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Abstract

Spatial graphs in the three-dimensional sphere are constructed from strongly invertible knots. Such
a graph is proved to be hyperbolic, which means that its exterior admits a hyperbolic structure with
totally geodesic boundary, if the exterior has no equivalent essential torus, or a pair of tori, with
respect to the involution.
0 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, agraph, say g, means a one-dimensional CW-complex. Additionally
we always assume throughout the paper thatgraph is finite, and that each connected
component does not collapse to a point. The image= f(g) of a proper embedding
f g — M of g into athree-dimensional manifold is called aspatial graph. Hereproper
means)G = G N dM, whered indicates its boundary. Especially a spatial graph is called
a knot (respectivelyink) if it is homeomorphic to a circle (respectively a disjoint union
of (at least two) circles). A spatial graph is said tothisial if it can be drawn in a plane
without edges crossing. We denote b§N\a regular neighborhood, and bythe closure.

Suppose all boundary componentsidfare closed orientable surfaces except spheres.
Then theexterior E(G) of G in M is defined as EG) := M — N(G), and we denote by
C(G) the set obtained from (&) by deleting all toric boundary components. A spatial
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Fig. 1.n/2-fold cyclic branched covering df 3.

graphG in M is said to benyperbolicif C(G) admits a complete hyperbolic structure with
each toric end being cusp neighborhood and eamftoric one being totally geodesic
boundary. We note that any hyperbolic spigjeaph in the three-dimensional sphese
without circular components is not trivial, since handlebodies do not admit complete
hyperbolic structure with totally geodesic boundary.

As far as the author knows, the first example of hyperbolic spatial gragh, iwhich
has two vertices with three edges, was constructed by Thurston (see [17, Example 3.3.12]).
This graph had already been known as Kinoshitaeta-curve (see [6]), and later it was
generalized to Suzuki's Brunnian graph (see [14,16]; Kinoshita's theta-curve 6g).
Paoluzzi and Zimmermann proved in [12] that the gréplis hyperbolic for any: > 3.
Actually 65 is the so-calledrefoil knot, which is a typical non-hyperbolic knot, adg (or
C(6y)) is obtained by i /2-fold” cyclic branched covering af; (or C(62)) along the axis
of a symmetry. We here explain how to obtajnfrom 6-.

The trefoil knotd, is a non-trivial knot inS3, shown in the left-hand side figure of
Fig. 1. This knot has a symmetry of order two (in other wdrdslution), namely there is
an automorphism, say, of S3 preserving the knot as a set apflbeing the identity ofs3.
Now we take the quotient &2 by ¢, and obtain a graph in it, consisting of a trivial circle
arising from the axis of and an arc from the knot. We might say the quotient space is a
“1/2" of $3. We then take the-fold cyclic branched covering of the quotient space along
the (axial) circle. Thus we obtain the gragh the right-hand side figure of Fig. 1, after
moving the lower vertex to the bottom. So, by this construction, we could,séyr C(6,))
is obtained by i /2-fold” cyclic branched covering af> (or C(62)) along the axis of the
involution.

Aknotor alinkL in $2 is calledstrongly invertibleif there is an orientation preserving
involution on $3, which induces an involution in each componentiofith exactly two
fixed points. The trefoil knot is a typical example of strongly invertible knot. Usiy@r
fold cyclic branded covering, we can construct a family of spatial graphs from any strongly
invertible knot or link in a similar way. So the following question naturally arises:

Question 1.1. For any strongly invertible knot or link and any integer n > 3, isthen /2-fold
cyclic branched covering a hyperbolic spatial graph?
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The main result of this paper is to answer this question for knots. To denote the main
theorem, we review some definitions on three-dimensional manifoldg/s8jost of them
are seen in [4]. LeF be a surface (i.e., two-dimensional compact connected submanifold)
in M. Suppose it is either properly embeddedinor contained i M. ThenF is called
compressible if one of the following three conditions is satisfied:

(1) F is a sphere bounding a ball v, or

(2) Fisadisc and eitheF c dM or there is a balB® c M with B3 c FUdM, or

(3) there is a disd? ¢ M with D? N F = 9 D? and with d D? not shrinking to a point
in F.

The discD? is called thecompressing disc. We say thatF is incompressible if F is not
compressible.

A manifold M is said to bdrreducible if each sphere is compressible. Wh& # ¢,
M is calledd-irreducibleif 0 M is incompressible id/. SupposeF is a two-sided surface
properly embedded inf. ThenF is calledessential if it is incompressible ilZM and not
parallel to a surface i M.

Now the main theorem is denoted as follows:

Theorem 1.2. Let K be a non-trivial strongly invertible knot in $2, and let a be the axis
of theinvolution. Then the n /2-fold cyclic branched covering is a hyperbolic spatial graph
for any n > 3 if and only if thereis no essential torus, or a pair of tori, in E(K U a), being
equivalent to the action of the involution.

A (p, q)-torusknot T, , is obtained by looping a string through the hole of a standard
torusp times withg revolutions before joining its ends, whegeandg are relatively prime.
Torus knots are strongly invertible, affigl , is non-trivial if and only if| p| > 2 and|g| > 2.

The trefoil knot isT3 2. An [ componentoruslink 7, ;, is a union ofl string torus knots
T,.4 running parallel to them. A reference of these results is [5, §2.2]. We note that torus
links with less than three components are strongly invertible (see Fig. 2).

Seeing the construction of/2-fold cyclic branched covering for torus knots case

precisely, we obtain the following result:
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Fig. 2. Torus linkTy g with the axis of an involution.
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Theorem 1.3. For any torus link and for any integer n > 3, the n/2-fold cyclic branched
covering is not a hyperbolic spatial graph.

All proofs are given in the next section. The last section is devoted to some comments
related to these results.

2. Proofs

We start this section with reviewing several basic definitions on tangles following
[5, Chapter 3]. Atangle (B3, 1) is the pair consisting of a balB® and a proper one-
dimensional submanifold with d¢ £ @. In particular, it is called am-string tangle if ¢
consists of: arcs, and it is called &ivial n-string tangle if it is homeomorphic to the pair
(D?,{a1,az, ..., an}) x [0, 1] for some interior pointsy, ao, . . ., a, of D2, Trivial 2-string
tangles are also callg@tional tangles, and they are encoded by rational numbers (called
dope; see Fig. 3).

Atangle(B3, 1) is callednon-split if any proper disc inB3 does not split in it. A tangle
(B3, 1) is calledlocally trivial if any sphere inB3 intersecting transversely at two points
bounds a trivial 1-string tangle. A tangi®3, 1) is calledindivisible if any proper disc in
B2 intersecting transversely in one point divides the tangle into two tangles, at least one
of which is a trivial 1-string tangle. A tangle is callpdmeif it is non-sgit, locally trivial,
indivisible, and if it is not a trivial 1-string tangle. A tang(&3, 1) is calledatoroidal if
there is no essential torus in it, namely, any torus {n ks compressible or parallel to a
component 0BN(z) — (AN(z) N I B3).

Proof of Theorem 1.2. Let (B3, 1) be the 2-string tangle obtained fro§2, K) by the
so-calledMontesinos trick (see [9,1]). NamelyB? is the quotient of EK) by the strong
inversion, and is the projection ofz in B3. SinceK is a non-trivial knot inS3, E(K)
is irreducible and-irreducible. So(B3, 1) is a prime tangle by [5, Theorem 3.5.17]. Let
(DB3, Dt) be the double of B2, 1), namely(D B3, Dr) is the tangle sum ofB3, 1) and its
mirror image in a natural way. Here we note ttiaB2 is a three-dimensional sphere, and
Dt is a link of two components.

Let M, , be then-fold cyclic branched covering oB® along ¢, and let Mbpin
be then-fold cyclic branched covering oD B3 along Dr. Then the doubleD M, ,,
of M;, is homeomorphic taMp, ,. Now supposeM; , admits a hyperbolic structure
with totally geodesic boundary. Then this structure naturally induces thawef,, (cf.
[8]). Thus Mp;, , is also admits a complete hyperbolic structure by Mostow—Prasad’s
rigidity theorem. Conversely suppos£p, , admits a complete hyperbolic structure. Then,

Fig. 3. The rational tangle of slopg2
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applying the rigidity theorem again, the involution &fy, , exchangingV, , for its copy

can be regarded as an isometry. Since the fixed point set of the isometry is totally geodesic

(cf. [7, p. 61]), this isometry induces the hyperbolic structuréfn, with totally geodesic

boundary. Thus the/2-fold cyclic branched covering is a hyperbolic spatial graph if and

only if the n-fold cyclic branched covering afDd B3, Dr) is a hyperbolic manifold.
Furthermore, by the following theorem, thg2-fold cyclic branched covering is a

hyperbolic spatial graph if and only B is a hyperbolic link ins3:

Theorem 2.1 (cf. [13, Theorem 1])Let L be alink in $3. Then L is a hyperbolic link if
and only if the n-fold cyclic branched covering of S along L is a hyperbolic manifold for
anyn > 3.

Suppose there is no essential torus, or a pair of tori(K Ba), being equivalent to the
action of the involution. Lefz be a torus in(B2, 7). SinceT does not intersect with,
The lift of T in (S8, K) is also a torus, or a pair of tori, in(&E U a), being equivalent
to the action of the involution. By the assumption, we can have a compression disc of the
lifted torus, and its projection is a compression disd@sf So (B3, 1) is atoroidal. Since
(B3, 1) is a 2-string prime atoroidal tangl®y is a hyperbolic link (see [5, Exercise 3.6.4
and Theorem 3.6.6]).

Conversely suppose thg2-fold cyclic branched covering is a hyperbolic spatial graph
for anyn > 3. As we saw previously, this is equivalent to the condition thatis a
hyperbolic link inDB3. Let T be a torus in EK U a), being equivalent to the involution.
SinceTs does not intersect the axis of the involution, the projection, Bayof T in
(B3, 1) is also a torus. SincBt is a hyperbolic link( B3, 1) has no essential torus. So there
is a compression disc dfg, and its lift is a compression disc @f. Similarly we can show
that there is no pair of essential tori, being equivalent to the involution.

We have thus finished the proof of Theorem 1.2

Torus knots and r /2-fold cyclic branched coverings

Let T, , be atorus knot ir3. Then it is known that ET, ) is a Seifert fibred manifold
with two exceptional fibres (cf. [15, p. 402]). Its base orbifold is a disc with two cone points
of ordersp andg, respectively. The Seifert invariant of the exceptional fibre corresponding
to the cone point of ordep (respectivelyg) is (p, 1) (respectively(g, B2)), wheresy
(respectivelyB,) is an integer uniquely determined from the following two conditions:
0 < B1 < p andgB1 =1 modp (respectively O< 82 < g andpB2 =1 modg).

Let ¢ be an involution of7, ,. Theng preserves the fibre structure and reverses the
orientation of the fibres. The axis gfintersects each exceptional fibre at two points.

Let M be a three-dimensional manifold of trivial bundle over a disc (i.eM is a
trivial solid torus), andZ a link in M of two (trivial) fibres. Then ET), ,) is a result of
Dehn surgery oM along L with surgery coefficient$1/p andB2/q. We here note that,
sinceg acts on K7, ;) as an involution, the linl. must be preserved by the actiongf
and that the axis ap must intersect each componentfat two points. So the quotient
space(B3, 1) is a tangle sum of two rational tangles with slogiegp andg,/q.



258 A. Ushijima / Topology and its Applications 139 (2004) 253-260

exceptional

cds
v o fibers

l ; l{ “x S = B (Tipuq) annulus

m b

Fig. 4. The quotient space of(g), ;;) wheni(> 3) is odd.
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Fig. 5. The quotient space of(E), ;,) when! is even.

Proof of Theorem 1.3. We first suppose thdt> 3 is an odd integer, and consider a torus
link 7j,14. Then ET;, 4,) hasl toric boundary components, and one of them intersects the
axis ofp. So the quotient space is the tangle sum of two rational tangles with stapges
andpz/q, minus the interior of/ — 1)/2 solid tori.

We consider an annulus decomposing the quotient space into two manifolds; one is the
tangle sum of the two rational tangles, and the other is a solid torus minus the interior
of (I — 1)/2 solid tori (see Fig. 4). Since the annulus does not intersect with the branch
set, its lift in then-fold cyclic branched covering of the quotient space is also an annulus.
Furthermore, sincél — 1)/2 # 0, the lifted annulus is essential. We have thus proved
Theorem 1.3 in the odd components links case.

Next we suppose that is an even integer. Then(E, ) has! toric boundary
components, and two of them intersect the axigoBo the quotient space of(B, )
by ¢ is topologicallys? x [0, 1] minus the interior of! — 2)/2 solid tori.

We consider an annulus naturally contieg two spherical boundary components (see
Fig. 5). Since the slopes of the tangles are oot any possible disc compressing the
annulus must intersect at least two points. So the annulus is essential instHeld
cyclic branched covering of the quotient space by Riemann—Hurwitz theorem. We have
thus proved Theorem 1.3 in the even components links case too.
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3. Comments

When we apply the method of the constructiom@®-fold cyclic branched coverings
to the case when the symmetry is not of order two but of osdethen we might call the
methodn /m-fold cyclic branched covering. A known example of hyperbolic manifolds
obtained byn /3-fold cyclic branched covering is in [11]. The three-dimensional tdttis
has a symmetry of order three, with axis the diagonal of the cube of the fundamental region.
One of the results in [11] is that the/3-fold cyclic branched covering ovér along this
axis is a hyperbolic manifold with totally geodesic boundary when4. In this case the
boundary arises from a spherelif intersecting the axis at two points.

It is known that the 2-fold cyclic branched covering®falong any Montesinos link is
a Seifert fibred space (see [2]). So, using Theorem 2.1, we can say thaPtheld cyclic
branched covering of a manifold obtained from the 2-fold cyclic branched coverings of
53 along a hyperbolic Montesinos link are hyperbolic manifolds for agy3. This gives
another proof of Theorem 1.2 for torus knots case.

There are other known examples of hyperbolic spatial graphs; see [3,10]. Especially the
examplesin [3] are obtained from the so-caN&itehead link by n /2-fold cyclic branched
coverings, and in this case the symmetry is not strongly invertible (see [3, Fig. 1]).
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