Tridiagonal pairs of height one

Kazumasa Nomura

College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Kohnodai, Ichikawa 272-0827, Japan

Received 13 December 2004; accepted 21 January 2005
Available online 19 March 2005
Submitted by R.A. Brualdi

Abstract

Let \((A, A^*)\) denote a tridiagonal pair on a vector space \(V\) over a field \(\mathbb{K}\). Let \(V_0, \ldots, V_d\) denote a standard ordering of the eigenspaces of \(A\) on \(V\), and let \(\theta_0, \ldots, \theta_d\) denote the corresponding eigenvalues of \(A\). We assume \(d \geq 3\). Let \(q\) denote a scalar taken from the algebraic closure of \(\mathbb{K}\) such that \(q^2 + q^{-2} + 1 = (\theta_3 - \theta_0)/(\theta_2 - \theta_1)\). We assume \(q\) is not a root of unity. Let \(\rho_i\) denote the dimension of \(V_i\). The sequence \(\rho_0, \rho_1, \ldots, \rho_d\) is called the \textit{shape} of the tridiagonal pair. It is known there exists a unique integer \(h(0 \leq h \leq d/2)\) such that \(\rho_{i-1} < \rho_i\) for \(1 \leq i \leq h\), \(\rho_{h-1} = \rho_{h}\) for \(h < i \leq d - h\), and \(\rho_{d-1} > \rho_{d}\) for \(d - h < i \leq d\). The integer \(h\) is known as the \textit{height} of the tridiagonal pair. In this paper we show that the shape of a tridiagonal pair of height one with \(\rho_0 = 1\) is either \(1, 2, 2, \ldots, 2, 1\) or \(1, 3, 3, 1\). In each case, we display a basis for \(V\) and give the action of \(A, A^*\) on this basis.

\(\text{© 2005 Elsevier Inc. All rights reserved.}\)

AMS classification: 05E30; 05E35; 33C45; 33D45

Keywords: Tridiagonal pair; Tridiagonal relation; Leonard pair

1. Introduction

The notion of a tridiagonal pair was introduced by Ito et al. [3], generalizing the notion of a Leonard pair which had been introduced by Terwilliger [6]. See
Terwilliger’s lecture note [8] about Leonard pairs and tridiagonal pairs. A tridiagonal pair is defined as follows.

Definition 1.1 [3]. Let \(V \) denote a nonzero finite dimensional vector space over a field \(K \). By a tridiagonal pair on \(V \), we mean a pair \((A, A^*)\), where \(A : V \longrightarrow V \) and \(A^* : V \longrightarrow V \) are linear transformations that satisfy the following conditions.

(i) \(A \) and \(A^* \) are both diagonalizable on \(V \).

(ii) There exists an ordering \(V_0, V_1, \ldots, V_d \) of the eigenspaces of \(A \) such that

\[
A^*V_i \subseteq V_{i-1} \oplus V_i \oplus V_{i+1} \quad (0 \leq i \leq d),
\]

where \(V_{-1} = 0, V_{d+1} = 0 \).

(iii) There exists an ordering \(V_0^*, V_1^*, \ldots, V_\delta^* \) of the eigenspaces of \(A^* \) such that

\[
AV_i^* \subseteq V_{i-1}^* \oplus V_i^* \oplus V_{i+1}^* \quad (0 \leq i \leq \delta),
\]

where \(V_{-1}^* = 0, V_{\delta+1}^* = 0 \).

(iv) There is no subspace \(W \) of \(V \) such that both \(AW \subseteq W, A^*W \subseteq W \), other than \(W = 0 \) and \(W = V \).

Remark 1.2. With reference to Definition 1.1, it is known that \(d = \delta \) [3, Corollary 5.7]. The common number \(d \) of the eigenspaces is called the **diameter** of the tridiagonal pair.

Throughout this paper, we fix the following notation. Let \(K \) denote a field and let \(V \) denote a nonzero finite dimensional vector space over \(K \). Let \((A, A^*)\) denote a tridiagonal pair on \(V \) with diameter \(d \geq 3 \). Let \(V_0, V_1, \ldots, V_d \) (respectively \(V_0^*, V_1^*, \ldots, V_\delta^* \)) denote an ordering of the eigenspaces of \(A \) (respectively \(A^* \)) that satisfies the condition (ii) (respectively (iii)) in Definition 1.1. Let \(\rho_i \) denote the dimension of \(V_i \). Let \(\theta_i \) (respectively \(\theta_i^* \)) denote the eigenvalue of \(A \) (respectively \(A^* \)) for the eigenspace \(V_i \) (respectively \(V_i^* \)). Set \(\beta = (\theta_3 - \theta_0)/(\theta_2 - \theta_1) - 1 \), and let \(q \) denote a scalar taken from the algebraic closure \(\overline{K} \) such that \(\beta = q^2 + q^{-2} \). We assume \(q \) is not a root of unity.

It is known [5, Theorem 3.3] there exists a unique integer \(h \) (\(0 \leq h \leq d/2 \)) such that \(\rho_{i-1} < \rho_i \) for \(1 \leq i \leq h \), \(\rho_{i-1} = \rho_i \) for \(h < i \leq d - h \), and \(\rho_{i-1} > \rho_i \) for \(d - h < i \leq d \). The integer \(h \) is known as the **height** of the tridiagonal pair.

Our first main result is the following.

Theorem 1.3. Suppose \(h = 1 \) and \(\rho_0 = 1 \). Then one of the following holds.

(i) \(\rho_0 = 1, \rho_1 = \rho_2 = \cdots = \rho_{d-1} = 2, \rho_d = 1 \),

(ii) \(d = 3, \rho_0 = 1, \rho_1 = \rho_2 = 2, \rho_3 = 1 \).
In each case of (i), (ii), we display a basis for V and give the action of A, A^* on this basis. In order to do this we review some more definitions. Set
\[U_i = (V_0^* + V_1^* + \cdots + V_i^*) \cap (V_i + V_{i+1} + \cdots + V_d) \]
for $0 \leq i \leq d$. By [3] we have
\[V = U_0 + U_1 + \cdots + U_d \] (direct sum),
and
\[(A - \theta_i I)U_i \subseteq U_{i+1}, \quad (A^* - \theta_i^* I)U_i \subseteq U_{i-1} \quad (0 \leq i \leq d), \]
where we set $U_{-1} = U_{d+1} = 0$. The sequence U_0, U_1, \ldots, U_d is called the split decomposition of (A, A^*). The raising map R and the lowering map L are defined by
\[R = A - \sum_{i=0}^{d} \theta_i F_i, \quad L = A^* - \sum_{i=0}^{d} \theta_i^* F_i, \]
where $F_i : V \rightarrow U_i$ denotes the projection. The maps R, L satisfy
\[RU_i \subseteq U_{i+1}, \quad LU_i \subseteq U_{i-1} \quad (0 \leq i \leq d). \]
It is known [3] that the eigenvalues are represented as
\begin{align*}
\theta_i &= a q^{2i} + b q^{-2i} + c \quad (0 \leq i \leq d), \\
\theta_i^* &= a^* q^{2i} + b^* q^{-2i} + c^* \quad (0 \leq i \leq d),
\end{align*}
for some scalars a, b, a^*, b^*, c, c^* in K. We set
\[\eta_i = (q - q^{-1})^3 (aa^* q^i - bb^* q^{-i}). \]
We use the following notation;
\[[n] = q^n - q^{-n}, \quad [n]_2 = \frac{[n][n-1]}{2}. \]
We now define our basis for the case (i) in Theorem 1.3.

Definition 1.4. With reference to Theorem 1.3 (i), let u denote a nonzero vector in U_0, and define $u_i = R^i u$ for $0 \leq i \leq d$. As we will show in Section 4, there exists a unique vector $v \in U_1$ such that (i) $R^{d-1} v = 0$; and (ii) $v - L u_2$ is a scalar multiple of u_1. We define $v_i = R^{i-1} v$ for $1 \leq i \leq d - 1$.

Theorem 1.5. Suppose Theorem 1.3(i) holds. Then
\begin{enumerate}
\item u_0 is a basis for U_0,
\item u_i, v_i is a basis for U_i $(1 \leq i \leq d - 1)$,
\end{enumerate}
(iii) \(u_d \) is a basis for \(U_d \).
(iv) the vectors
\[
 u_0, u_1, v_1, \ldots, u_{d-1}, v_{d-1}, u_d
\]
form a basis for \(V \).

We now give the action of \(R, L \) on the basis in Theorem 1.5.

Theorem 1.6. Suppose Theorem 1.3(i) holds. Then there exist scalars \(\lambda, \mu \) in \(\mathbb{K} \) such that the maps \(R, L \) act on the basis (3) as follows.
\[
 Ru_i = u_{i+1} \quad (0 \leq i \leq d - 1), \quad Ru_d = 0, \]
\[
 Rv_i = v_{i+1} \quad (1 \leq i \leq d - 2), \quad Rv_{d-1} = 0, \]
\[
 Lu_0 = 0, \quad Lu_1 = a_0 u_0, \quad Lu_{i+1} = a_i u_i + b_i v_i \quad (1 \leq i \leq d - 1), \]
\[
 Lv_1 = e_0 u_0, \quad Lv_{i+1} = e_i u_i + c_i v_i \quad (1 \leq i \leq d - 2),
\]
where
\[
 a_i = [i+1][d-i][\lambda - i] \eta_{d+i+1} \quad (0 \leq i \leq d - 1),
\]
\[
 b_i = \left(i + \frac{1}{2} \right) \quad (1 \leq i \leq d - 1),
\]
\[
 c_i = [i][d-i-1][\mu - i] \eta_{d+i+2} \quad (1 \leq i \leq d - 2),
\]
\[
 e_i = \left[\frac{d-i}{2} \right] \left(-\lambda^2 + \mu^2 + \frac{4}{2} \lambda \mu + [2] \eta_{d+3} \lambda - [2] \eta_{d+1} \mu \right) \quad (0 \leq i \leq d - 2).
\]

Remark 1.7. The parameters \(\lambda, \mu \) are not necessarily in \(\mathbb{K} \). However since \([d] \lambda = a_0 \) and \([d-2]\mu = c_1 \), we find \([d] \lambda \) and \([d-2]\mu \) are in \(\mathbb{K} \).

Theorem 1.8. Suppose Theorem 1.3(i) holds. Then the maps \(A, A^* \) act on the basis (3) as follows.
\[
 Au_i = \theta_i u_i + u_{i+1} \quad (0 \leq i \leq d - 1), \quad Au_d = \theta_d u_d, \]
\[
 Av_i = \theta_i v_i + v_{i+1} \quad (1 \leq i \leq d - 2), \quad Av_{d-1} = \theta_{d-1} v_{d-1}, \]
\[
 A^* u_0 = \theta_0^* u_0, \quad A^* u_1 = a_0 u_0 + \theta_1^* u_1, \]
\[
 A^* u_{i+1} = a_i u_i + b_i v_i + \theta^{*}_{d-i+1} u_{i+1} \quad (1 \leq i \leq d - 1), \]
\[
 A^* v_1 = e_0 u_0 + \theta_1^* v_1, \quad A^* v_{i+1} = e_i u_i + c_i v_i + \theta^{*}_{d-i+1} v_{i+1} \quad (1 \leq i \leq d - 2).
\]

Theorem 1.9. Let \(a_0, c_1, a, a^*, b, b^*, c, c^*, q \) denote scalars in \(\mathbb{K} \). Let \(V \) denote a vector space over \(\mathbb{K} \) with dimension \(2d \) \((d \geq 3) \), and let \(A, A^* : V \rightarrow V \) denote linear transformations which act on some basis \(u_0, v_1, \ldots, u_{d-1}, v_{d-1}, u_d \) as in Theorems 1.6 and 1.8. Further suppose that \(V \) is irreducible as an \((A, A^*) \)-module. Then \((A, A^*) \) is a tridiagonal pair on \(V \).

Next we consider the case (ii) in Theorem 1.3.
Definition 1.10. With reference to Theorem 1.3(ii), we define u_0, u_1, u_2, u_3 and v_1, v_2 as in Definition 1.4. As we will show in Section 4, there exists a unique vector $w \in U_1$ such that (i) $R^2 w = 0$; and (ii) $w - L v_2$ is a scalar multiple of u_1. We define $w_1 = w, w_2 = Rw$.

Theorem 1.11. Suppose Theorem 1.3(i) holds. Then

(i) u_0 is a basis for U_0,
(ii) u_i, v_i, w_i is a basis for U_i ($1 \leq i \leq 2$),
(iii) u_3 is a basis for U_3,
(iv) the vectors

$$u_0, u_1, v_1, w_1, u_2, v_2, w_2, u_3 \quad (4)$$

form a basis for V.

We now give the action of R, L on the basis in Theorem 1.11.

Theorem 1.12. Suppose Theorem 1.3(ii) holds. Then there exist scalars a_0, e_1, f_1 in K such that the maps R, L act on the basis (4) as follows.

$$Ru_0 = u_1, \quad Ru_1 = u_2, \quad Ru_2 = u_3, \quad Ru_3 = 0,$$
$$Rv_0 = v_2, \quad Rv_1 = 0,$$
$$Rw_0 = w_2, \quad Rw_1 = 0,$$
$$Lu_0 = 0, \quad Lu_1 = a_0 u_0, \quad Lu_{i+1} = a_i u_i + b_i v_i \quad (1 \leq i \leq 2),$$
$$Lv_0 = e_0 u_0, \quad Lv_1 = e_1 u_1 + w_1,$$
$$Lw_1 = f_0 u_0, \quad Lw_2 = f_1 u_1 + s_1 v_1 + t_1 w_1,$$

where

$$a_1 = [2][2](\lambda - \eta_5), \quad a_2 = [3](\lambda - [2] \eta_6),$$
$$b_1 = 1, \quad b_2 = [3],$$
$$e_0 = [3] e_1, \quad f_0 = [3] f_1,$$
$$s_1 = -\lambda^2 - e_1 + [2] \eta_6 \lambda,$$
$$t_1 = \frac{[4] \lambda}{[2]} - [2] \eta_4,$$

and where

$$\lambda = \frac{a_0}{[3]}$$

Theorem 1.13. Suppose Theorem 1.3(ii) holds. Then the maps A, A^* act on the basis (4) as follows.
Remark 1.17. With reference to Theorem 1.6, let \(t \) be such that \((5)\) holds for all tridiagonal pairs when \(q \) is of the form \(1/2 \). Then for some basis, which is different from the basis \((3)\), they assume the tridiagonal pair is irreducible with respect to the action of the affine quantum group \(U_q(\hat{sl}(2)) \) on \(V \).

Theorem 1.14. Let \(a_0, e_1, f_1, a, a^*, b, b^*, c, c^*, q \) denote scalars in \(K \). Let \(V \) denote a vector space over \(K \) with dimension 8, and let \(A, A^* : V \to V \) denote linear transformations which act on some subspace \(u_0, v_1, v_2, w_1, w_2, u_3 \) as in Theorems 1.12 and 1.13. Further suppose that \(V \) is irreducible as an \((A, A^*)\)-module. Then \((A, A^*)\) is a tridiagonal pair on \(V \).

Remark 1.15. There are some works by Alnajjar and Curtin for some family of tridiagonal pairs which satisfy Theorem 1.3(i). In [1], they give the action of \(A, A^* \) on some basis, which is different from the basis \((3)\). They assume the tridiagonal pair is irreducible as a \((A, A^*)\)-module. Then \((A, A^*)\) is a tridiagonal pair on \(V \).

Remark 1.16. It is known [4] that

\[
\rho_i \leq \left(\begin{array}{c} i \\ 2 \end{array} \right) \quad (0 \leq i \leq d)
\]

holds for tridiagonal pairs of \(q \)-Serre type with \(K \) algebraically closed. It is conjectured [4] that \((5)\) holds for all tridiagonal pairs when \(K \) is algebraically closed.

Remark 1.17. With reference to Theorem 1.6, let \(\psi_i \) denote the eigenvalue of \(L_i R_i \) on \(U_0 \) \((0 \leq i \leq d)\). Then the parameters \(\lambda, \mu \) can be written in terms of \(\psi_1, \psi_2, \psi_3 \) as follows:

\[
\lambda = \frac{\psi_1}{[d]}
\]

\[
\mu = \frac{\psi_3 - [3][d - 2] \left(-\frac{[2][d - 1]}{[d]} \psi_1^2 + \frac{[2][d - 1]}{[d]} \psi_2^2 + \frac{2}{[d]} \psi_1 \psi_2 - [2] \eta_d \psi_3 \right)}{[3][d - 2] \left(-\frac{[2][d - 1]}{[d]} \psi_1^2 + [2][d - 1] \eta_d \psi_1 + \psi_3 \right)}
\]

We remark that the denominator is equal to \([3][d - 2] \psi_0 \) and it is nonzero.
determine the action of \(L \). In Sections 5 and 6, we prove Theorem 1.3. The proofs of Theorems 1.5–1.9 are given in Section 7. Theorems 1.11–1.14 can be shown in a similar way, so we omit the proofs.

2. Background

In this section, we recall some known facts about the tridiagonal pairs. For \(0 \leq i \leq d \), we set

\[
U_i = (V_0^* + V_1^* + \cdots + V_i^*) \cap (V_i + V_{i+1} + \cdots + V_d).
\]

(6)

Lemma 2.1 [3, Theorem 4.6]. The space \(V \) is decomposed as

\[
V = U_0 + U_1 + \cdots + U_d \quad \text{(direct sum)}.
\]

(7)

The decomposition given in (7) is called the **split decomposition** of the tridiagonal pair.

Lemma 2.2 [3, Corollary 5.7]. For \(0 \leq i \leq d \),

(i) \(\dim V_i = \dim V_i^* = \dim U_i = \rho_i \),

(ii) \(\rho_i = \rho_{d-i} \).

Let \(F_i : V \to U_i \) denote the projection with respect to the direct sum (7). Then for \(0 \leq i, j \leq d \),

\[
F_0 + F_1 + \cdots + F_d = I, \quad F_iF_j = F_j \quad \text{if } i \neq j.
\]

(8)

The **raising map** \(R \) and the **lowering map** \(L \) are defined as follows.

\[
R = A - \sum_{i=0}^{d} \theta_i F_i, \quad L = A^* - \sum_{i=0}^{d} \theta_i^* F_i.
\]

(9)

Lemma 2.3 [3, Corollary 6.3]

(i) \(RU_i \subseteq U_{i+1} \quad (0 \leq i \leq d-1), \quad RU_d = 0 \).

(ii) \(LU_i \subseteq U_{i-1} \quad (1 \leq i \leq d), \quad LU_0 = 0 \).

Lemma 2.4. Let \(W \) denote a subspace of \(V \). Suppose that \(RW \subseteq W, LW \subseteq W \) and \(F_iW \subseteq W \) for \(0 \leq i \leq d \). Then \(W = 0 \) or \(W = V \).

Proof. Observe that \(A \) and \(A^* \) are represented as linear combinations of \(R, L, F_i \) (\(0 \leq i \leq d \)) by (9), so that \(AW \subseteq W \) and \(A^* W \subseteq W \). Now the result follows from Definition 1.1(iv). \(\square \)
Lemma 2.5 [3, Theorem 10.1]. There is a sequence of scalars $\beta, \gamma, \varrho, \varepsilon$ taken from \mathbb{K} such that

$$[A, A^2] = \beta AA^* A + A^* A^2 - \gamma(AA^* + A^* A) - \varrho A^* A = 0,$$ \hspace{1cm} (10)

$$[A^*, A^2] = -\beta A^* AA^* + AA^* A^2 - \gamma^*(A^* A + AA^*) - \varrho^* A = 0,$$ \hspace{1cm} (11)

where $[B, C] = BC - CB$. The sequence is unique if the diameter is at least three.

The above relations are known as the tridiagonal relations. These relations imply the following relations between R and L. Let ε_i ($0 \leq i \leq d - 2$) denote the scalar defined by

$$\varepsilon_i = (\theta_i - \theta_{i+2})(\theta_{i+1}^* - \theta_{i+2}^*) - (\theta_{i+2}^* - \theta_i^*)(\theta_{i+1} - \theta_i).$$ \hspace{1cm} (12)

Lemma 2.6 [3, Theorem 12.1]. For $0 \leq i \leq d - 2$,

$$(R^3 - (\beta + 1)R^2L + (\beta + 1)RLR^2 - LR^3 + (\beta + 1)\varepsilon_i R^2)F_i = 0,$$ \hspace{1cm} (13)

$$(L^3R - (\beta + 1)L^2RL + (\beta + 1)LRL^2 - RL^3 - (\beta + 1)\varepsilon_i L^2)F_{i+2} = 0.$$ \hspace{1cm} (14)

Lemma 2.7. Let V denote a vector space over \mathbb{K}. Suppose V is decomposed into direct sum of subspaces U_0, U_1, \ldots, U_d ($d \geq 3$), and let F_i denote the projection onto F_i. Let β denote a scalar in \mathbb{K}, and let $\theta_0, \theta_1, \ldots, \theta_d$ (respectively $\theta_0^*, \ldots, \theta_d^*$) denote distinct scalars in \mathbb{K} such that the expressions

$$\frac{\theta_{i+3} - \theta_i}{\theta_{i+2} - \theta_{i+1}}, \quad \frac{\theta_{i+3}^* - \theta_i^*}{\theta_{i+2}^* - \theta_{i+1}^*}$$

both equal to $\beta + 1$ for $0 \leq i \leq d - 3$. Define scalars $\gamma, \varrho, \varepsilon_i$ ($0 \leq i \leq d - 2$) by

$$\gamma = \theta_0 - \beta \theta_1 + \theta_2,$$

$$\varrho = \theta_0^* - \beta \theta_1^* + \theta_2^* - \gamma(\theta_0 + \theta_1),$$

$$\varepsilon_i = (\theta_i - \theta_{i+2})(\theta_{i+1}^* - \theta_{i+2}^*) - (\theta_{i+2}^* - \theta_i^*)(\theta_{i+1} - \theta_i).$$

Let $R, L : V \rightarrow V$ denote linear transformations such that $RU_i \subseteq U_{i+1}$ and $LU_i \subseteq U_{i-1}$ holds for $0 \leq i \leq d$, where we set $U_{-1} = U_{d+1} = 0$. Suppose R, L satisfy (13) for $0 \leq i \leq d - 2$. Define maps A, A^* by

$$A = R + \sum_{i=0}^d \theta_i F_i, \quad A^* = L + \sum_{i=0}^d \theta_i^* F_i.$$

Then A, A^* satisfy (10).
Proof. Let C denote the left side of (10). Replace A (respectively A^*) in each term of C by $R + \sum_{i=0}^{d} \theta_i F_i$ (respectively $L + \sum_{i=0}^{d} \theta_i^* F_i$). After expanding each term of CF_j ($0 \leq j \leq d - 2$), collect the resulting expression in R, L, and verify that each term vanishes. □

Lemma 2.8 [7, Theorem 3.10]. Let β, γ, γ^*, ϱ, ϱ^* denote scalars in K, and assume q is not a root of unity, where $\beta = q^2 + q^{-2}$. Let T denote the algebra generated by two symbols A, A^* subject to the relations (10), (11). Let V denote an irreducible finite dimensional T-module and assume each of A, A^* is diagonalizable on V. Then A, A^* act on V as a tridiagonal pair.

3. The refined split decomposition

In this section, we pick up some results concerning the refined split decomposition from [5]. For the rest of this paper, let h denote the height of the tridiagonal pair.

For $0 \leq r \leq h$ and $r \leq i \leq d - r$, we set

$$U_i^{(r)} = R^{i-r} (U_r \cap \text{Ker } R^{d-2r+1}).$$

Lemma 3.1 [5, Lemma 4.1]. The following hold for $0 \leq r \leq h$.

(i) $U_0^{(0)} = U_0$ and $U_d^{(0)} = U_d$.
(ii) $U_i^{(r)} \subseteq U_i$ ($r \leq i \leq d - r$).
(iii) $U_r^{(r)} = U_r \cap \text{Ker } R^{d-2r+1}$.
(iv) $U_i^{(r)} = R^{i-r} U_r^{(r)}$ ($r \leq i \leq d - r$).
(v) $RU_i^{(r)} = U_{i+1}^{(r)}$ ($r \leq i \leq d - r - 1$), $RU_{d-r}^{(r)} = 0$.
(vi) The restriction $R|_{U_i^{(r)}} : U_i^{(r)} \rightarrow U_{i+1}^{(r)}$ is a bijection ($r \leq i \leq d - r - 1$).

Lemma 3.2 [5, Lemma 4.3]. For $0 \leq r \leq h$,

$$\dim U_i^{(r)} = \rho_r - \rho_{r-1} \quad (r \leq i \leq d - r),$$

where we set $\rho_{-1} = 0$.

Lemma 3.3 [5, Lemma 4.7]. For $0 \leq i \leq d$,

$$U_i = \sum_{r=0}^{m} U_i^{(r)} \quad (\text{direct sum}),$$

where $m = \min\{i, h, d - i\}$.
For $0 \leq r \leq h$, we set
\[U(r) = \sum_{i=r}^{d-r} U_i^{(r)}. \]
(18)

Lemma 3.4 [5, Lemma 5.1]. \(V \) is decomposed as
\[V = \sum_{r=0}^{h} U^{(r)} \]
(direct sum).
(19)

Lemma 3.5 [5, Lemma 5.2]. For $0 \leq r \leq h$ and $0 \leq i \leq d$,
\[U^{(r)} \cap U_i = \begin{cases} U_i^{(r)} & \text{if } r \leq i \leq d - r, \\ 0 & \text{otherwise}. \end{cases} \]
(20)

Lemma 3.6 [5, Lemma 5.3]. For $0 \leq r \leq h$,
\[RU^{(r)} \subseteq U^{(r)}. \]
(21)

Lemma 3.7 [5, Theorem 5.6]. For $0 \leq r \leq h$,
\[LU^{(r)} \subseteq U^{(r-1)} + U^{(r)} + U^{(r+1)}, \]
(22)
where we set $U^{-1} = U^{(h+1)} = 0$.

Let
\[F^{(r)} : V \longrightarrow U^{(r)} \quad (0 \leq r \leq h) \]
denote the projection with respect to the direct sum $V = \sum_{r=0}^{h} U^{(r)}$. Observe that for $0 \leq r \leq h$ and $0 \leq s \leq h$,
\[F^{(0)} + F^{(1)} + \cdots + F^{(h)} = I, \quad F^{(r)} F^{(s)} = \begin{cases} F^{(r)} & \text{if } r = s, \\ 0 & \text{if } r \neq s. \end{cases} \]
(23)

We set
\[F_i^{(r)} = F_i F^{(r)} \quad (0 \leq r \leq h, \ 0 \leq i \leq d). \]

Lemma 3.8 [5, Lemma 6.1]. For $0 \leq r \leq h$ and $0 \leq i \leq d$,
(i) $F_i^{(r)} = F^{(r)} F_i = F_i F^{(r)}$,
(ii) $F_0^{(0)} = F_0$ and $F_d^{(0)} = F_d$,
(iii) $F_i^{(r)} \neq 0$ if and only if $r \leq i \leq d - r$.

Lemma 3.9 [5, Lemma 6.2]. For $0 \leq r \leq h$ and $r \leq i \leq d - r$, $F_i^{(r)} V = U_i^{(r)}$, and

$$F_i^{(r)} : V \rightarrow U_i^{(r)}$$

is the projection with respect to the direct sum $V = \sum_{r=0}^{h} \sum_{i=r}^{d-r} U_i^{(r)}$.

Lemma 3.10 [5, Lemma 6.3]. For $0 \leq r \leq h$.

(i) $F^{(r)} R = RF^{(r)}$,
(ii) $F^{(r)} R = RF^{(i-1)}_{i-1}$ $(1 \leq i \leq d)$,
(iii) $RF^{(r)} = 0$.

We set

$$L^{(-)} = \sum_{r=1}^{h} F^{(r-1)} L F^{(r)}, \quad L^{(0)} = \sum_{r=0}^{h} F^{(r)} L F^{(r)},$$

$$L^{(+)} = \sum_{r=0}^{h-1} F^{(r+1)} L F^{(r)}.$$ \hspace{1cm} (24)

Lemma 3.11 [5, Lemma 6.5]

$$L = L^{(-)} + L^{(0)} + L^{(+)}.$$ \hspace{1cm} (25)

Lemma 3.12 [5, Lemma 6.6]. The following hold.

(i) $F^{(r-1)} L F^{(r)} = L^{(-)} F^{(r)}$ $(1 \leq r \leq h)$,
(ii) $F^{(r)} L F^{(r)} = L^{(0)} F^{(r)}$ $(0 \leq r \leq h)$,
(iii) $F^{(r+1)} L F^{(r)} = L^{(+)} F^{(r)}$ $(0 \leq r \leq h - 1)$.

Lemma 3.13 [5, Lemma 6.7]. The following hold for $0 \leq r \leq h$.

(i) $L^{(0)} F^{(r)} = 0$.
(ii) $L^{(+)} F^{(r)} = L^{(+)} F^{(r+1)} = 0$.

Lemma 3.14 [5, Theorem 8.4]. For $0 \leq r \leq h - 1$ and $r + 2 \leq i \leq d - r - 1$,

$$RL^{(+) = \frac{i - r - 1}{i - r + 1} L^{(+)} R}$$

vanishes on $U_i^{(r)}$.
Lemma 3.15 [5, Theorem 9.4]. For $1 \leq r \leq h$ and $r \leq i \leq d - r - 1$,
\[
RL(-) - \frac{[d - r - i + 2]}{[d - r - i]}L(-)R
\]
vanishes on $U_i^{(r)}$.

Lemma 3.16 [3, Lemma 8.6, Theorem 11.1]. There are scalars a, a^*, b, b^*, c, c^* in the algebraic closure \mathbb{K} such that
\[
\theta_i = aq^{2i} + bq^{-2i} + c \quad (0 \leq i \leq d), \tag{26}
\]
\[
\theta_i^* = a^*q^{2i} + b^*q^{-2i} + c^* \quad (0 \leq i \leq d). \tag{27}
\]
We fix scalars a, a^*, b, b^*, c, c^* which satisfy (26) and (27).

Lemma 3.17 [5, Theorem 10.7]. For $0 \leq i \leq d - 2$,
\[
\varepsilon_i = [2](q - q^{-1})^3(aa^*q^{4i+4} - bb^*q^{-(4i+4)}). \tag{28}
\]
We set
\[
\mu_i = (q - q^{-1})^3(aa^*q^{d+2i} - bb^*q^{-d-2i}).
\]

Lemma 3.18 [5, Theorem 10.9]. For $0 \leq r \leq h$ and $r + 1 \leq i \leq d - r - 1$, the following map vanishes on $U_i^{(r)}$:
\[
RL^{(0)} - \frac{[i - r][d - r - i + 1]}{[i - r + 1][d - r - i]}L^{(0)}R - [i - r][d - r - i + 1]\mu_i I. \tag{29}
\]

Lemma 3.19. Let r denote an integer with $0 \leq r \leq h$. Let Y denote a subspace of $U_i^{(r)}$ such that $L^{(0)}RY \subseteq Y$. We set $W = \sum_{i=0}^{d-2r} R^iY$. Then $L^{(0)}W \subseteq W$.

Proof. We show
\[
L^{(0)}R^iY \subseteq R^{i-1}Y \quad (1 \leq i \leq d - 2r), \tag{30}
\]
by induction. Clearly (30) holds for $i = 1$ by our assumption. Assume $2 \leq i \leq d - 2r$. Pick any vector u in Y and observe that $R^{i-1}u$ belongs to $U_{r+i-1}^{(r)}$ by Lemma 3.1. Applying Lemma 3.18 to $R^{i-1}u$,
\[
L^{(0)}R^iu = \frac{[i][d - 2r - i + 1]}{[i - 1][d - 2r - i + 2]}RL^{(0)}R^{i-1}u - [i][d - 2r - i + 1]\mu_{r+i-1}R^{i-1}u.
\]
This implies that $L^{(0)} R^i u$ lies in the span of $\{ R L^{(0)} R^{i-1} u, R^{i-1} u \}$, where we have $R^{i-1} u \in R^{i-1} Y$, and $L^{(0)} R^{i-1} u \in R^{i-2} Y$ by induction. Hence $L^{(0)} R^i u$ belongs to $R^{i-1} Y$. We have also $L^{(0)} Y \subseteq L^{(0)} U_r(r) = 0$ by Lemma 3.13. Thus $L^{(0)} W \subseteq W$. □

4. Determining the action of L

For the rest of this paper, we assume $\rho_0 = \rho_d = 1$ and $\rho_1 = \rho_2 = \cdots = \rho_{d-1} \geq 2$, so that $h = 1$.

Lemma 4.1. V is decomposed as $V = \sum_{i=0}^{d} U_i^{(0)} + \sum_{i=1}^{d-1} U_i^{(1)}$ (direct sum).

Proof. Follows from (18) and (19) with $h = 1$. □

We fix a nonzero vector u_0 in U_0, and we set $u_i = R^i u_0$ ($1 \leq i \leq d$).

Lemma 4.2. For $0 \leq i \leq d$, $\{ u_i \}$ is a basis of $U_i^{(0)}$.

Proof. Follows from Lemma 3.1. □

Thus $L^{(0)} u_{i+1}$ is a scalar multiple of u_i. We set

$$L^{(0)} u_{i+1} = a_i u_i \quad (0 \leq i \leq d-1). \quad (31)$$

Lemma 4.3. For $0 \leq i \leq d-1$,

$$a_i = [i+1][d-i] \left(a_0 \frac{a_1}{d} - \sum_{k=1}^{i} \mu_k \right). \quad (32)$$

Proof. We show (32) by induction. Clearly (32) holds for $i = 0$, so we assume $1 \leq i \leq d - 1$. Applying Lemma 3.18 to u_i,

$$L^{(0)} R u_i = \frac{[i+1][d-i]}{[i][d-i+1]} R L^{(0)} u_i - [i+1][d-i] \mu_i u_i,$$

where we have $L^{(0)} R u_i = L^{(0)} u_{i+1} = a_i u_i$ and $R L^{(0)} u_i = R(a_i u_{i-1}) = a_{i-1} u_i$. Hence

$$a_i = \frac{[i+1][d-i]}{[i][d-i+1]} a_{i-1} - [i+1][d-i] \mu_i.$$
By induction,
\[a_{i-1} = [i][d - i + 1] \left(\frac{a_0}{d} - \sum_{k=1}^{i-1} \mu_k \right). \]
Now (32) follows. □

Lemma 4.4

(i) \(L^{(+)} u_0 = 0, L^{(+)} u_1 = 0, \)

(ii) \(L^{(+)} u_2 \neq 0. \)

Proof. (i) Follows from Lemma 3.13.

(ii) Suppose \(L^{(+)} u_2 = 0. \) Applying Lemma 3.14 to \(u_i, \)

\[L^{(+)} u_{i+1} = L^{(+)} Ru_i = \left[\frac{i + 1}{i - 1} \right] RL^{(+)} u_i \quad (2 \leq i \leq d - 1). \]
Combining with (i), this implies \(L^{(+)} u_i = 0 \) for \(0 \leq i \leq d, \) so that \(L^{(+)} U^{(0)} = 0. \)
Using (24) and (25), this implies
\[\nabla U^{(0)} = L^{(-)} U^{(0)} + L^{(0)} U^{(0)} + L^{(+)} U^{(0)} = L^{(0)} U^{(0)} \subseteq U^{(0)}. \]
Thus \(U^{(0)} \) is invariant under \(L. \) Also we have \(R U^{(0)} \subseteq U^{(0)} \) by Lemma 3.6, and \(F_i U^{(0)} = U_i^{(0)} \subseteq U^{(0)} \) (\(0 \leq i \leq d \)) by Lemma 3.8. These imply \(U^{(0)} = \nabla \) by Lemma 2.4, a contradiction. □

We set \(v_1 = L^{(+)} u_2, v_i = R^{i-1} v_1 \) (\(2 \leq i \leq d - 1 \)).

Lemma 4.5. For \(1 \leq i \leq d - 1, \) \(v_i \) lies in \(U^{(1)}_i, \) and \(v_i \neq 0. \)

Proof. Follows from Lemmas 4.4 and 3.1. □

We set
\[b_i = \left[\frac{i + 1}{2} \right] \quad (1 \leq i \leq d - 1). \]

Lemma 4.6. For \(1 \leq i \leq d - 1, \)
\[L^{(+)} u_{i+1} = b_i v_i. \]

Proof. We show (34) by induction. Clearly (34) holds for \(i = 1, \) so we assume \(2 \leq i \leq d - 1. \) Applying Lemma 3.14 to \(u_i, \)
L^{(+)}u_{i+1} = L^{(+)}Ru_i = \left[\frac{i + 1}{i - 1} \right] RL^{(+)}u_i.

By induction,

L^{(+)}u_i = b_{i-1}v_{i-1} = \left[\begin{array}{c} \frac{i}{2} \\ \end{array} \right] v_{i-1}.

Hence

L^{(+)}u_{i+1} = \left[\frac{i + 1}{i - 1} \right] \left[\begin{array}{c} \frac{i}{2} \\ \end{array} \right] v_i. \quad \square

Observe that \(L^{(-)}v_{i+1} \) is a scalar multiple of \(u_i \) by Lemmas 4.5 and 4.2, so we may write

\[L^{(-)}v_{i+1} = e_i u_i \quad (0 \leq i \leq d - 2). \tag{35} \]

Lemma 4.7. For \(0 \leq i \leq d - 2 \),

\[e_i = \frac{[d - i][d - i - 1]}{[d][d - 1]} e_0. \tag{36} \]

Proof. We show (36) by induction. Clearly (36) holds for \(i = 0 \), so we assume \(1 \leq i \leq d - 2 \). Applying Lemma 3.15 to \(v_i \),

\[L^{(-)}Rv_i = \left[\frac{d - i - 1}{d - i + 1} \right] \right] RL^{(-)}v_i, \]

where we have

\[L^{(-)}Rv_i = L^{(-)}v_{i+1} = e_i u_i, \]

and

\[RL^{(-)}v_i = R(e_{i-1}u_{i-1}) = e_{i-1}u_i, \]

so that

\[e_i = \frac{[d - i - 1]}{[d - i + 1]} e_{i-1}. \]

By induction

\[e_{i-1} = \frac{[d - i + 1][d - i]}{[d][d - 1]} e_0. \]

Now (36) follows. \(\square \)
Lemma 4.8. Suppose $\rho_1 = 2$. Then $\{v_i\}$ is a basis of $U_i^{(1)}$ ($1 \leq i \leq d - 1$).

Proof. Follows from Lemmas 4.8 and 3.1. □

Hence, when $\rho_1 = 2$,

\[L^{(0)} v_1 = 0, \quad L^{(0)} v_{i+1} = c_i v_i \quad (1 \leq i \leq d - 2) \] \hspace{1cm} (37)

hold for some scalars c_1, \ldots, c_{d-2}.

Lemma 4.9. Suppose $\rho_1 = 2$. Then

\[c_i = [i][d - i - 1] \left(\frac{c_1}{[d-2]} - \sum_{k=2}^{i} \mu_k \right) \quad (1 \leq i \leq d - 2). \] \hspace{1cm} (38)

Proof. We show (38) by induction. Clearly (38) holds for $i = 1$, so we assume $2 \leq i \leq d - 2$. Applying (29) to v_i,

\[L^{(0)} R v_i = \left[\frac{i}{i-1} \right] [d-i] R L^{(0)} v_i - [i][d-i-1] \mu_i v_i. \]

This implies

\[c_i = \left[\frac{i}{i-1} \right] [d-i] c_{i-1} - [i][d-i] \mu_i. \]

By induction,

\[c_{i-1} = [i-1][d-i] \left(\frac{c_1}{[d-2]} - \sum_{k=2}^{i-1} \mu_k \right). \]

Now (38) follows. □

Lemma 4.10. Suppose $\rho_1 \geq 3$. Then $L^{(0)} v_2$ and v_1 are linearly independent.

Proof. By way of contradiction, we assume $L^{(0)} v_2$ lies in the span Y of $\{v_1\}$. We set $W = \sum_{i=0}^{d-2} R Y$ and $Z = U^{(0)} + W$. Clearly Z is invariant under R and F_i ($0 \leq i \leq d$). If Z is invariant under L, then Z is invariant under L, R and F_i ($0 \leq i \leq d$), so that $W = V$ by Lemma 2.4. This contradicts our assumption $\rho_1 \geq 3$. So, it is enough to show that Z is invariant under L.

Observe that $W \subseteq U^{(1)}$ and $L^{(1)} U^{(1)} = 0$ by $h = 1$, so that $LW \subseteq L^{(-)} W + L^{(0)} W \subseteq U^{(0)} + L^{(0)} W$. We have $L^{(0)} R Y \subseteq Y$ from our assumption $L^{(0)} v_2 \in Y$, and this implies $L^{(0)} W \subseteq W$ by Lemma 3.19. Observe that $L^{(+)} U^{(0)} \subseteq W$ by Lemma 4.6, so that $LU^{(0)} \subseteq L^{(-)} U^{(0)} + L^{(0)} U^{(0)} + L^{(+)} U^{(0)} \subseteq U^{(0)} + W$, since $L^{(-)} U^{(0)} = 0$. Therefore $U^{(0)} + W$ is invariant under L. □
When $\rho_1 \geq 3$, we set
\[w_1 = L^{(0)}v_2, \quad w_i = R^{i-1}w_1 \quad (2 \leq i \leq d - 1). \]

Lemma 4.11. Suppose $\rho_1 \geq 3$. Then v_i and w_i are linearly independent for $1 \leq i \leq d - 1$.

Proof. Follows from Lemmas 4.10 and 3.1. \(\square\)

When $\rho_1 \geq 3$, we set
\[L_{(-)}w_{i+1} = f_i u_i \quad (0 \leq i \leq d - 2). \]

Lemma 4.12. Suppose $\rho_1 \geq 3$. Then
\[f_i = \left[\frac{d-i}{d} \right] \mu_k, \quad n_i = \left[\frac{i}{d} \right] \mu_k. \] (39)

Proof. Similar to the proof of Lemma 4.7. \(\square\)

Lemma 4.13. Suppose $\rho_1 \geq 3$. Then
\[L^{(0)}v_{i+1} = m_i v_i + n_i w_i \quad (1 \leq i \leq d - 2), \] (40)

where
\[m_i = -\left[i \right] [d-i-1] \sum_{k=2}^{i} \mu_k, \quad n_i = \left[\frac{i}{d} \right] \mu_k. \] (41)

Proof. We show (40) by induction. Observe that (40) holds for $i = 1$ with $m_1 = 0$, $n_1 = 1$, since $L^{(0)}v_2 = w_1$. We assume $2 \leq i \leq d - 2$. Applying (29) to v_i,
\[L^{(0)} R_{v_i} = \left[i \right] [d-i-1] R L^{(0)} v_i - [i][d-i-1] \mu_i v_i. \] (42)

Observe that $L^{(0)} R_{v_i} = L^{(0)} v_{i+1}$. By induction, we have
\[R L^{(0)} v_i = R(m_{i-1} v_{i-1} + n_{i-1} w_{i-1}) = m_{i-1} v_i + n_{i-1} w_i, \]

with
\[m_{i-1} = -[i-1][d-i] \sum_{k=2}^{i-1} \mu_k, \quad n_{i-1} = \left[\frac{i-1}{d} \right]. \]
Thus (42) becomes
\[L(0)v_{i+1} = \frac{[i][d-i-1]}{[i-1][d-i]} \left(-[i-1][d-i] \sum_{k=2}^{i-1} \mu_k v_i + \frac{[i-1][d-i]}{[d-2]} w_i \right) - [i][d-i-1] \mu_i v_i \]
\[= -[i][d-i-1] \sum_{k=2}^{i} \mu_k v_i + \frac{[i][d-i-1]}{[d-2]} w_i. \]
□

Lemma 4.14. Suppose \(\rho_1 = 3 \). Then \(\{v_i, w_i\} \) is a basis of \(U_i^{(1)} (1 \leq i \leq d - 1) \).

Proof. Follows from Lemmas 4.11 and 3.2. □

Hence, when \(\rho_1 = 3 \),
\[L(0)w_{i+1} = s_i v_i + t_i w_i \quad (1 \leq i \leq d - 2) \]
holds for some scalars \(s_i, t_i \).

Lemma 4.15. Suppose \(\rho_1 = 3 \). Then
\[s_i = \frac{[i][d-i-1]}{[d-2]} s_1 \quad (1 \leq i \leq d - 2), \]
\[t_i = \frac{[i][d-i-1]}{[d-2]} \left(\frac{t_1}{[d-2]} - \sum_{k=2}^{i} \mu_k \right) \quad (1 \leq i \leq d - 2). \]

Proof. Similar to the proof of Lemma 4.13. □

Lemma 4.16. The following hold with the values of \(a_i, b_i, e_i, f_i, m_i, n_i \) given by (32), (33), (36), (39) and (41).

(i) \(Lu_0 = 0, Lu_1 = a_0 u_0, Lu_{i+1} = a_i u_i + b_i v_i \) (\(1 \leq i \leq d - 1 \)),
(ii) \(Lv_1 = e_0 u_0, Lv_{i+1} = e_i u_i + m_i v_i + n_i w_i \) (\(1 \leq i \leq d - 2 \)),
(iii) \(L(\cdot)w_{i+1} = f_i u_i \) (\(0 \leq i \leq d - 2 \)).

Proof. Follows from (25) and Lemmas 4.3, 4.6, 4.7, 4.12 and 4.13. □

5. Proof of \(\rho_1 \leq 3 \)

In this section, we show \(\rho_1 \leq 3 \). By way of contradiction, we assume \(\rho_1 \geq 4 \).
Lemma 5.1. The vectors \(v_1, w_1, L^{(0)}w_2 \) are linearly independent.

Proof. Suppose \(v_1, w_1, L^{(0)}w_2 \) are linearly dependent. Since \(v_1, w_1 \) are linearly independent by Lemma 4.11, \(L^{(0)}w_2 \) lies in \(\text{span} \{v_1, w_1\} \). Observe that \(RY = \text{span} \{v_2, w_2\} \) and \(L^{(0)}v_2 = w_1 \), so that \(L^{(0)}RY \subseteq Y \). Hence the subspace \(W = \sum_{i=0}^{d-2} R^iY \) is invariant under \(L^{(0)} \) by Lemma 3.19. This implies \(LW \subseteq L^{(0)}W + L^{(0)}Y \subseteq U^{(0)} + Y \). Moreover, \(L^{(2)}U^{(0)} \subseteq W \) by Lemma 4.6. Hence \(U^{(0)} + W \) is invariant under \(L \). Clearly \(U^{(0)} + W \) is invariant under \(R \) and \(F_i \) \((0 \leq i \leq d)\). These imply \(U^{(0)} + W = V \) by Lemma 2.4, so that \(U_1 = \{u_1, v_1, w_1\} \), contradicting our assumption \(\rho_1 \geq 4 \). \(\Box \)

We set \(L^{(0)}w_2 = x_1 \), so that

\[
Lw_2 = f_1u_1 + x_1. \tag{46}
\]

Observe that \(u_1, v_1, x_1 \) are linearly independent by \((19) \) and Lemma 5.1. Applying \((14) \) to \(u_3 \),

\[
\]

We compute each term of \((47) \) using Lemma 4.16 and \((46) \). We need to divide our computation into two cases. First we consider the case of \(d = 3 \). Observe that \(Ru_3 = Rv_2 = 0 \) by Lemma 3.1.

\[
L^3Ru_3 = 0,
\]

\[
L^2RLu_3 = L^2R(a_2u_2 + b_2v_2) = L^2(a_2u_3) = L(a_2(a_2u_2 + b_2v_2)) = L(a_2a_2u_2 + a_2b_2v_2) = a_2a_2(a_1u_1 + v_1) + a_2b_2(e_1u_1 + w_1) = (a_2a_2 + e_1a_2b_2)u_1 + a_2b_2v_1 + a_2b_2w_1,
\]

\[
LRL^2u_3 = LRL(a_2u_2 + b_2v_2) = LR(a_2(a_1u_1 + v_1) + b_2(e_1u_1 + w_1)) = LR((a_1a_2 + e_1b_2)u_1 + a_2v_1 + b_2w_1) = L((a_1a_2 + e_1b_2)u_1 + a_2v_1 + b_2w_1) = (a_1a_2 + e_1b_2)(a_1u_1 + v_1) + a_2(e_1u_1 + w_1) + b_2(f_1u_1 + x_1) = (a_1(a_1a_2 + e_1b_2) + e_1a_2 + f_1b_2)u_1 + (a_1a_2 + e_1b_2)v_1 + a_2w_1 + b_2x_1,
\]

\[
RL^3u_3 \in \text{span} \{u_1\},
\]

\[
L^2u_3 = (a_1a_2 + e_1b_2)u_1 + a_2v_1 + b_2w_1.
\]

Observe that the coefficient of \(x_1 \) in \((47) \) becomes \([3]b_2 \), so that \([3]b_2 = 0 \), contradicting our assumption that \(q \) is not a root of unity. Next we consider the case of \(d \geq 4 \).
\[L^3 R u_3 = L^3 u_4 = L^2 (a_3 u_3 + b_3 v_3) \]
\[= L((a_2 a_3 + e_2 b_3) u_2 + (b_2 a_3 + m_2 b_3) v_2 + n_2 b_3 u_2) \]
\[= (a_2 a_3 + e_2 b_3)(a_1 u_1 + v_1) \]
\[+ (b_2 a_3 + m_2 b_3)(e_1 u_1 + v_1) + n_2 b_3(f_1 u_1 + x_1), \]
\[L^2 R L u_3 = L^2 R (a_2 u_2 + b_2 v_2) = L^2 (a_2 u_3 + b_2 v_3) \]
\[= L((a_2 a_2 + b_2 e_2) u_2 + (a_2 b_2 + b_2 m_2) v_2 + b_2 n_2 u_2) \]
\[= (a_2 a_2 + b_2 e_2)(a_1 u_1 + v_1) + (a_2 b_2 + b_2 m_2)(e_1 u_1 + w_1) \]
\[+ b_2 n_2(f_1 u_1 + x_1), \]
\[L R L^2 u_3 = L R L (a_2 u_2 + b_2 v_2) = L R (a_2 (a_1 u_1 + v_1) + b_2 (e_1 u_1 + w_1)) \]
\[= L((a_1 a_2 + e_1 b_2) u_1 + a_2 v_1 + b_2 w_1) \]
\[= L((a_1 a_2 + e_1 b_2) u_2 + a_2 v_2 + b_2 w_2) \]
\[= (a_1 a_2 + e_1 b_2)(a_1 u_1 + v_1) + a_2 (e_1 u_1 + w_1) + b_2 (f_1 u_1 + x_1), \]
\[R L^3 u_3 \in \text{span } \{u_1\}, \]
\[L^2 u_3 = (a_1 a_2 + e_1 b_2) u_1 + a_2 v_1 + b_2 w_1. \]

Now looking at the coefficients of \(x_1 \) in (47),
\[n_2 b_3 - [3] b_2 n_2 + [3] b_2 = 0, \]
so that
\[\frac{[2][d - 3]}{[d - 2]} \cdot \frac{[4][3]}{[2]} - [3][3] \cdot \frac{[2][d - 3]}{[d - 2]} + [3][3] = \frac{[3][d]}{[d - 2]} = 0, \]
contradicting our assumption that \(q \) is not a root of unity. This completes the proof of \(\rho_1 = 3 \).

6. Proof of \(d = 3 \)

In this section, we assume \(\rho_1 = 3 \), and we show \(d = 3 \). By way of contradiction, we assume \(d \geq 4 \). Applying (14) to \(v_3 \),
\[L^3 R v_3 - [3] L^2 R L v_3 + [3] L R L^2 v_3 - R L^3 v_3 = [3] \delta_1 v_3 = 0. \]

We compute each term of (49) using Lemmas 4.16 and 3.17. The term of \(L^3 R v_3 \) vanishes when \(d = 4 \). When \(d \geq 5 \), it becomes
\[L^3 R v_3 = L^3 v_4 = L^2 (e_3 w_3 + m_3 v_3 + n_3 w_3) = \\
L(e_1 (a_2 u_2 + b_2 v_2) + m_2 (e_2 u_2 + m_2 v_2 + n_2 w_2) \\
+ n_3 (f_2 u_2 + s_2 v_2 + t_2 w_2)) = \\
L((a_2 e_3 + e_2 m_3 + f_2 n_3) u_2 + (b_2 e_3 + m_2 m_3 + s_2 n_3) v_2 \\
+ (n_2 m_3 + t_2 n_3) w_2) = \\
(a_2 e_3 + e_2 m_3 + f_2 n_3) (a_1 u_1 + v_1) \\
+ (b_2 e_3 + m_2 m_3 + s_2 n_3) (e_1 u_1 + w_1) \\
+ (n_2 m_3 + t_2 n_3) (f_1 u_1 + s_1 v_1 + t_1 w_1) = \\
(a_1 (a_2 e_2 + e_2 m_2 + f_2 n_2) + e_1 (b_2 e_2 + m_2 m_2 + s_2 n_2) \\
+ f_1 (m_2 n_2 + t_2 n_2)) u_1 \\
+ ((a_2 e_2 + e_2 m_2 + f_2 n_2) + s_1 (m_2 n_2 + t_2 n_2)) v_1 \\
+ ((b_2 e_2 + m_2 m_2 + s_2 n_2) + t_1 (m_2 n_2 + t_2 n_2)) w_1. \\
\]

The other terms become

\[L^2 RL v_3 = L^2 R (e_2 u_2 + m_2 v_2 + n_2 w_2) = L^2 (e_2 u_3 + m_2 v_3 + n_2 w_3) = \\
L(e_2 (a_2 u_2 + b_2 v_2) + m_2 (e_2 u_2 + m_2 v_2 + n_2 w_2) \\
+ n_2 (f_2 u_2 + s_2 v_2 + t_2 w_2)) = \\
L((a_2 e_2 + e_2 m_2 + f_2 n_2) u_2 + (b_2 e_2 + m_2 m_2 + s_2 n_2) v_2 \\
+ (m_2 n_2 + t_2 n_2) w_2) = \\
(a_2 e_2 + e_2 m_2 + f_2 n_2) (a_1 u_1 + v_1) \\
+ (b_2 e_2 + m_2 m_2 + s_2 n_2) (e_1 u_1 + w_1) \\
+ (m_2 n_2 + t_2 n_2) (f_1 u_1 + s_1 v_1 + t_1 w_1) = \\
(a_1 (a_2 e_2 + e_2 m_2 + f_2 n_2) + e_1 (b_2 e_2 + m_2 m_2 + s_2 n_2) \\
+ f_1 (m_2 n_2 + t_2 n_2)) u_1 \\
+ ((a_2 e_2 + e_2 m_2 + f_2 n_2) + s_1 (m_2 n_2 + t_2 n_2)) v_1 \\
+ ((b_2 e_2 + m_2 m_2 + s_2 n_2) + t_1 (m_2 n_2 + t_2 n_2)) w_1. \\
\]

\[LRL^2 v_3 = LRL (e_2 u_2 + m_2 v_2 + n_2 w_2) = \\
LRL(e_2 (a_2 u_2 + v_1) + m_2 (e_1 u_1 + v_1) + n_2 (f_1 u_1 + s_1 v_1 + t_1 w_1)) = \\
LRL((a_1 e_2 + e_1 m_2 + f_1 n_2) u_1 + (e_2 + s_1 n_2) v_1 + (m_2 + t_1 n_2) w_1) = \\
L((a_1 e_2 + e_1 m_2 + f_1 n_2) u_1 + (e_2 + s_1 n_2) (e_1 u_1 + w_1) \\
+ (m_2 + t_1 n_2) (f_1 u_1 + s_1 v_1 + t_1 w_1) = \\
(a_1 (a_1 e_2 + e_1 m_2 + f_1 n_2) + e_1 (e_2 + s_1 n_2) + f_1 (m_2 + t_1 n_2)) u_1 \\
+ ((a_1 e_2 + e_1 m_2 + f_1 n_2) + s_1 (m_2 + t_1 n_2)) v_1 \\
+ ((e_2 + s_1 n_2) + t_1 (m_2 + t_1 n_2)) w_1, \\
\]

\[RL^3 v_3 \in \text{span} \{u_1\}. \\
L^2 v_3 = (a_1 e_2 + e_1 m_2 + f_1 n_2) u_1 + (e_2 + s_1 n_2) v_1 + (m_2 + t_1 n_2) w_1. \]
When $d \geq 5$, by a routine computation, the coefficient of w_1 in (49) becomes

$$b_2 e_3 + m_2 n_3 + s_2 n_3 + t_1 (n_2 m_3 + t_2 n_3) - [3]((b_2 e_2 + m_2 m_2 + s_2 n_2) + t_1 (m_2 n_2 + t_2 n_2)) + [3](e_2 + s_1 n_2 + t_1 (m_2 + t_1 n_2)) - [3] e_1 (m_2 + t_1 n_2) = -\frac{[3][d - 3]}{[d - 1]} e_0,$$

so that $e_0 = 0$, and this implies $e_i = 0$ ($1 \leq i \leq d - 1$). The coefficient of v_1 becomes

$$f_2 n_3 + s_1 (n_2 m_3 + t_2 n_3) - [3](f_2 n_2 + s_1 (m_2 + t_2 n_2)) + [3](f_1 n_2 + s_1 (m_2 + t_1 n_2)) - [3] e_1 s_1 n_2 = -\frac{[3][d - 3]}{[d - 1]} f_0,$$

so that $f_0 = 0$. When $d = 4$, the coefficient of w_1 becomes

$$-[3]((b_2 e_2 + m_2 m_2 + s_2 n_2) + t_1 (m_2 n_2 + t_2 n_2)) + [3](e_2 + s_1 n_2 + t_1 (m_2 + t_2 n_2)) - [3] e_1 (m_2 + t_1 n_2) = -e_0,$$

so that $e_i = 0$ ($1 \leq i \leq d - 1$). The coefficient of v_1 becomes

$$-[3](f_2 n_2 + s_1 (m_2 n_2 + t_2 n_2)) + [3](f_1 n_2 + s_1 (m_2 + t_1 n_2)) - [3] e_1 s_1 n_2 = f_0.$$

In either case, $e_i = f_i = 0$ ($1 \leq i \leq d - 2$), so that $L^{(-)} U^{(1)} = 0$ and hence $L U^{(1)} \subseteq U^{(1)}$. Since $U^{(1)}$ is invariant under R and F_i ($0 \leq i \leq d$), we get $U^{(1)} = V$ by Lemma 2.4, a contradiction. This completes the proof of Theorem 1.3.

7. Proof of Theorems 1.5–1.9

Proof of Theorem 1.5. Follows from Lemmas 2.1, 3.3, 4.2 and 4.5. □

Lemma 7.1. Suppose Theorem 1.3(ii) holds. Then the maps R, L act on the basis (3) as follows.

- $Ru_i = u_{i+1}$ ($0 \leq i \leq d - 1$),
- $Ru_d = 0$,
- $Ru_i = v_{i+1}$ ($1 \leq i \leq d - 2$),
- $Lu_0 = 0$,
- $Lu_1 = a_0 u_0$,
- $Lu_{i+1} = a_i u_i + b_i v_i$ ($1 \leq i \leq d - 1$),
\[\begin{align*}
Lv_1 &= e_0u_0, \\
Lv_{i+1} &= e_iu_i + c_i v_i \quad (1 \leq i \leq d-2),
\end{align*} \]

where the coefficients satisfy (32), (33), (36) and (38).

Proof. Follows from Theorem 1.5 and Eqs. (24), (31)–(38). \(\square\)

Proof of Theorem 1.6. First observe the following formulas hold, which can be verified by routine computations.

\[\begin{align*}
\sum_{k=1}^{i} \mu_k &= [i] \eta_{d+i+1}, \\
\sum_{k=2}^{i} \mu_k &= [i-1] \eta_{d+i+2}.
\end{align*} \] (50) (51)

Now the expressions for \(a_i, b_i, c_i\) follow from Lemma 7.1. Applying (14) to \(v_2\),

\[L^3 R v_2 - [3] L^2 R L v_2 + [3] L R L^2 v_2 - RL^2 v_2 - [3] \epsilon_0 v_2 = 0. \] (52)

We compute each term of (52) as follows using Lemma 7.1.

\[\begin{align*}
L^3 R v_2 & = L^3 v_3 = L^2(e_2 u_2 + c_2 v_2) \\
& = L(e_2(a_1 u_1 + v_1) + c_2(e_1 u_1 + c_1 v_1)) \\
& = L((a_1e_2 + e_1c_2)u_1 + (e_2 + c_1 c_2) v_1) \\
& = (a_0(a_1e_2 + e_1c_2) + e_0(e_2 + c_1 c_2))u_0,
\end{align*} \]

\[\begin{align*}
L^2 R L v_2 & = L^2 R(e_1 u_1 + c_1 v_1) = L^2(e_1 u_2 + c_1 v_2) \\
& = L((a_1 u_1 + v_1) + c_1(e_1 u_1 + c_1 v_1)) \\
& = L((a_1 e_1 + c_1 e_1) u_1 + (e_1 + c_1 c_1) v_1) \\
& = (a_0(a_1 e_1 + c_1 e_1) + e_0(e_1 + c_1 c_1))u_0,
\end{align*} \]

\[\begin{align*}
L R L^2 v_2 & = LR L(e_1 u_1 + c_1 v_1) = L R(a_0 e_1 + e_0 c_1) u_0 \\
& = a_0(a_0 e_1 + e_0 c_1) u_0,
\end{align*} \]

\[RL^2 = 0, \]

\[L^2 v_2 = (a_0 e_1 + e_0 c_1) u_0. \]

Hence (52) implies

\[a_0(a_1 e_2 + e_1 c_2) + e_0(e_2 + c_1 c_2) - [3] (a_0(a_1 e_1 + c_1 e_1) + e_0(e_1 + c_1 c_1)) \\
+ [3] a_0(a_0 e_1 + e_0 c_1) - [3] \epsilon_0(a_0 e_1 + e_0 c_1) = 0. \]
Using Lemma 7.1, we get an equation in terms of a_0, c_1 and e_0, in which e_0 has degree one, so that we may solve it in e_0. After a routine computation, we get

\[
e_0 = -\frac{[d-1]}{2[d]} a_0^2 - \frac{[d][d-1]}{2[d-2]} c_1^2 + [4][d-1] \frac{[d-1]}{2[d-2]} b_0 c_1 \\
+ [d-1] \eta_{d+3} a_0 - \frac{[d][d-1]}{[d-2]} \eta_{d+1} c_1.
\]

This implies the expression for e_i in Theorem 1.6. □

Proof of Theorem 1.8. Follows from Theorem 1.6 and the definition of R, L. □

Proof of Theorem 1.9. Let R, L denote the maps which act on the given basis as in Theorem 1.6. Define subspaces U_0, \ldots, U_d by

\[
U_0 = \text{span}\{u_0\}, \\
U_i = \text{span}\{u_i, v_i\} \quad (1 \leq i \leq d-1), \\
U_d = \text{span}\{u_d\}.
\]

Observe that V is decomposed into direct sum of U_0, \ldots, U_d. Let $F_i : V \longrightarrow U_i$ denote the projection. By Lemmas 2.7 and 2.8, it is enough to show that R, L satisfy the relations (13) and (14).

Let C_1 denote the left side of (13). It is routine to verify that $C_1 u_i = 0$ ($0 \leq i \leq d-2$) and $C_1 v_i = 0$ ($1 \leq i \leq d-2$). So (13) holds.

Let C_2 denote the left side of (14). We shall verify $C_2 u_i = 0$ for $2 \leq i \leq d$ and $C_2 v_i = 0$ for $2 \leq i \leq d-1$. When $4 \leq i \leq d-2$, after routine computation,

\[
C_2 u_i = ((a_1 a_i - 1 + b_i e_i - 1) a_i - 2 + (a_1 b_i - 1 + b_i c_i - 1) e_i - 2 \\
- [3]([a_1 a_i - 1 + b_i e_i - 1] a_i - 2 + (a_1 b_i - 1 + b_i - 1 c_i - 1) e_i - 2) \\
+ [3]([a_1 a_i - 1 + b_i e_i - 1] a_i - 2 + (a_1 - 1 b_i - 2 + b_i - 1 c_i - 2) e_i - 2) \\
- ((a_1 a_i - 1 + b_i c_i - 1) a_i - 2 + (a_1 - 1 b_i - 2 + b_i - 1 c_i - 2) e_i - 3) \\
- [3] e_i - 2 (a_i - 1 a_i - 2 + b_i - 1 e_i - 2) u_i - 2 \\
+ (a_1 a_i - 1 + b_i e_i - 1) b_i - 2 + (a_1 b_i - 1 + b_i - 1 c_i - 1) c_i - 2 \\
- [3] ([a_1 a_i - 1 + b_i e_i - 1] b_i - 2 + (a_1 b_i - 1 + b_i - 1 c_i - 1) c_i - 2) \\
+ [3] ([a_1 a_i - 1 + b_i e_i - 1] b_i - 2 + (a_1 - 1 b_i - 2 + b_i - 1 c_i - 2) c_i - 2) \\
- ((a_1 a_i - 1 + b_i e_i - 1) b_i - 3 + (a_1 - 1 b_i - 2 + b_i - 1 c_i - 2) c_i - 3) \\
- [3] e_i - 2 (a_i - 1 b_i - 2 + b_i - 1 c_i - 2) v_i - 2.
\]

It is routine to verify that both coefficients vanish, so that $C_2 u_i = 0$. In the same way, we can verify $C_2 v_i = 0$. Similarly, we can verify $C_2 u_i = 0$ and $C_2 v_i = 0$ for the case of $i = 2, 3, d - 1, d$. □
Acknowledgments

The author would like to thank Paul Terwilliger for his helpful suggestions.

References