
Physics Letters B 532 (2002) 129–134
www.elsevier.com/locate/npe

Nonlinear (2 + 1)-dimensional field equations from
incomplete Lie algebra structures
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Abstract

We show that the nonlinear (2 + 1)-dimensional Three-Wave Resonant Interaction equations, describing several important
physical phenomena, can be generated starting from incomplete Lie algebras in the framework of multidimensional prolongation
structures. We make use of an ansatz involving the structure equations of a principal prolongation connection induced by an
admissible Bäcklund map.
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1. Introduction

As it is well known, completely integrable nonlin-
ear field equations admit Lax pairs, (multi-)soliton so-
lutions and an infinite set of conservation laws. It was
pointed out that all these properties can be related with
the existence of specific kinds of Bäcklund transfor-
mations (see, e.g., [1,2]).
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In this context the prolongation structures method,
which can be interpreted as the construction of an
Ehresmann connection [3,4], plays a relevant role (see,
e.g., [5–10]). One of the most interesting features
of the arising algebraic structures is that they are
homomorphic to infinite-dimensional loop algebras
(see, e.g., [11–14] and references quoted therein).
The inverse prolongation structures procedure can be
thought as the search of the Bäcklund map which
generates a given (incomplete) Lie algebra structure
[4–8,10]. This inverse procedure, based on the Cartan
method of moving frames, was first outlined by
Estabrook [5–7] who showed how exterior differential
systems can be obtained from incomplete Lie algebra
structures. Further results concerning the (1 + 1)-
dimensional case were exploited, e.g., in [5–7,11–
16]. Starting from a given incomplete Lie algebra
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structure, it is then possible to generate the field
equations whose prolongation structure is the given
algebra.3 In fact, the extension of both the direct and
inverse prolongation structure procedure to the multi-
dimensional case is not trivial and presents several
technical difficulties (see, e.g., [14,17]).

This Letter is aimed to give a contribution in the
geometrical characterization of integrability proper-
ties of nonlinear field equations in the framework of
the inverse procedure in 2 + 1 dimensions. It is in fact
well known that the study of higher-dimensional sys-
tems is a central theme in the theory of integrable sys-
tems, nevertheless the investigation was always made
in the direction of extension of (1 + 1)-dimensional
systems to (2 + 1)-dimensional ones just via the ex-
tension either of the Lax pair (see, e.g., [18]) or of
the so-called prolongation forms (see, e.g., [19,20]), as
well as of the moving frames setting [21]. In this Letter
the more general approach of generating new (2 + 1)-
dimensional integrable systems from a given abstract
algebraic structure via the extension of a Bäcklund
map is tackled.

We are, in general, interested in the case when in-
complete Lie algebras arise as necessary conditions
for integrability of a (formal) connection induced by
a Bäcklund map [4], and the choice of a realization
of such algebras (particularly in loop-algebras form)
gives us the solution of the so-called Bäcklund prob-
lem. Conversely, if the algebraic structure is known
and the ‘new’ variable (also called pseudopotentials
[10]) dependence of the Bäcklund map is fixed, the
integrability condition for the formal connection in-
duced by a Bäcklund map provides the whole family
of exterior differential systems which admits the given
Bäcklund map.

We shall make use of an ansatz which is based
on the fact that, from a geometric point of view, the
connection forms (induced by an admissible Bäcklund
map) play the relevant role. This approach is then
slightly different from the one formulated in the
(2 + 1)-dimensional direct prolongation procedure
by Morris and Tondo [19,20] and it should be seen

3 As well as the associated linear spectral problem useful for the
integration via the Inverse Spectral Transform (IST) method. For
a review of the IST method see, e.g., [22] and references quoted
therein.

within the geometric approach in the framework of
jet bundles and connections provided by Pirani et al.
(see, e.g., [4]). The ansatz is in fact a slightly modified
version of the structure equations of the connection,
which will be the starting point for the application of
the inverse method. According to this, in Section 2 we
recall how a connection can be induced by a Bäcklund
map in the jet bundles framework and provide a
characterization of completely integrable systems in
terms of Bäcklund structures.

In Section 3, we give an example of physical ap-
plication of such a generalized ansatz providing some
nonlinear (2 + 1)-dimensional field equations describ-
ing various physical phenomena [19,20,23–26]. We
show that the (2 + 1)-dimensional Three Wave Res-
onant Interaction (3WRI) equations, together with a
condition on the group velocities which is related with
the resonance condition, can be generated from an in-
complete Lie algebra, as the integrability condition
for a special class (which we shall call admissible)
of Bäcklund connections. Our ansatz enables us on
the other hand to generate a whole family of nonlin-
ear field equations related with the 3WRI equations by
transformations of coordinates and fields of the Miura
type. All the family is in fact ‘contained’ in the exterior
differential system admitted by a postulated (admissi-
ble) Bäcklund map as the integrability condition of the
corresponding induced Bäcklund connection.

2. Bäcklund transformations and induced
connections

In the following we shall shortly recall few basics
concepts and set the notation. We shall assume the
reader is familiar with the basic notions from the
theory of bundles, jet prolongations, principal bundles
and connections (for references and details see, e.g.,
[27–29]).

Let π :U → X, τ :Z → X, be two (vector) bundles
with local fibered coordinates (xα,uA) and (xα, zi),
respectively, where α = 1, . . . , m = dimX, A =
1, . . . , n = dimU − dimX, i = 1, . . . , N = dimZ −
dimX. We shall assume that sections of the bundles
U = (U ,X,π) and Z = (Z,X, τ ) represent physical
fields sastisfying a given system of (nonlinear) field
equations.
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A system of nonlinear field equations of order k on
U is geometrically described as an exterior differential
system ν on J kU [5–10,29,30]. The solutions of the
field equations are (local) sections of U → X—i.e.,
(local) mappings σ :X → U such that σ ◦ π = idX—
such that (jkσ )∗ν = 0. They define a submanifold
in J kU . We shall also denote by J∞ν (respectively,
j∞σ ) the infinite order jet prolongation of ν (respec-
tively, σ ).

2.1. Admissible Bäcklund transformations

We recall that the group of contact transformations
of a bundle is the group of its infinitesimal fibered
automorphisms. A contact transformation preserves
then, by definition, the fibering (see, e.g., [29,30]). Let
then B be the infinite-order contact transformations
group on J∞U [2].

In the following we recall some basic definitions
(see, e.g., [2]) and stress some important properties
which will be used later.

Definition 2.1. The group of Bäcklund transforma-
tions for the system ν is the closed subgroup K of B

which leaves invariant J∞ν.

Definition 2.2. The group of admissible Bäcklund
transformations for the system ν is the closed sub-
group K̃ of B which leaves invariant solution subman-
ifolds of J∞ν.

Remark 2.3. The contact transformations group B

acts freely on the infinite-dimensional submanifold of
J∞U defined by J∞ν. The group K̃ of admissible
Bäcklund transformations is then the compact sub-
group of B which preserves contact elements along
the solutions of the given (system of) nonlinear field
equations. Thus K̃ can be seen as the isotropy sub-
group of B.

Let π :U → X, τ :Z → X, be vector bundles as
the above and π1 :J 1U → X, τ 1 :J 1Z → X, the first
order jet prolongations bundles,4 with local fibered co-
ordinates (xα,uA,uAα ), (xα, zi, ziα), respectively. Fur-

4 A Bäcklund transformation can be analogously defined at any
jet order [4], but here we will consider only the jet order which is
involved with the physical application we are concerned with.

thermore, let (∂β , ∂A, ∂βA), (∂β, ∂i , ∂
β
i ) and (dxβ , duA,

duAβ ), (dx
β, dzi , dziβ) be local bases of tangent vector

fields and 1-forms on J 1U and J 1Z, respectively. In
the sequel we will be concerned with the pull-backs
π∗(Z) � Z × XU , τ ∗(U) � U × XZ, η∗(J 1U ) �
J 1U × XZ, where η := τ ∗(π).

Definition 2.4. Following [4], we define a Bäcklund
map to be the fibered morphism over Z:

φ :J 1U × XZ → J 1Z :
(
xα,uA,uAα ; zi)

(1)�→ (
xα, zi, ziα

)
,

with ziα = φiα(xβ,uA,uAβ ; zj ).

Definition 2.5. The fibered morphism φ is said to
be an admissible Bäcklund transformation for the
differential system ν if ziα = φiα(xβ,uA,uAβ ; zj ), φiα =
Dαφi and the integrability conditions

(2)Dαφjω =Dωφjα,

(with Dα = ∂α+uAα ∂A+uAαβ∂βA+φiα∂i ) coincide with
the exterior differential system ν [2,4].

Remark 2.6. By pull-back of the contact structure on
J 1Z, the Bäcklund morphism induces in a natural way
an horizontal (with respect to π1∗

0 ) distribution on the
bundle (J 1U ×X Z, J 1U , π1∗

0 (η)). The local expres-
sion of generators of such a horizontal distribution is
given by the following connection forms

(3)Θi = dzi − φiβ
(
xα,uA,uAα ; zj)dxβ.

Definition 2.7. The horizontal distribution locally
defined by Eq. (3) is called the induced Bäcklund
connection.

Definition 2.8. The system ν is said to be completely
integrable if there exists a normal subgroup K0 ⊂
(K̃ ∩ K) ⊂ B leaving invariant (the infinite order
prolongation of) ν and its solutions.

Let χk = χik∂i be generators of the Lie algebra k0 of
the Lie subgroup K0, which satisfy the commutation
relations

(4)[χl,χm] = −Cklmχk,
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where Cnlm are the structure constants of the Lie
algebra k0.

Theorem 2.9. The following statements are equiva-
lent.

(1) φ is an admissible Bäcklund transformation for
the differential system ν.

(2) The horizontal distribution (3) is K0-invariant.

Proof. If the horizontal distribution (3) is K0-invariant,
we have (see, e.g., [29]):

(5)φiβ
(
xα,uA,uAα ; zj ) = ωkβ

(
xα,uA,uAα

)
χik

(
zj

)
.

Then the integrability conditions (2) for the Bäcklund
map φ are equivalent to the integrable exterior differ-
ential system:

(6)ν :=Ωkαβ = 0,

where

Ωkαβ =Dαωkβ −Dαωkα + Cklmωlαωmβ .

In fact, taking Eqs. (3) into account, from the equivari-
ance condition, the structure equations for the connec-
tion induced by the admissible Bäcklund map are (up
to pull-backs):

(7)dΘi =
(
dωk + 1

2
Cklmωl ∧ωm

)
χik

(
modΘj

)
(8)= 1

2
Ωkαβχ

i
k dx

α ∧ dxβ,
where ωk = ωkαdxα are 1-forms on J 1U , horizontal
with respect to π1. The integrability condition dΘi =
0 is then equivalent to Ωkαβχ

i
k = 0, i.e., to Eq. (6).

Conversely, if the Bäcklund map is admissible for
the system ν, then the group K0 leaves invariant the
solution (integral maximal) submanifolds of ν, then
the horizontal distribution induced by the Bäcklund
map is K0-invariant. ✷
Corollary 2.10. A nonlinear exterior system ν is com-
pletely integrable if and only if there exists an admissi-
ble Bäcklund transformation φ for the differential sys-
tem ν.

Proof. It follows from Definition 2.8 and the above
theorem. ✷

3. The (2 + 1)-3WRI from incomplete Lie
algebras

From a geometric point of view, the connection
forms induced by an admissible Bäcklund map play
a relevant role. Once that the dependence of the
connection forms on the zi variables is known,5
the integrability condition (i.e., the zero curvature
condition) for such a connection provides, via the
inverse procedure and thanks to Corollary 2.10, whole
families of integrable differential systems [5–7,11–
16].

This suggests the introduction of an ansatz which
is aimed to generalize the geometric approach in the
framework of jet bundles provided by Pirani et al. [4]
and Hoenselaers [15]. The ansatz is in fact a slightly
modified version of the structure equations, which will
be the starting point for the application of the inverse
method.

Let us then consider the following ansatz:

(9)dΩk = 0, withΩk = θ ∧Θk,
where θ is a closed 1-form on J 1U horizontal over X,
and Θk = dzk + χkj (zm)ωj are admissible Bäcklund
connection forms on J 1U × XZ, with k = 1, . . . ,
N = dimb, j = 1, . . . ,M = dim k0.6

Assume now that the dependence on the zi vari-
ables is provided by the following incomplete7 Lie al-
gebra structure

[χ1, χ5] = 0, [χ2, χ4] = 0,

[χ1, χ6] = 0, [χ3, χ4] = 0,

[χ2, χ6] = 0, [χ3, χ5] = 0,

[χ1, χ7] = 0, [χ4, χ7] = 0,

[χ2, χ8] = 0, [χ5, χ8] = 0,

[χ7, χ8] = 0, [χ1, χ2] = aχ6,

[χ1, χ3] = bχ5, [χ2, χ3] = cχ4,

[χ4, χ5] = −aχ3, [χ4, χ6] = −bχ2,

5 This is the case when any abstract incomplete Lie algebra
structure is given.

6 The geometrical interpretation of this ansatz, will be investi-
gated in a separate paper [31].

7 It is incomplete in the sense that not all of the commutators are
known, then the algebra is not closed as a Lie algebra structure.
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[χ5, χ6] = −cχ1, [χ3, χ7] = [χ3, χ8]
[χ6, χ7] = [χ6, χ8],
where a = i

λ12
, b = i

λ13
, c = i

λ23
, with λ12, λ23, λ13

different from zero.
Thus, by requiring the structure equations (8) hold

true, from the ansatz (9), we obtain the following
integrable exterior differential system:

θ ∧ dω7 = 0,
(10)θ ∧ dω8 = 0,

θ ∧ (
dω1 + cω5 ∧ω6) = 0,

(11)θ ∧ (
dω2 + bω4 ∧ω6) = 0,

θ ∧ (
dω3 + aω4 ∧ω5) = 0,

(12)θ ∧ (
dω4 − cω2 ∧ω3) = 0,

θ ∧ (
dω5 − bω1 ∧ω3) = 0,

(13)θ ∧ (
dω6 − aω1 ∧ω2) = 0,

θ ∧ ω3 ∧ (
ω7 −ω8) = 0,

(14)θ ∧ ω6 ∧ (
ω7 −ω8) = 0,

θ ∧ ω1 ∧ω4 = θ ∧ω1 ∧ω8 = θ ∧ ω2 ∧ ω5

= θ ∧ ω2 ∧ω7 = θ ∧ω3 ∧ω6 = θ ∧ ω4 ∧ω8

(15)= θ ∧ ω5 ∧ω7 = 0.

The choice of fibrations of U over a basis manifold
provides a whole family of nonlinear fields equations
related by Miura’s transformations (see, e.g., [11–14,
16]). In the sequel we will find out the 3WRI equations
making a specific choice.

Along a section of Z → X the closed form θ can
be chosen as

(16)θ =m1 dx +m2 dy +m3 dt,

wheremi , (i = 1,2,3) are some constants.8 Then (10)
imply

(17)ω7 = n1 dx + n2 dy + n3 dt,

(18)ω8 = p1 dx + p2 dy +p3 dt,

8 In this way we obtain a case which turns out to be degenerate in
the standard AKNS formulation (see, e.g., [18] for further details).

with ni , pi , (i = 1,2,3) constants. Moreover, from
(15), we have that

(19)ω1 = uω8, ω2 = vω7,

(20)ω3 = r(ω7 −ω8), ω4 = zω8,

(21)ω5 =wω7, ω6 = s(ω7 −ω8).
Let us now consider r , s, u, v, z and w as

complex functions of the independent variables (this
is equivalent to a choice of a fibration of U over the
manifold X) as follows:

u := u1(x, y, t), v := u2(x, y, t),

(22)r := u3(x, y, t),

z := u∗
1(x, y, t), w := u∗

2(x, y, t),

(23)s := u∗
3(x, y, t).

Furthermore, for notational convenience, we put:

(24)a1 = m3p2 −m2p3

m2p1 −m1p2
, b1 = m1p3 −m3p1

m2p1 −m1p2
,

(25)a2 = m3n2 −m2n3

m2n1 −m1n2
, b2 = m1n3 −m3n1

m2n1 −m1n2
,

(26)a3 = m3q2 −m2q3

m2q1 −m1q2
, b3 = m1q3 −m3q1

m2q1 −m1q2
,

and

(27)

λ23 = n3 + m3p2 −m2p3

m2p1 −m1p2
n1 + m1p3 −m3p1

m2p1 −m1p2
n2,

(28)

λ13 = −p3 − m3n2 −m2n3

m2n1 −m1n2
p1 − m1n3 −m3n1

m2n1 −m1n2
p2,

(29)

λ12 = −n3 − m3q2 −m2q3

m2q1 −m1q2
n1 − m1q3 −m3q1

m2q1 −m1q2
n2,

where λ12 = a1b2 − a2b1, λ23 = a2b3 − a3b2, λ13 =
a1b3 − a3b1, and qi = ni − pi , i = 1,2,3.

Then Eqs. (11)–(13) with (16)–(21) provide the
following system of integrable NFEs

(30)u1t + a1u1x + b1u1y = iu∗
2u

∗
3,

(31)u2t + a2u2x + b2u2y = iu∗
1u

∗
3,

(32)u3t + a3u3x + b3u3y = iu∗
1u

∗
2,

together with their complex conjugates.
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Remark 3.1. The compatibility condition for the
system of Eqs. (24)–(29) is

(33)λ12 + λ23 = λ13.

Remark 3.2. Eqs. (30)–(32), together with their com-
plex conjugate, are just the equations describing the
resonant interaction of the three waves envelope in
2 + 1 dimensions [19,20,23]. Eq. (33) is related to the
resonance condition for the wave envelope (see, e.g.,
[23]).

4. Conclusions

We provided a characterization of completely in-
tegrable nonlinear field equations in terms of alge-
braic properties of associated Bäcklund structures by
investigating the relation between Bäcklund transfor-
mations and connections theory. As an example of ap-
plication, by resorting to the structure equations in-
duced by an integrable admissible Bäcklund map, we
have shown how nonlinear (2 + 1)-dimensional field
equations can be generated starting from incomplete
Lie algebras.
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