on f involving a continuous function q such that p(x) �
q(x) for all x ∈ Ω . Moreover, when q(y) > p∗(y) for some y ∈ Ω , a further growth hypothesis on the external force
f is assumed; here p∗ = p∗(x) denotes the variable Sobolev critical exponent for the space W

1,p(·)
0 (Ω), see Section 2.

In [22] global existence of solutions is proved without imposing any bound on the exponent q(x) ≡ q of the source
term f , when f does not depend on t as in our setting. This justifies the importance to consider for asymptotic stability
also the case in which the condition q � p∗ in Ω fails. We remind to [22] for a complete recent bibliography for wave
equations with also nonlinear dampings, in the classical framework of Lebesgue and Sobolev spaces.

In the context of problem (1.1) the question of asymptotic stability is best considered by means of the natural
energy associated with the solutions of (1.1), namely

Eu(t) = 1

2

∥∥ut (t, ·)
∥∥2

2 + aI u(t) + b
[
I u(t)

]γ + Fu(t),

where Fu(t) = ∫
Ω

F(x,u(t, x)) dx. In Section 3 we provide our main result about global asymptotic stability, based
on the a priori existence of a suitable auxiliary function k = k(t), which was first introduced by Pucci and Serrin
in [19]. To do this we follow the principal ideas of [20,21], already employed in [3], overcoming the new difficulties
arisen from the more delicate setting.
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Similar problems in the literature are concerned with potential energies which derive from restoring forces, while
here we allow also the effect of amplifying forces, expressed by (1.6) when μ > 0, as in [21] for wave systems
with p ≡ 2. Global asymptotic stability can then no longer be expected, and should be replaced by local stability,
discussed in Section 4. Such a framework requires however some stronger assumptions on the variable exponents p

and q . Indeed, we suppose p+ < q− and q � p∗ in Ω , see Theorem 4.1. Furthermore, because of the delicacy of the
problem, only the non-degenerate case a > 0 is treated, assuming also μ0 > 0.

Further applications to more general models are given in Section 5. In particular, we study the problem{
utt − M

(
I u(t)

)
�p(x)u − g(t)�p(x)ut + Q(t, x,u,ut ) + f (x,u) = 0 in R

+
0 × Ω,

u(t, x) = 0 on R
+
0 × ∂Ω,

(1.7)

where g ∈ L1
loc(R

+
0 → R

+
0 ), which involves higher dissipation terms, interesting from an applicative point of view,

and includes the previous model (1.1) when g ≡ 0. In Theorem 5.3 we deal with global asymptotic stability while
in Theorem 5.4 the question of local stability is treated, essentially following the guide lines of Sections 3 and 4,
respectively.

2. Preliminaries

We consider the following setting. Let

C+(Ω) =
{
h ∈ C(Ω): min

x∈Ω

h(x) > 1
}
.

For any h ∈ C+(Ω) we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

Fix p ∈ C+(Ω). The variable exponent Lebesgue space Lp(·)(Ω) = [Lp(·)(Ω)]N is the real vector space of all the
measurable vector-valued functions u : Ω → R

N such that
∫
Ω

|u(x)|p(x) dx is finite. This space, endowed with the
so-called Luxemburg norm

‖u‖p(·) = inf

{
λ > 0:

∫
Ω

∣∣∣∣u(x)

λ

∣∣∣∣
p(x)

dx � 1

}
,

is a separable and reflexive Banach space. For basic properties of the variable exponent Lebesgue spaces we refer
to [16]. Since 0 < |Ω| < ∞, if p, q are variable exponents in C+(Ω) such that p � q in Ω , then the embedding
Lq(·)(Ω) ↪→ Lp(·)(Ω) is continuous [16, Theorem 2.8].

Let Lp′(·)(Ω) be the conjugate space of Lp(·)(Ω), obtained by conjugating the exponent pointwise that is, 1/p(x)+
1/p′(x) = 1 [16, Corollary 2.7]. For any u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω) the following Hölder type inequality, see
[16, Theorem 2.1],∣∣∣∣

∫
Ω

(u, v) dx

∣∣∣∣ � rp‖u‖p(·)‖v‖p′(·), rp := 1

p−
+ 1

p′−
, (2.1)

is valid.
An important role in manipulating the generalized Lebesgue–Sobolev spaces is played by the p(·)-modular of the

Lp(·)(Ω) space, which is the mapping ρp(·) : Lp(·)(Ω) → R defined by

ρp(·)(u) =
∫
Ω

|u|p(x) dx.

If (un)n, u ∈ Lp(·)(Ω), then the following relations hold

‖u‖p(·) < 1 (= 1; > 1) ⇔ ρp(·)(u) < 1 (= 1; > 1), (2.2)

‖u‖p(·) > 1 ⇒ ‖u‖p−
p(·) � ρp(·)(u) � ‖u‖p+

p(·), (2.3)

‖u‖p(·) < 1 ⇒ ‖u‖p+
p(·) � ρp(·)(u) � ‖u‖p−

p(·), (2.4)
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‖un − u‖p(·) → 0 ⇔ ρp(·)(un − u) → 0, (2.5)

when p+ < ∞. For a proof of these facts see [16].
If p ∈ C+(Ω), the variable exponent Sobolev space W 1,p(·)(Ω) = [W 1,p(·)(Ω)]N , consisting of functions u ∈

Lp(·)(Ω) whose distributional Jacobian matrix Du exists almost everywhere and belongs to [Lp(·)(Ω)]nN , endowed
with the norm

‖u‖1,p(·) = ‖u‖p(·) + ‖Du‖p(·),
is a separable and reflexive Banach space. As shown by Zhikov [23,24], the smooth functions are in general not dense
in W 1,p(·)(Ω), but if the variable exponent p in C+(Ω) is logarithmic Hölder continuous, that is∣∣p(x) − p(y)

∣∣ � − M

log |x − y| for all x, y ∈ Ω such that |x − y| � 1/2, (2.6)

then the smooth functions are dense in W 1,p(·)(Ω), and so the Sobolev space with zero boundary values, denoted
by W

1,p(·)
0 (Ω) = [W 1,p(·)

0 (Ω)]N , as the closure of C∞
0 (Ω) under the norm ‖ · ‖1,p(·), is meaningful, see [12,15].

Furthermore, if p ∈ C+(Ω) satisfies (2.6), then C∞
0 (Ω) is dense in W

1,p(·)
0 (Ω), that is H

1,p(·)
0 (Ω) = W

1,p(·)
0 (Ω)

[13, Theorem 3.3]. Since Ω is an open bounded set and p ∈ C+(Ω) satisfies (2.6), the p(·)-Poincaré inequality

‖u‖p(·) � C‖Du‖p(·)

holds for all u ∈ W
1,p(·)
0 (Ω), where C depends on p, |Ω|, diam(Ω), n and N [13, Theorem 4.1], and so

‖u‖ = ‖Du‖p(·)

is an equivalent norm in W
1,p(·)
0 (Ω). Of course also the norm

‖u‖p(·) =
n∑

i=1

‖∂xi
u‖p(·)

is an equivalent norm in W
1,p(·)
0 (Ω). Hence W

1,p(·)
0 (Ω) is a separable and reflexive Banach space.

Note that if p+ < n and h ∈ C(Ω), with 1 � h(x) < p∗(x) for all x ∈ Ω , where

p∗(x) = np(x)

n − p(x)
,

then the embedding W
1,p(·)
0 (Ω) ↪→ Lh(·)(Ω) is compact and continuous, see [11, Theorem 2.3, case m = 1]; while the

embedding W
1,p(·)
0 (Ω) ↪→ Lp∗(·)(Ω) is continuous, see [14, Proposition 4.2] by virtue of (2.6) and [5, Corollary 5.3]

when also p− > 1. Furthermore, since Lq(·)(Ω) ↪→ Lp(·)(Ω) continuously when p,q ∈ C+(Ω) are such that p � q

in Ω , we have W 1,q(·)(Ω) ↪→ W 1,p(·)(Ω), and in particular W
1,p(·)
0 (Ω) ↪→ W

1,p−
0 (Ω) ↪→ Lp∗−(Ω).

Clearly the canonical main case is when 1 < p− � p+ < n, but, in order to have the useful embeddings for our
aims, we actually assume, throughout the paper, that p ∈ C+(Ω) and (2.6), together with

2n/(n + 2) � p− � p+ < n, (2.7)

hold. Details, extensions and further references about p(x)-spaces and embeddings can be found in [5] and [8–16].
Let h ∈ C(Ω) be such that 1 � h � p∗ in Ω , and denote with λh(·) the Sobolev constant of the continuous embed-

ding W
1,p(·)
0 (Ω) ↪→ Lh(·)(Ω), that is

‖u‖h(·) � λh(·)‖Du‖p(·) for all u ∈ W
1,p(·)
0 (Ω), (2.8)

where λh(·) depends on n, h, p, |Ω| and N , see [14, Proposition 4.2] and [16, Theorem 2.8]. Of course in (2.8) we
can have h ≡ 1, since |Ω| < ∞, and h ≡ 2 by (2.7).

Throughout the paper we endow the usual Lebesgue space L2(Ω) with the canonical norm

‖ϕ‖2 =
(∫ ∣∣ϕ(x)

∣∣2
dx

)1/2

,

Ω
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with elementary bracket pairing

〈ϕ,ψ〉 ≡
∫
Ω

(ϕ,ψ)dx,

for all ϕ, ψ such that (ϕ,ψ) ∈ L1(Ω). As stated above, for further simplicity, we set

Lp(·)(Ω) = [
Lp(·)(Ω)

]N
, X = W

1,p(·)
0 (Ω) = [

W
1,p(·)
0 (Ω)

]N
,

endowed with the norms ‖ · ‖p(·) and ‖u‖ = ‖Du‖p(·), respectively. Now introduce

K ′ = C
(
R

+
0 → X

) ∩ C1(
R

+
0 → L2(Ω)

)
and K = {

φ ∈ K ′: Eφ is locally bounded on R
+
0

}
,

where Eφ is the total energy of the field φ given by

Eφ(t) = 1

2

∥∥φt (t, ·)
∥∥2

2 + aI φ(t) + b
[
I φ(t)

]γ + Fφ(t), (2.9)

and I φ is the p(·)-Dirichlet energy integral

I φ = I φ(t) =
∫
Ω

|Dφ(t, x)|p(x)

p(x)
dx

while Fφ is the potential energy of the field, defined by

Fφ = Fφ(t) =
∫
Ω

F
(
x,φ(t, x)

)
dx.

In writing Eφ and Fφ we make the tacit agreement that Fφ is well-defined, namely that F(·, φ(t, ·)) ∈ L1(Ω)

for all t ∈ R
+
0 .

We can now give our principal definition: a strong solution of (1.1) is a function u ∈ K satisfying the following
two conditions:

(A) Distribution identity

〈ut ,φ〉]t0 =
t∫

0

{
〈ut ,φt 〉 − M

(
I u(t)

) ∫
Ω

|Du|p(x)−2(Du,Dφ)dx − 〈
Q(τ, ·, u,ut ) + f (·, u),φ

〉}
dτ

for all t ∈ R
+
0 and φ ∈ K.

(B) Conservation law

(i) Du := 〈
Q(t, ·, u,ut ), ut

〉 ∈ L1
loc

(
R

+
0

)
,

(ii) t �→ Eu(t) +
t∫

0

Du(τ) dτ is non-increasing in R
+
0 .

Conditions (B)(ii) and (1.3) imply that Eu is non-increasing in R
+
0 .

We make the following natural hypothesis on f and Q, and remind that the variable exponent p is assumed to
verify 2n/(n + 2) � p− � p(x) � p+ < n, for all x ∈ Ω .

(H) Conditions (1.4) and (1.6) hold and there exist a variable exponent q ∈ C+(Ω), with q � p in Ω , and a positive
constant κ such that

(a)
∣∣f (x,u)

∣∣ � κ
(
1 + |u|q(x)−1) for all (x,u) ∈ Ω × R

N .

Moreover, if there exists y ∈ Ω such that q(y) > p∗(y), then f verifies (a) and
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(b)
(
f (x,u),u

)
� κ1|u|q(x) − κ2|u|1/q(x) − κ3|u|p∗(x) for all (x,u) ∈ Ω × R

N

for appropriate constants κ1 > 0, κ2, κ3 � 0.

When f ≡ 0, then (H)(a) holds for any fixed q ∈ C+(Ω), with p � q � p∗ in Ω , so that (H)(b) is unnecessary.

(AS) Condition (1.3) holds and there are constant exponents m, r satisfying

p− � m < r � s, s = max
{
q−,p∗−

}
,

where m′ and r ′ are the Hölder conjugates of m and r , and non-negative continuous functions d1 = d1(t, x),
d2 = d2(t, x), such that for all arguments t , x, u, v,

(a)
∣∣Q(t, x,u, v)

∣∣ � d1(t, x)1/m
(
Q(t, x,u, v), v

)1/m′ + d2(t, x)1/r
(
Q(t, x,u, v), v

)1/r ′
,

and the following functions δ1 and δ2 are well-defined

δ1(t) = ∥∥d1(t, ·)
∥∥

s/(s−m)
, δ2(t) =

{‖d2(t, ·)‖s/(s−r), if r < s,

‖d2(t, ·)‖∞, if r = s.

Moreover, there are functions σ = σ(t), ω = ω(τ) such that

(b)
(
Q(t, x,u, v), v

)
� σ(t)ω

(|v|) for all arguments t, x, u, v,

where ω ∈ C(R+
0 → R

+
0 ) is such that

ω(0) = 0, ω(τ) > 0 for 0 < τ < 1, ω(τ) = τ 2 for τ � 1,

while σ � 0 and σ 1−℘ ∈ L1
loc(R

+
0 ) for some exponent ℘ > 1.

3. Global asymptotic stability

Theorem 3.1. Let (H) and (AS) hold. Suppose there exists a function k satisfying either

k ∈ CBV
(
R

+
0 → R

+
0

)
and k /∈ L1

(
R

+
0

)
or (3.1)

k ∈ W
1,1
loc

(
R

+
0 → R

+
0

)
, k �≡ 0 and lim

t→∞

∫ t

0 |k′(τ )|dτ∫ t

0 k(τ ) dτ
= 0. (3.2)

Assume finally

lim inf
t→∞ A

(
k(t)

)( t∫
0

k(τ ) dτ

)−1

< ∞, (3.3)

where

A
(
k(t)

) = B
(
k(t)

) +
( t∫

0

σ 1−℘k℘ dτ

)1/℘

,

B
(
k(t)

) =
( t∫

0

δ1k
m dτ

)1/m

+
( t∫

0

δ2k
r dτ

)1/r

. (3.4)

Then along any strong solution u of (1.1) we have

lim
t→∞Eu(t) = 0 and lim

t→∞
{∥∥ut (t, ·)

∥∥
2 + ∥∥Du(t, ·)∥∥

p(·)
} = 0. (3.5)



G. Autuori et al. / J. Math. Anal. Appl. 352 (2009) 149–165 155
The integral condition (3.3) prevents the damping term Q being either too small (underdamping) or too large
(overdamping) as t → ∞ and was introduced by Pucci and Serrin in [19], see also [20] and [21].

Before proving Theorem 3.1 we give two preliminary lemmas under conditions (H) and (AS)(a) which make the
definition of strong solution meaningful.

Lemma 3.2. Let u be a strong solution of (1.1). Then the non-increasing energy function Eu verifies in R
+
0

Eu �
{

1
2‖ut‖2

2 + a(1 − μ
μ0

)I u(t) + b[I u(t)]γ , if μ0 > 0,

1
2‖ut‖2

2 + aI u(t) + b[I u(t)]γ , if μ0 = 0.
(3.6)

Moreover

‖u‖2,‖ut‖2,‖Du‖p(·),‖u‖q(·),‖u‖p∗(·),M(I u) ∈ L∞(
R

+
0

)
,

Du = 〈
Q(t, x,u,ut ), ut

〉 ∈ L1(
R

+
0

)
. (3.7)

Proof. Case 1: μ0 > 0. By (1.6) we have F(x,u) � −aμ|u|p(x)/p(x) in Ω × R
N , so that along the strong solution

u = u(t, x) of (1.1)

Fu(t) � −aμ

∫
Ω

|u(t, x)|p(x)

p(x)
dx � −a

μ

μ0
I u(t).

Hence (3.6) follows at once.
In order to prove conditions (3.7) first note that Eu is bounded above by Eu(0), as well as I u, by the definition

of Eu and the fact that a + b > 0. Hence M(I u) ∈ L∞(R+
0 ). Moreover I u(t) � ρp(·)(Du(t, ·))/p+ and

‖Du‖p(·) � max
{[

ρp(·)(Du)
]1/p− ,

[
ρp(·)(Du)

]1/p+}
, (3.8)

so that ‖ut‖2,‖Du‖p(·) ∈ L∞(R+
0 ) by (3.6). Hence ‖u‖2 ∈ L∞(R+

0 ), since X = W
1,p(·)
0 (Ω) is continuously embed-

ded in L2(Ω) by (2.7), that is (2.8) holds for h ≡ 2. Furthermore, when p � q � p∗ in Ω , since the Sobolev embed-
dings X ↪→ Lq(·)(Ω) and X ↪→ Lp∗(·)(Ω) are continuous by (2.6), as noted in (2.8), also ‖u‖q(·), ‖u‖p∗(·) ∈ L∞(R+

0 ).
Let us now consider the case in which there exists y ∈ Ω such that q(y) > p∗(y). Hence, by (H)(b) we get for all

φ ∈ K

F(x,φ) =
1∫

0

(
f (x, τφ),φ

)
dτ

�
1∫

0

(
κ1|φ|q(x)τ q(x)−1 − κ2|φ|1/q(x)τ−1/q ′(x) − κ3|φ|p∗(x)τp∗(x)−1)dτ

= κ1

q(x)
|φ|q(x) − q(x)κ2|φ|1/q(x) − κ3

p∗(x)
|φ|p∗(x),

and, since κ1 > 0, we then have along the solution u ∈ K

ρq(·)
(
u(t, ·)) � q+

κ1

(
Fu(t) + K max

{∥∥u(t, ·)∥∥1/q−
1 ,

∥∥u(t, ·)∥∥1/q+
1

} + κ3

p∗−
ρp∗(·)

(
u(t, ·))), (3.9)

where K = (1/q− + 1/q ′−)q+κ2 max{|Ω|1/q ′− , |Ω|1/q ′+}. Now observe that Fu is bounded above being Eu(t) �
Eu(0) and also below by (1.6). Moreover, since ‖ut‖2, ‖Du‖p(·) ∈ L∞(R+

0 ), we also get ‖u‖1 ∈ L∞(R+
0 ) by (2.8)

when h ≡ 1, as well as

ρp∗(·)
(
u(t, ·)) � max

{∥∥u(t, ·)∥∥p∗−
p∗(·)

∥∥u(t, ·)∥∥p∗+
p∗(·)

}
� constant,

since again ‖u‖p∗(·) ∈ L∞(R+
0 ) by (2.8) with h = p∗. Therefore ρq(·)(u) ∈ L∞(R+

0 ). Hence ‖u‖q(·) ∈ L∞(R+
0 ) by

(2.3)–(2.4) and (3.9). This completes the proof of (3.7)1.
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Case 2: μ0 = 0. The situation is much simpler since the external force f is of restoring type. It follows that
Fu(t) � 0 for all t ∈ R

+
0 and (3.6) follows at once. Hence Eu � 0 since all the three terms in the definition of Eu,

with u ∈ K , are non-negative, and clearly bounded by Eu(0). Hence ‖ut‖2 ∈ L∞(R+
0 ) and from the fact that

a
ρp(·)(Du(t, ·))

p+
+ b

[
ρp(·)(Du(t, ·))

p+

]γ

� aI u(t) + b
[
I u(t)

]γ
,

and the right-hand side is bounded by Eu(t) � Eu(0), in turn M(I u) and ρp(·)(Du(t, ·)) are also bounded in R
+
0

since a+b > 0 and γ > 1. Hence ‖Du‖p(·) ∈ L∞(R+
0 ) by (3.8). From now on the proof can proceed as in the previous

case word by word. Therefore (3.7)1 is valid also in the case μ0 = 0.
Property (3.7)2 follows at once by (B)(ii) since in R

+
0

0 �
t∫

0

Du(τ) dτ � Eu(0)

by (1.3). �
By (B)(ii) and Lemma 3.2 it is clear that there exists l � 0 such that

lim
t→∞Eu(t) = l. (3.10)

Lemma 3.3. Let u be a strong solution of (1.1) and suppose l > 0 in (3.10). Then there exists a constant α = α(l) > 0
such that in R

+
0∥∥ut (t, ·)
∥∥2

2 + aρp(·)
(
Du(t, ·)) + b

p
γ−1
+

[
ρp(·)

(
Du(t, ·))]γ + 〈

f (·, u), u
〉
� α. (3.11)

Proof. Since Eu(t) � l for all t ∈ R
+
0 it follows that∥∥ut (t, ·)

∥∥2
2 + aρp(·)

(
Du(t, ·)) + b

[
ρp(·)

(
Du(t, ·))]γ � η(l − Fu) in R

+
0 ,

where η = min{2,p−} > 1. Let

J1 = {
t ∈ R

+
0 : Fu(t) � l/η′}, J2 = {

t ∈ R
+
0 : Fu(t) > l/η′},

where η′ = η/(η − 1) is the Hölder conjugate of η. For t ∈ J1

‖ut‖2 + aρp(·)
(
Du(t, ·)) + b

[
ρp(·)

(
Du(t, ·))]γ � l,

so that

‖ut‖2 + aρp(·)
(
Du(t, ·)) + b

p
γ−1
+

[
ρp(·)

(
Du(t, ·))]γ � l

p
γ−1
+

. (3.12)

Before dividing the proof into two parts, we observe that in R
+
0

|Fu| � κ
[‖u‖1 + ρq(·)(u)

]
� κ

(‖u‖1 + max
{‖u‖q−

q(·),‖u‖q+
q(·)

})
(3.13)

by (H)(a) and (2.3)–(2.4).
Case 1: q(x) � p∗(x) for all x ∈ Ω . Let us first consider the case in which μ0 > 0. By Lemma 3.1 of [10] we also

have μ0 > 0, where

μ0

∫
Ω

∣∣ϕ(x)
∣∣p(x)

dx �
∫
Ω

∣∣Dϕ(x)
∣∣p(x)

dx

for all ϕ ∈ X. Hence by (1.6) and the fact that μ0 � μ0p−/p+, since u ∈ K ,
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〈
f (·, u), u

〉
� −aμ

∫
Ω

∣∣u(t, x)
∣∣p(x)

dx � −a
μ

μ0

∫
Ω

∣∣Du(t, x)
∣∣p(x)

dx � −a
μ

μ0

p+
p−

ρp(·)
(
Du(t, ·)). (3.14)

Denoting by L u the left-hand side of (3.11) and using (3.12) and (3.14), we have for all t ∈ J1

L u(t) � a

(
1 − μ

μ0
· p+
p−

)
ρp(·)

(
Du(t, ·)) + ∥∥ut (t, ·)

∥∥2
2 + b

p
γ−1
+

[
ρp(·)

(
Du(t, ·))]γ

�
(

1 − μ

μ0
· p+
p−

)
l

p
γ−1
+

+ μ

μ0
· p+
p−

(∥∥ut (t, ·)
∥∥2

2 + b

p
γ−1
+

[
ρp(·)

(
Du(t, ·))]γ )

�
(

1 − μ

μ0
· p+
p−

)
l

p
γ−1
+

.

Next consider t ∈ J2. By (3.13), (2.8) and (2.2)–(2.4) we have in R
+
0

|Fu| � C
(‖Du‖p(·) + max

{‖Du‖q−
p(·),‖Du‖q+

p(·)
})

, (3.15)

for an appropriate constant C > 0, depending on κ , λ1, λq(·) introduced in (2.8) and p. Hence in J2

l

η′ < Fu(t) � 2C

{‖Du(t, ·)‖p(·), if ‖Du(t, ·)‖p(·) � 1,

‖Du(t, ·)‖q+
p(·), if ‖Du(t, ·)‖p(·) > 1,

(3.16)

that is

∥∥Du(t, ·)∥∥
p(·) � min

{
l

2Cη′ ,
(

l

2Cη′

)1/q+}
= C2(l) > 0.

By (3.14) for all t ∈ J2

L u(t) � a

(
1 − μ

μ0
· p+
p−

)
ρp(·)

(
Du(t, ·)) + b

p
γ−1
+

[
ρp(·)

(
Du(t, ·))]γ

� a

(
1 − μ

μ0
· p+
p−

)
min

{∥∥Du(t, ·)∥∥p−
p(·),

∥∥Du(t, ·)∥∥p+
p(·)

}
+ b

p
γ−1
+

[
min

{∥∥Du(t, ·)∥∥p−
p(·),

∥∥Du(t, ·)∥∥p+
p(·)

}]γ
.

Denoting by C3 = C3(l) the positive number min{Cp−
2 (l),C

p+
2 (l)}, then in J2

L u � a

(
1 − μ

μ0
· p+
p−

)
C3 + b

p
γ−1
+

C
γ

3 .

Therefore (3.11) holds with

α = α(l) =
(

1 − μ

μ0
· p+
p−

)
min

{
l

p
γ−1
+

, aC3

}
+ b

p
γ−1
+

C
γ

3 , (3.17)

provided that either a �= 0 or J2 �= ∅, being a + b > 0.
Now, if a = 0 and J2 = ∅, then (1.6) reduces to (f (x,u),u) � 0, and so (3.11) holds with α = l/p

γ−1
+ > 0.

When μ0 = 0, that is when also μ = 0 in (1.6), then the proof simplifies and (3.11) holds with

α = α(l) = min

{
l

p
γ−1
+

, aC3

}
+ b

p
γ−1
+

C
γ

3 > 0,

since l > 0 and a + b > 0.
Case 2: There exists y ∈ Ω such that q(y) > p∗(y). As before we first suppose μ0 > 0. Using (3.13)1, (H)(b) and

Hölder’s inequality, we have for t ∈ J2, since κ1 > 0,



158 G. Autuori et al. / J. Math. Anal. Appl. 352 (2009) 149–165
l

η′ < Fu(t) � κ0
[〈
f

(·, u(t, ·)), u(t, ·)〉 + κ1
∥∥u(t, ·)∥∥1 + κ̃2 max

{∥∥u(t, ·)∥∥1/q−
1 ,

∥∥u(t, ·)∥∥1/q+
1

}
+ κ3ρp∗(·)

(
u(t, ·))],

where κ0 = κ/κ1 > 0 and κ̃2 = (1/q− + 1/q ′−)κ2 max{|Ω|1/q ′− , |Ω|1/q ′+}. Therefore, by (2.8), when h ≡ 1,

〈
f (·, u), u

〉 + c1‖Du‖p(·) + c2 max
{‖Du‖1/q−

p(·) ,‖Du‖1/q+
p(·)

} + c3 max
{‖Du‖p∗−

p(·), ‖Du‖p∗+
p(·)

}
> l/κ0η

′,

where c1 = κ1λ1 > 0, c2 = κ̃2 max{λ1/q−
1 , λ

1/q+
1 } � 0 and c3 = κ3 max{λp∗−

p∗(·), λ
p∗+
p∗(·)} � 0. Hence for t ∈ J2 and

〈f (·, u(t, ·)), u(t, ·)〉 � 0, then

either
〈
f

(·, u(t, ·)), u(t, ·)〉 � l/2κ0η
′ or

∥∥Du(t, ·)∥∥
p(·) � c4, (3.18)

where c4 = c4(l, κ0, η) > 0 is an appropriate constant, arising when

c1‖Du‖p(·) + c2 max
{‖Du‖1/q−

p(·) ,‖Du‖1/q+
p(·)

} + c3 max
{‖Du‖p∗−

p(·),‖Du‖p∗+
p(·)

}
� l/2κ0η

′

at the time t . On the other hand, if t ∈ J2 and 〈f (·, u(t, ·)), u(t, ·)〉 < 0, then ‖Du(t, ·)‖p(·) � c5, where c5 � c4 is an
appropriate number arising from

c1‖Du‖p(·) + c2 max
{‖Du‖1/q−

p(·) ,‖Du‖1/q+
p(·)

} + c3 max
{‖Du‖p∗−

p(·),‖Du‖p∗+
p(·)

}
� l/κ0η

′.

Now, when μ0 > 0 in (1.6), putting c6 = min{cp−
5 , c

p+
5 }, the conclusion (3.11) holds, with

α = min

{(
1 − μ

μ0

p+
p−

)
l

p
γ−1
+

, a

(
1 − μ

μ0

p+
p−

)
c6 + b

p
γ−1
+

c
γ

6 , ac4 + b

p
γ−1
+

c
γ

4 ,
l

2κ0η′

}
> 0,

since l > 0, μ ∈ [0,μ0p−/p+), c4 > 0, c6 > 0 and a + b > 0.
While if μ0 = 0, hence μ = 0 in (1.6), then (3.11) holds, with

α = min

{
l

p
γ−1
+

, ac6 + b

p
γ−1
+

c
γ

6 , ac4 + b

p
γ−1
+

c
γ

4 ,
l

2κ0η′

}
> 0.

This completes the proof. �
Proof of Theorem 3.1. The approach is analogous to the one of [3, Theorem 3.1], which is related to the main ideas
of the proof of [20, Theorem 3.1] and [21, Theorem 1]. Initially we treat case (3.1) in the simpler situation in which
k is not only CBV(R+

0 ), but also of class C1(R+
0 ). Suppose, for contradiction that l > 0 in (3.10). Define a Lyapunov

function by

V (t) = k(t)〈u,ut 〉 = 〈ut ,φ〉, φ = k(t)u.

Since k ∈ C1(R+
0 ) and φt = k′u + kut , it is clear that φ ∈ K . Thus, by the distribution identity (A) in Section 2, we

get for any t � T � 0

V (τ)]tT =
t∫

T

{
k′〈u,ut 〉 + 2k‖ut‖2

2 − k
[‖ut‖2

2 + M
(
I u(t)

)
ρp(·)

(
Du(t, ·)) + 〈

f (·, u), u
〉]}

dτ

−
t∫

T

k
〈
Q(τ, ·, u,ut ), u

〉
dτ. (3.19)

We now estimate the right-hand side of (3.19). First note that

sup
R

+
0

∣∣〈u(t, ·), ut (t, ·)
〉∣∣ � sup

R
+
0

∥∥u(t, ·)∥∥2 · ∥∥ut (t, ·)
∥∥

2 = U < ∞ (3.20)

by (2.7) and (3.7) of Lemma 3.2, that is ‖u‖2, ‖ut‖2 ∈ L∞(R+). Now, using Lemma 3.3
0
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−
t∫

T

k
{‖ut‖2

2 + M
(
I u(t)

)
ρp(·)

(
Du(t, ·)) + 〈

f (·, u), u
〉}

dτ � −α

t∫
T

k dτ, (3.21)

and by Lemmas 3.2 and 3.3 of [21]

−
t∫

T

k
〈
Q(τ, ·, u,ut ), u

〉
dτ � ε1(T )B

(
k(t)

)
, (3.22)

t∫
T

k‖ut‖2
2 dτ � θ

t∫
T

k dτ + ε2(T )C(θ)

( t∫
0

σ 1−℘k℘ dτ

)1/℘

, (3.23)

where C(θ) = ω
1/℘′
θ , ωθ = sup{τ 2/ω(τ): τ �

√
θ/|Ω| },

ε1(T ) = sup
R

+
0

∥∥u(t, ·)∥∥
s
·
[( ∞∫

T

Du(t) dt

)1/m′

+
( ∞∫

T

Du(t) dt

)1/r ′]
, (3.24)

and

ε2(T ) = sup
R

+
0

∥∥ut (t, ·)
∥∥2/℘

2 ·
( ∞∫

T

Du(t) dt

)1/℘′

, (3.25)

with ε1(T ) = o(1) and ε2(T ) = o(1) as T → ∞ by (3.7) of Lemma 3.2. Thus, by (3.19) it follows

V (τ)]tT � U

t∫
T

|k′|dτ + 2θ

t∫
T

k dτ + 2ε(T )C(θ)

( t∫
0

σ 1−℘k℘ dτ

)1/℘

− α

t∫
T

k dτ + ε(T )B
(
k(t)

)
,

where ε(T ) = max{ε1(T ), ε2(T )}. From now on the proof can proceed exactly as in Theorem 3.1 of [3]. Hence Eu(t)

approaches zero as t → ∞. Thus, by (3.6) and the facts that a + b > 0 and

p+I u(t) � min
{∥∥Du(t, ·)∥∥p−

p(·),
∥∥Du(t, ·)∥∥p+

p(·)
}
,

then (3.5) holds. �
4. Local asymptotic stability

In this section we require (1.6) only for u sufficiently small, but under the stronger requirement that a > 0, that
is (1.1) is non-degenerate, and also μ0 > 0, see [10]. For simplicity and clarity we denote by (H)′ the corresponding
modified condition (H), where (1.6) is now replaced by

lim inf
u→0

(f (x,u),u)

|u|p(x)
� −aμ, with aμ0 > 0 and μ ∈ [0,μ0p−/p+). (4.1)

Theorem 4.1. Suppose that (H)′, with p+ < q− and q � p∗ in Ω , and (AS) hold. Assume that k is the auxiliary
function as in Theorem 3.1, which verifies (3.1)–(3.4). If u is a strong solution of (1.1) with sufficiently small initial
data ‖Du(0, ·)‖p(·), ‖ut (0, ·)‖2, then (3.5) continues to hold.

We start with a series of lemmas, in which we assume that f verifies (H)′.

Lemma 4.2. There exist two numbers μ ∈ (μ,μ0p−/p+) and c > 0 such that(
f (x,u),u

)
� −aμ|u|p(x) − c|u|q(x) in Ω × R

N,

Fφ(t) � −aμ

∫ |φ(t, x)|p(x)

p(x)
dx − c

∫ |φ(t, x)|q(x)

q(x)
dx in R

+
0 for all φ ∈ K. (4.2)
Ω Ω
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Furthermore, if u is a strong solution of (1.1), then for all t ∈ R
+
0

Eu(t) � 1

2

∥∥ut (t, ·)
∥∥2

2 + a

2

(
1 − μ

μ0

)
I u(t) + ã min

{∥∥u(t, ·)∥∥p−
q(·),

∥∥u(t, ·)∥∥p+
q(·)

}
− c̃ max

{∥∥u(t, ·)∥∥q−
q(·),

∥∥u(t, ·)∥∥q+
q(·)

}
, (4.3)

where c̃ = c/q− and by (2.8) and (4.2)1

ã = a

2p+λ̃q(·)

(
1 − μ

μ0
· p+
p−

)
> 0, λ̃q(·) = max

{
λ

p+
q(·), λ

p−
q(·)

}
.

Proof. Inequality (4.2)1 is an immediate consequence of (H)′, and so (4.2)2 follows at once by integration. Indeed,
(f (x,u),u) � −aμ|u|p(x) for all (x,u) ∈ Ω × R

N , with |u| < δ, by (4.1), provided δ ∈ (0,1] is sufficiently small;
while (f (x,u),u) � −c|u|q(x) for all (x,u) ∈ Ω ×R

N , with |u| � δ, by (H)′, provided that c > 0 is sufficiently large.
Hence (4.2)1 holds with c as large as we wish.

By (4.2), the definition of E, (1.5) and (2.3)–(2.4) for p and q , we have in R
+
0

Eu(t) � 1

2

∥∥ut (t, ·)
∥∥2

2 + a

2

(
1 − μ

μ0

)
I u(t) + a

2p+

(
1 − μ

μ0
· p+
p−

)
min

{∥∥Du(t, ·)∥∥p−
p(·),

∥∥Du(t, ·)∥∥p+
p(·)

}
− c

q−
max

{∥∥u(t, ·)∥∥q−
q(·),

∥∥u(t, ·)∥∥q+
q(·)

}
,

and so (4.3) follows at once by application of (2.8) with h = q . �
Furthermore, if p+ < q−, we introduce

Σ = {
(υ,E) ∈ R

2: 0 � υ < υ1, 0 � E < E1
}
, (4.4)

where

υ1 =
(

ã

c

)1/(q−−p+)

, E1 = ã

(
2 − 1

q−

)
υ

p+
1 ,

and the numbers ã and c are given in Lemma 4.2. Without loss of generality, we also assume that ã/c � 1, by taking
c sufficiently large, if necessary.

Lemma 4.3. Assume p+ < q−. Let u be a strong solution of (1.1) and denote by υ(t) the number ‖u(t, ·)‖q(·). If
(υ(0),Eu(0)) ∈ Σ , then(

υ(t),Eu(t)
) ∈ Σ for all t ∈ R

+
0 . (4.5)

Moreover in R
+
0

2Eu(t) �
∥∥ut (t, ·)

∥∥2
2 + a

(
1 − μ

μ0

)
I u(t). (4.6)

Proof. Since I u(t) � min{‖Du(t, ·)‖p−
p(·),‖Du(t, ·)‖p+

p(·)}/p+ by (2.3) and (2.4), then (4.3) and another use of (2.8),
with h = q , yield

Eu(t) � 2ã min
{∥∥u(t, ·)∥∥p−

q(·),
∥∥u(t, ·)∥∥p+

q(·)
} − c̃ max

{∥∥u(t, ·)∥∥q−
q(·),

∥∥u(t, ·)∥∥q+
q(·)

}
=

{
2ãυ(t)p+ − c̃υ(t)q− , if 0 � υ(t) � 1,

2ãυ(t)p− − c̃υ(t)q+ , if υ(t) > 1.

Now, if there would exist t such that υ(t) = υ1 � 1, then

2ãυ
p+ − c̃υ

q− = E1 > Eu(0) � Eu(t) � 2ãυ
p+ − c̃υ

q− ,
1 1 1 1
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Fig. 1. The phase plane (υ,E).

which is impossible. Therefore υ(t) �= υ1 for all t ∈ R
+
0 . Hence by the continuity of υ we have υ(R+

0 ) ⊂ [0, υ1),
being υ(0) < υ1. In particular, the case υ(t) > 1 can never occur. Consequently, we have proved that along any
solution u ∈ K

E1 > Eu(0) � Eu(t) � 2ãυ(t)p+ − c̃υ(t)q− � 0 for all t ∈ R
+
0 , (4.7)

since 0 � υ(t) < υ1 � 1 for all t ∈ R
+
0 . Hence (4.5) is proved and (4.3) reduces to

Eu(t) � 1

2

∥∥ut (t, ·)
∥∥2

2 + a

2

(
1 − μ

μ0

)
I u(t) + ãυ(t)p+ − c̃υ(t)q− . (4.8)

Since ãυp+ − c̃υq− � 0 in [0, υ1] we get (4.6) at once. �
Remark. Lemma 4.3 is easily visualized using the two-dimensional phase plane (υ,E) shown in Fig. 1. In particular,
by (4.7) any point (υ(t),Eu(t)) on the trajectory of a solution u ∈ K must lie above the curve

Γ : E = 2ãυp+ − c̃υq− .

The region Σ ′ is shaded in Fig. 1, with υ1 defined by ãυp+ − c̃υq− = 0. As we shall see if (υ(0),Eu(0)) ∈ Σ ′, then
limt→∞ Eu(t) = 0.

Lemma 4.4. Let the assumptions of Lemma 4.3 hold and assume also that p � q � p∗ in Ω . Then

‖u‖2,‖ut‖2,‖Du‖p(·),‖u‖q(·),‖u‖p∗(·),M(I u) ∈ L∞(
R

+
0

)
,

Du = 〈
Q(t, x,u,ut ), ut

〉 ∈ L1(
R

+
0

)
. (4.9)

Proof. The fact that ‖ut‖2, M(I u) and ‖Du‖p(·) are in L∞(R+
0 ) follow at once by (4.6) and (3.8); moreover ‖u‖2 ∈

L∞(R+
0 ) by (2.7). The latter part of (4.9)1 follows by the continuity of the Sobolev embeddings X ↪→ Lq(·)(Ω) and

X ↪→ Lp∗(·)(Ω), being p � q � p∗ in Ω , as assumed in Theorem 4.1. Property (4.9)2 can be proved exactly as in
Lemma 3.2. �

Of course Lemma 3.3 continues to hold since in the setting of this section we consider the special case in which a,
μ0 > 0 and p � q � p∗ in Ω . In particular, (3.11) holds, with α simply given in (3.17).

Proof of Theorem 4.1. Let (υ(0),Eu(0)) ∈ Σ . Using Lemma 3.3 and Lemmas 4.2–4.4 and the estimates (3.22)
and (3.23), we derive as in the proof of Theorem 3.1 that Eu(t) → 0 as t → ∞. This shows that also (3.5)2 holds
by virtue of (4.6). It remains to show that if the data ‖ut (0, ·)‖2 and ‖Du(0, ·)‖p(·) are sufficiently small, then
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(υ(0),Eu(0)) ∈ Σ . But υ(0) = ‖u(0, ·)‖q(·) < υ1 � 1 if ‖Du(0, ·)‖p(·) is sufficiently small by the continuity of
the embedding X ↪→ Lq(·)(Ω), while the definition of Eu, (3.15) and (2.4) give

Eu(0) � 1

2

∥∥ut (0, ·)∥∥2
2 +

(
a + b

p−
+ 2C

)∥∥Du(0, ·)∥∥
p(·).

This shows that Eu(0) < E1 for sufficiently small data. Finally, since 0 � υ(0) < υ1 it follows that ãυ(0)p+ −
c̃υ(0)q− � 0 and so Eu(0) � 0 by (4.3). �
5. Higher order damping terms

In this section we consider the more delicate system (1.7), in which g ∈ L1
loc(R

+
0 → R

+
0 ), and take

X = W
1,p(·)
0 (Ω) = [

W
1,p(·)
0 (Ω)

]N
, K ′ = C1(

R
+
0 → X

)
and K in the usual way as in Section 2. Moreover through this section we assume p+ − p− < 1 and again the
function E, defined in (2.9), can be taken as the natural energy function along a solution of (1.7), while, as we shall
see below in (B)(ii), the terms involving the new internal damping arising from g = g(t) are treated in the same way
as we did for the external damping Q. When p � 2 in Ω , then K ′ reduces to C1(R+

0 → X), as in [3,20,21].
By a strong solution of (1.7) we mean a function u ∈ K satisfying the following two conditions

(A) Distribution identity for all t ∈ R
+
0 and φ ∈ K

〈ut ,φ〉]t0 =
t∫

0

{〈ut ,φt 〉 − M
(
I u(t)

)〈|Du|p(x)−2Du,Dφ
〉 − g(t)

〈|Dut |p(x)−2Dut ,Dφ
〉

− 〈
Q(t, ·, u,ut ) + f (·, u),φ

〉}
dτ.

(B) Conservation law

(i) Du := 〈
Q(t, ·, u,ut ), ut

〉 ∈ L1
loc

(
R

+
0

)
,

(ii) t �→ Eu(t) +
t∫

0

{
Du(τ) + g(τ)ρp(·)

(
Dut(τ, ·)

)}
dτ

is non-increasing in R
+
0 .

The function t �→ g(t)ρp(·)(Dut (t, ·)) in (B)(ii) is the internal material damping of Kelvin–Voigt type. It is easy to see
that the definition of strong solution is meaningful when hypotheses (H) and (AS)(a) hold. Also in this new context
Eu is non-increasing in R

+
0 by (1.3) and the fact that the integrand in (B)(ii) is non-negative by the non-negativity

of g.
Before proving the main result of the section, we observe that the discussion already given in Section 3 must take

into account the more delicate terms in (A) and (B) involving g. Lemmas 3.2 and 3.3 hold also in this new context; so
(3.10) is true for some l � 0.

As in Section 3 we give some preliminary lemmas under the structural hypothesis (H) and (AS)(a).

Lemma 5.1. Let u be a strong solution of (1.7). Then the function t �→ g(t)ρp(·)(Dut (t, ·)) is in L1(R+
0 ).

Proof. By (B), (1.3) and the fact that g is non-negative, as explained above,

0 �
t∫

0

{
Du(τ) + g(τ)ρp(·)

(
Dut(τ, ·)

)}
dτ � Eu(0) − Eu(t) � Eu(0),

since Eu � 0 in R
+
0 by Lemma 3.2, and so g(t)ρp(·)(Dut (t, ·)) ∈ L1(R+

0 ). �
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Lemma 5.2. Let u be a strong solution of (1.7) and assume p+ − p− < 1. Moreover suppose that k = k(t) is an
auxiliary function as in Theorem 3.1. Then there exists T sufficiently large such that for all t � T we have

t∫
T

k(τ )g(τ )

∫
Ω

∣∣Dut(τ, x)
∣∣p(x)−1∣∣Du(τ, x)

∣∣dx dτ � ε3(T )C
(
k(t)

)
,

C
(
k(t)

) =
( t∫

T

gkp1 dτ

)1/p1

+
( t∫

T

gkp2 dτ

)1/p2

,

p1 = p+
1 + p+ − p−

, p2 = p−
1 + p− − p+

, (5.1)

where

ε3(T ) = K
( ∞∫

T

g(t)ρp(·)
(
Dut(t, ·)

)
dt

)(p−−1)/p+
→ 0 as T → ∞,

and

K = rp · sup
t∈R

+
0

∥∥Du(t, ·)∥∥
p(·), rp = 1

p−
+ 1

p′−
.

Proof. By (3.7) clearly K < ∞. By Lemma 5.1 we first take T so large that

∞∫
T

g(t)ρp(·)
(
Dut(t, ·)

)
dt � 1.

By Hölder’s inequality, see [16, Theorem 2.1],∫
Ω

∣∣Dut(t, x)
∣∣p(x)−1∣∣Du(t, x)

∣∣dx � rp · ∥∥∣∣Dut(t, ·)
∣∣p(·)−1∥∥

p′(·) · ∥∥∣∣Du(t, ·)∣∣∥∥
p(·),

while by Lemma 2.1 of [8] we also have∥∥|Dut |p(·)−1
∥∥

p′(·) � ‖Dut‖p−−1
p(·) � ρp(·)(Dut )

(p−−1)/p+ if ‖Dut‖p(·) � 1,

by (2.4), while∥∥|Dut |p(·)−1
∥∥

p′(·) � ‖Dut‖p+−1
p(·) � ρp(·)(Dut )

(p+−1)/p− if ‖Dut‖p(·) > 1

by (2.3). Let D1 = {τ ∈ [T , t]: ‖Dut(τ, ·)‖p(·) � 1} and D1 = [T , t] \ D1. Hence, by Hölder’s inequality,∫
D1

k(τ )g(τ )
[
ρp(·)

(
Dut(τ, ·)

)](p−−1)/p+ dτ

�
( ∫

D1

g(τ)ρp(·)
(
Dut(τ, ·)

)
dτ

)(p−−1)/p+( ∫
D1

g(τ)
[
k(τ )

]p1 dτ

)1/p1

�
( ∞∫

T

g(τ )ρp(·)
(
Dut(τ, ·)

)
dτ

)(p−−1)/p+( t∫
T

g(τ )
[
k(τ )

]p1 dτ

)1/p1

,

where p1 > 1 is given in (5.1); similarly
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∫
D1

k(τ )g(τ )
[
ρp(·)

(
Dut(τ, ·)

)](p+−1)/p− dτ

�
( ∫

D1

g(τ)ρp(·)
(
Dut(τ, ·)

)
dτ

)(p+−1)/p−( ∫
D1

g(τ)
[
k(τ )

]p2 dτ

)1/p2

�
( ∞∫

T

g(τ )ρp(·)
(
Dut(τ, ·)

)
dτ

)(p+−1)/p−( t∫
T

g(τ )
[
k(τ )

]p2 dτ

)1/p2

,

being p2 = p−/(1 + p− − p+) > 1 by the assumption p+ − p− < 1. Moreover, also (p+ − 1)/p− � (p− − 1)/p+,
since p+ − p− < 1. Combining all these facts and the choice of T , we conclude

t∫
T

k(τ )g(τ )

∫
Ω

∣∣Dut(τ, x)
∣∣p(x)−1∣∣Du(τ, x)

∣∣dx dτ

� ε3(T ) ·
{( t∫

T

g(τ )
[
k(τ )

]p1 dτ

)1/p1

+
( t∫

T

g(τ )
[
k(τ )

]p2 dτ

)1/p2
}

.

Finally, ε3(T ) → 0 as T → ∞ by Lemma 5.1. �
Theorem 5.3. Let the assumptions of Theorem 3.1 hold, with the only exception that (3.3) is replaced by

lim inf
t→∞

{
C

(
k(t)

) + A
(
k(t)

)}/ t∫
0

k dτ < ∞, (5.2)

where t �→ A (k(t)) is given in (3.4) and t �→ C (k(t)) in (5.1). If p+ − p− < 1, then along any strong solution u of
(1.7) property (3.5) holds.

Proof. Suppose for contradiction that Eu(t) approaches a limit l > 0 as t → ∞. As in the proof of Theorem 3.1 we
first treat the case (3.1) when k is also of class C1(R+

0 ). Consider the Lyapunov function

V (t) = 〈ut ,φ〉, φ = k(t)u ∈ K.

Hence by the distribution identity (A) above, for any t � T � 0, we have

V (τ)]tT =
t∫

T

{
k′〈u,ut 〉 + 2k‖ut‖2

2 − k
[‖ut‖2

2 + M(I u)
〈|Du|p(·)−2Du,Du

〉 + 〈
f (·, u), u

〉]}
dτ

−
t∫

T

kg

∫
Ω

|Dut |p(x)−2(Dut ,Du)dx dτ −
t∫

T

k
〈
Q(τ, ·, u,ut ), u

〉
dτ. (5.3)

We first estimate the right-hand side of (5.3). Clearly (3.20) holds by definition of K ′, being u in K . Moreover, as
in the proof of Theorem 3.1 the estimates (3.11) and (3.21)–(3.23) continue to hold. Now, taking T so large that
Lemma 5.2 holds, from (5.3) we obtain

V (τ)]tT � U

t∫
T

|k′|dτ + 2θ

t∫
T

k dτ + 2ε2(T )C(θ)

( t∫
0

σ 1−℘k℘ dτ

)1/℘

− α

t∫
T

k dτ

+ ε3(T )C
(
k(t)

) + ε1(T )B
(
k(t)

)
, (5.4)
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where ε1(T ) is defined in (3.24), ε2(T ) in (3.25), ε3(T ) in (5.1), k �→ B(k) in (3.4) and k �→ C (k) in (5.1). By (5.2)
there is a sequence ti ↗ ∞ and a number � > 0 such that

C
(
k(ti)

) + A
(
k(ti)

)
� �

ti∫
0

k dτ. (5.5)

From now on the proof can proceed exactly as in Theorem 4.1 of [3]. Hence Eu(t) approaches zero as t → ∞. Thus,
by (3.6) and the facts that a + b > 0 and

p+I u(t) � min
{∥∥Du(t, ·)∥∥p−

p(·),
∥∥Du(t, ·)∥∥p+

p(·)
}

(3.5) holds. �
Theorem 5.4. Let the assumptions of Theorem 4.1 hold, with the only exception that (3.3) is replaced by (5.2). If u is
a strong solution of (1.7) with sufficiently small initial data ‖Du(0, ·)‖p(·), ‖ut (0, ·)‖2, then (3.5) continues to hold,
provided that p+ − p− < 1.

Proof. Lemma 3.3, Lemmas 4.2–4.4 continue to hold. Hence the proof of Theorem 4.1 can be repeated word by
word, with the only exception that the derivation of (3.5) now follows from the proof of Theorem 5.3 instead of
Theorem 3.1. �
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