JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 178, 301-308 (1993)

Approximating Fixed Points of Nonexpansive Mappings by the Ishikawa Iteration Process

Kok-Keong Tan

Department of Mathematics, Statistics, and Computing Science, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5

AND

Hong-Kun Xu

Institute of Applied Mathematics, East China University of Science and Technology, Shanghai 200237, China

Submitted by R. P. Boas

Received September 24, 1991

1. Introduction

Let C be a nonempty bounded closed convex subset of a Banach space X. A mapping $T: C \to C$ is said to be nonexpansive if

$$||Tx - Ty|| \le ||x - y||$$

for all x, y in C. It has been shown that if X is uniformly convex, then every nonexpansive mapping $T: C \to C$ has a fixed point (see [1], cf. also [7]). In 1974, Ishikawa [6] introduced a new iteration procedure for approximating fixed points of pseudo-contractive compact mappings in Hilbert spaces as follows.

$$x_{n+1} = t_n T(s_n T x_n + (1 - s_n) x_n) + (1 - t_n) x_n, \qquad n = 0, 1, 2, ...,$$
 (I)

where $\{t_n\}$ and $\{s_n\}$ are sequences in [0, 1] satisfying certain restrictions. Note that the normal Mann iteration procedure (cf. [8, 3, 5]),

$$x_{n+1} = t_n T x_n + (1 - t_n) x_n, \qquad n = 0, 1, 2, ...,$$

where $\{t_n\}$ is a sequence in [0, 1], is a special case of the Ishikawa one (corresponding to the choice $s_n = 0$ for all $n \ge 0$). For comparison of the 301

0022-247X/93 \$5.00

Copyright © 1993 by Academic Press, Inc. All rights of reproduction in any form reserved.

302 tan and xu

two iterative processes in the one-dimensional case, we refer the reader to [11].

It is the object of the present paper to show that if X is a uniformly convex Banach space which satisfies Opial's condition or whose norm is Frechet differentiable, C is a bounded closed convex subset of X, and $T: C \to C$ is a nonexpansive mapping, then for any initial data x_0 in C the Ishikawa iterates $\{x_n\}$ defined by (I), where $\{t_n\}$ and $\{s_n\}$ are chosen so that $\sum_n t_n(1-t_n)$ diverges, $\sum_n s_n(1-t_n)$ converges, and $\overline{\lim}_n s_n < 1$, converge weakly to a fixed point of T. This generalizes a theorem of Reich [10].

2. Preliminaries and Lemmas

Recall that a Banach space X is said to satisfy Opial's condition [9] if, for each sequence $\{x_n\}$ in X, the condition $x_n \to x_0$ weakly implies $\overline{\lim}_n \|x_n - x_0\| < \overline{\lim}_n \|x_n - y\|$ for all y in X, $y \neq x_0$. It is known [9] that all I^p spaces for $1 enjoy this property. However, the <math>L^p$ spaces do not, unless p = 2. It is also known [4] that any separable Banach space can be equivalently renormed so that it satisfies Opial's condition. Recall also that X is said to have a Frechet differentiable norm if, for each $x \in S(X)$, the unit sphere of X, the limit

$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t},$$

exists and is attained uniformly in $y \in S(X)$. In this case we have

$$\frac{1}{2} \|x\|^2 + \langle h, J(x) \rangle \leqslant \frac{1}{2} \|x + h\|^2 \leqslant \frac{1}{2} \|x\|^2 + \langle h, J(x) \rangle + g(\|h\|) \quad (2.1)$$

for all bounded x, h in X, where $J(x) = \partial \frac{1}{2} ||x||^2$ is the Frechet derivative of the functional $\frac{1}{2} ||\cdot||^2$ at $x \in X$, $\langle \cdot, \cdot \rangle$ is the pairing between X and X^* , and $g(\cdot)$ is a function defined on $[0, \infty)$ such that $\lim_{t \to 0} g(t)/t = 0$.

Suppose now that C is a bounded closed convex subset of a uniformly convex Banach space X and $T: C \to C$ is a nonexpansive mapping. To each integer $n \ge 0$, we write

$$T_n(x) = t_n T(s_n Tx + (1 - s_n)x) + (1 - t_n)x, \qquad x \in C.$$
 (2.2)

Then $T_n: C \to C$ is also nonexpansive and the Ishikawa iterates $\{x_n\}$ defined by (I) can be written as

$$x_{n+1} = T_n x_n, \qquad n = 0, 1, 2,$$
 (2.3)

We note that $F(T_n) \supseteq F(T)$ for $n \ge 0$, where F(T) denotes the set of fixed points of T.

LEMMA 1. Suppose that $\{a_n\}$ and $\{b_n\}$ are two sequences of nonnegative numbers such that $a_{n+1} \leq a_n + b_n$ for all $n \geq 1$. If $\sum_n b_n$ converges, then $\lim_n a_n$ exists.

Proof. For $n, m \ge 1$, we have

$$a_{n+m+1} \le a_{n+m} + b_{n+m} \le \cdots \le a_n + \sum_{j=n}^{n+m} b_j.$$

Hence $\overline{\lim}_m a_m \le a_n + \sum_{j=n}^{\infty} b_j$, which implies that $\overline{\lim}_m a_m \le \underline{\lim}_n a_n$. This completes the proof.

LEMMA 2. For each $f \in F(T)$, $\lim_n ||x_n - f||$ exists.

Proof. We have $||x_{n+1} - f|| = ||T_n x_n - T_n f|| \le ||x_n - f||$; i.e., $\{||x_n - f||\}$ is nonincreasing and the lemma is proved.

LEMMA 3. Suppose $\sum_{n=0}^{\infty} t_n (1-t_n) = \infty$, $\sum_{n=0}^{\infty} s_n (1-t_n) < \infty$, and $\overline{\lim}_n s_n < 1$. Then $\lim_n ||Tx_n - x_n|| = 0$.

Proof. Set $y_n = s_n T x_n + (1 - s_n) x_n$. Then $x_{n+1} = t_n T y_n + (1 - t_n) x_n$. Let f be in F(T). We may assume $\lim_n \|x_n - f\| \neq 0$. Then, noting that $\|y_n - f\| \leq \|x_n - f\|$, we obtain

$$||x_{n+1} - f|| = ||t_n(Ty_n - f) + (1 - t_n)(x_n - f)||$$

$$\leq ||x_n - f|| \left[1 - 2t_n(1 - t_n) \delta_X \left(\frac{||Ty_n - f||}{||x_n - f||} \right) \right], \quad (2.4)$$

where δ_X is the modulus of convexity of X defined by

$$\delta_X(\varepsilon) = \inf\{1 - \|\frac{1}{2}(x+y)\| : \|x\| \le 1, \|y\| \le 1, \|x-y\| \ge \varepsilon\}$$

for $0 \le \varepsilon \le 2$. Now it is readily seen from (2.4) that $\sum_{n=0}^{\infty} t_n (1-t_n) \delta_X(\|Ty_n-x_n\|/\|x_n-f\|)$ converges. But, since $\sum_{n=0}^{\infty} t_n (1-t_n)$ diverges, we have $\underline{\lim}_n \delta_X(\|Ty_n-x_n\|/\|x_n-f\|) = 0$ and thus

$$\lim_{n} \|Ty_n - x_n\| = 0, (2.5)$$

since δ_X is strictly increasing and continuous and $\lim_n ||x_n - f|| > 0$. Since

$$||Tx_n - x_n|| \le ||Tx_n - Ty_n|| + ||Ty_n - x_n||$$

$$\le ||x_n - y_n|| + ||Ty_n - x_n||$$

$$= s_n ||Tx_n - x_n|| + ||Ty_n - x_n||,$$

that is,

$$||Tx_n - x_n|| \le \frac{1}{1 - s_n} ||Ty_n - x_n||,$$

we have from (2.5) that

$$\lim_{n} \|Tx_n - x_n\| = 0. {(2.6)}$$

Since

$$\begin{aligned} \|Tx_{n+1} - x_{n+1}\| &\leq t_n \|Tx_{n+1} - Ty_n\| + (1 - t_n) \|Tx_{n+1} - x_n\| \\ &\leq t_n \|x_{n+1} - y_n\| + (1 - t_n) \\ &\times (\|Tx_{n+1} - x_{n+1}\| + \|x_{n+1} - x_n\|) \\ &\leq t_n (t_n \|Ty_n - y_n\| + (1 - t_n) \|x_n - y_n\|) \\ &+ (1 - t_n) (\|Tx_{n+1} - x_{n+1}\| + t_n \|Ty_n - x_n\|), \end{aligned}$$

we have

$$||Tx_{n+1} - x_{n+1}|| \le t_n ||Ty_n - y_n|| + (1 - t_n)(||Ty_n - x_n|| + ||x_n - y_n||)$$

$$\le t_n(s_n ||Ty_n - Tx_n|| + (1 - s_n) ||Ty_n - x_n||)$$

$$+ (1 - t_n)(||Ty_n - x_n|| + ||x_n - y_n||)$$

$$\le (1 + t_n s_n - t_n) ||x_n - y_n|| + (1 - t_n s_n) ||Ty_n - x_n||$$

$$\le s_n(1 + t_n s_n - t_n) ||x_n - Tx_n||$$

$$+ (1 - t_n s_n)(||Ty_n - Tx_n|| + ||Tx_n - x_n||)$$

$$\le (s_n(1 + t_n s_n - t_n) + (1 - t_n s_n)(1 + s_n)) ||x_n - Tx_n||$$

$$= (1 + 2s_n(1 - t_n)) ||x_n - Tx_n||.$$

Since $\sum_{n} s_n (1 - t_n)$ converges and $\{\|x_n - Tx_n\|\}$ is bounded, it follows from Lemma 1 that $\lim_{n} \|Tx_n - x_n\|$ exists and equals zero by (2.6).

LEMMA 4. Suppose in addition that X has a Frechet differentiable norm. Then for every f_1 , f_2 in F(T) and 0 < t < 1, $\lim_n ||tx_n + (1 - f_1) - f_2||$ exists.

Proof. Set $S_{n,m} = T_{n+m-1}T_{n+m-2}\cdots T_{n+1}T_n$. Here T_n is defined as in (2.2). Then $S_{n,m}$ is nonexpansive and $x_{n+m} = S_{n,m}x_n$. We also set

$$a_n = a_n(t) = ||tx_n + (1-t)f_1 - f_2||$$

and

$$d_{n,m} = \|S_{n,m}(tx_n + (1-t)f_1 - (tx_{n+m} + (1-t)f_1)\|.$$

By a result of Bruck [2], there exists a strictly increasing continuous function $g: [0, \infty) \to [0, \infty)$ with g(0) = 0 such that

$$g(\|S(tx + (1 - t)y) - (tSx + (1 - t)Sy)\|)$$

$$\leq \|x - y\| - \|Sx - Sy\|$$

for all nonexpansive S: $C \rightarrow X$, $x, y \in C$, and $0 \le t \le 1$. It then follows that

$$g(d_{n,m}) \le ||x_n - f_1|| - ||S_{n,m}x_n - S_{n,m}f_1||$$

= $||x_n - f_1|| - ||x_{n+m} - f_1||$.

Since $\lim_{n} ||x_n - f_1||$ exists, we conclude that

$$\lim_{n, m \to \infty} d_{n, m} = 0. {(2.7)}$$

From (2.7) and the fact that $a_{n+m} = ||tx_{n+m} + (1-t)f_1 - f_2|| \le d_{n+m} + ||S_{n,m}(tx_n + (1-t)f_1 - f_2)|| \le d_{n,m} + a_n$, it follows that

$$\overline{\lim}_{n} a_{n} \leqslant \lim_{n, m \to \infty} d_{n, m} + \underline{\lim}_{n} a_{n} = \underline{\lim}_{n} a_{n}.$$

This completes the proof.

3. Convergence of the Ishikawa Iteration Process

In this section we prove the weak and strong convergence of the Ishikawa iteration process in a uniformly convex Banach space.

Theorem 1. Let X be a uniformly convex Banach space which satisfies Opial's condition or whose norm is Frechet differentiable, C be a bounded closed convex subset of X, and $T: C \to C$ a nonexpansive mapping. Then for any initial guess x_0 in C, the Ishikawa iteration process $\{x_n\}$ defined by (I), with the restrictions that $\sum_{n=0}^{\infty} t_n(1-t_n)$ diverges, $\sum_{n=0}^{\infty} s_n(1-t_n)$ converges, and $\overline{\lim}_n s_n$ is less than one, converges weakly to a fixed point of T.

Proof. By Browder [1], we know that if X is uniformly convex, then T has a fixed point and I-T is demiclosed at the origin; i.e., for any sequence $\{y_n\}$ in C, the conditions $y_n \to y$ weakly and $y_n - Ty_n \to 0$ strongly imply

306 TAN AND XU

y-Ty=0. It thus follows from Lemma 3 that $\omega_w(x_n) \subset F(T)$. (Here $\omega_w(x_n)$ denotes the weak ω -lim set of the sequence $\{x_n\}$, i.e., the set $\{u \in X : u = \text{weak-lim}_{k \to \infty} x_{n_k} \text{ for some } n_k \uparrow \infty.$) To show that $\{x_n\}$ converges weakly to a fixed point of T, it suffices to show that $\omega_w(x_n)$ consists of exactly one point. To this end, we first suppose that X satisfies Opial's condition and suppose $p \neq q$ are in $\omega_w(x_n)$. Then $p = \text{weak-lim}_{k \to \infty} x_{n_k}$ and $q = \text{weak-lim}_{j \to \infty} x_{m_j}$ for some $n_k \uparrow \infty$ and $m_j \uparrow \infty$. By Lemma 2 and Opial's condition of X, we then have

$$\begin{split} \lim_{n} \ \|x_{n} - p\| &= \lim_{k} \ \|x_{n_{k}} - p\| < \lim_{k} \ \|x_{n_{k}} - q\| \\ &= \lim_{j} \ \|x_{m_{j}} - q\| < \lim_{j} \ \|x_{m_{j}} - p\| \\ &= \lim_{n} \ \|x_{n} - p\|, \end{split}$$

arriving at a contradiction. This proves the theorem in the case in which X satisfies Opial's condition. We now assume that X has a Frechet differentiable norm. Substituting $f_1 - f_2$ and $t(x_n - f_1)$ for x and h, respectively, in (2.1), where $f_1, f_2 \in F(T)$ and 0 < t < 1, we obtain

$$\begin{split} &\frac{1}{2} \| f_1 - f_2 \|^2 + t \langle x_n - f_1, J(f_1 - f_2) \rangle \\ &\leq &\frac{1}{2} \| t x_n + (1 - t) f_1 - f_2 \|^2 \\ &\leq &\frac{1}{2} \| f_1 - f_2 \|^2 + t \langle x_n - f_1, J(f_1 - f_2) \rangle + g(t \| x_n - f_1 \|). \end{split}$$

By Lemma 3, we derive that

$$\begin{split} & \frac{1}{2} \| f_1 - f_2 \|^2 + t \cdot \overline{\lim}_n \left\langle x_n - f_1, J(f_1 - f_2) \right\rangle \\ & \leq \lim_n \frac{1}{2} \| t x_n + (1 - t) f_1 - f_2 \|^2 \\ & \leq \frac{1}{2} \| f_1 - f_2 \|^2 + t \cdot \underline{\lim}_n \left\langle x_n - f_1, J(f_1 - f_2) \right\rangle + o(t). \end{split}$$

Hence

$$\overline{\lim}_{n} \langle x_{n} - f_{1}, J(f_{1} - f_{2}) \rangle \leq \underline{\lim}_{n} \langle x_{n} - f_{1}, J(f_{1} - f_{2}) \rangle + o(t)/t.$$

On letting $t \to 0^+$, we see that $\lim_n \langle x_n - f_1, J(f_1 - f_2) \rangle$ exists. In particular, this implies that

$$\langle p - q, J(f_1 - f_2) \rangle = 0 \tag{3.1}$$

for all p, q in $\omega_w(x_n)$ and f_1 , f_2 in F(T). Since $\omega_w(x_n) \subset F(T)$ for any p, q in $\omega_w(x_n)$, by replacing f_1 , f_2 in (3.1) by p, q, respectively, we obtain

$$||p-q||^2 = \langle p-q, J(p-q) \rangle = 0.$$

This shows that $\omega_w(x_n)$ must be singleton.

Remark. Theorem 1 above generalizes Theorem 2 of Reich [10] which corresponds to the choice $s_n = 0$ for all $n \ge 0$.

Next we briefly discuss the strong convergence of the Ishikawa iteration scheme.

THEOREM 2. Suppose that X is a uniformly convex Banach space and T, C and $\{x_n\}$ are as in Theorem 1. Suppose also that the range of C under T is contained in a compact subset of X. Then the Ishikawa iterates $\{x_n\}$ converge strongly to a fixed point of T.

Proof. By Lemma 3 and the precompactness of T(C), we see that $\{x_n\}$ admits a strongly convergent subsequence $\{x_{n_k}\}$ whose limit we shall denote by z. Then, again by Lemma 3, we have z = Tz; namely, z is a fixed point of T. Since $\|x_n - z\|$ is decreasing by Lemma 2, z is actually the strong limit of the sequence $\{x_n\}$ itself.

Recall that a mapping $T: C \to C$ is said to satisfy Condition A ([12]) if there exists a nondecreasing function $f: [0, \infty) \to [0, \infty)$ with f(0) = 0 and f(r) > 0 for all r > 0 such that $||x - Tx|| \ge f(d(x, F(T)))$ for all $x \in C$, where $d(x, F(T)) = \inf_{z \in F(T)} ||x - z||$.

THEOREM 3. Let X be a uniformly convex Banach space and let T, C, and $\{x_n\}$ be as in Theorem 1. If T satisfies Condition A, then $\{x_n\}$ converges strongly to a fixed point of T.

Proof. By Condition A, we have

$$||x_n - Tx_n|| \ge f(d(x_n, F(T)))$$

fort all $n \ge 0$. Since $\{d(x_n, F(T))\}$ is decreasing by Lemma 2, it follows from Lemma 3 that

$$\lim_{n} d(x_n, F(T)) = 0.$$

We can thus choose a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that

$$||x_{n_k} - p_k|| < 2^{-k}$$

308 TAN AND XU

for all integers $k \ge 1$ and some sequence $\{p_k\}$ in F(T). Again by Lemma 2, we have $||x_{n_{k+1}} - p_k|| \le ||x_{n_k} - p_k|| < 2^{-k}$, and hence

$$||p_{k+1} - p_k|| \le ||p_{k+1} - x_{n_{k+1}}|| + ||x_{n_{k+1}} - p_k||$$

$$\le 2^{-(k+1)} + 2^{-k} < 2^{-k+1},$$

which shows that $\{p_k\}$ is Cauchy and therefore converges strongly to a point p in F(T) since F(T) is closed. Now it is readily seen that $\{x_{n_k}\}$ and hence $\{x_n\}$ itself by Lemma 2 converges strongly to p.

ACKNOWLEDGMENT

The authors are grateful to the referee for his careful reading and valuble suggestions which corrected an error in the original proof of Lemma 3.

REFERENCES

- 1. F. E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, "Proc. Symp. Pure Math.," Vol. 18, Amer. Math. Soc., Providence, RI, 1976.
- R. E. BRUCK, A simple proof of the mean ergodic theorem for nonlinear contractions in Banach space spaces, *Israel J. Math.* 32 (1979), 107-116.
- 3. W. G. DOTSON, JR., On the Mann iterative process, Trans. Amer. Math. Soc. 149 (1970), 65-73.
- D. VAN DULST, Equivalent norms and the fixed point property for nonexpansive mappings, J. London Math. Soc. 25 (1982), 139-144.
- C. W. GROETSCH, A note on segmenting Mann iterates, J. Math. Anal. Appl. 40 (1972), 369-372.
- S. ISHIKAWA, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147-150.
- W. A. Kirk, A fixed point theorem for mappings which do not increase distance, Amer. Math. Monthly 72 (1965), 1004-1006.
- 8. W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510.
- 9. Z. OPIAL, Weak convergence of the sequence of successive approximations for non-expansive mappings, Bull. Amer. Math. Soc. 73 (1967), 595-597.
- S. REICH, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979), 274-276.
- B. E. RHOADES, Comments on two fixed point iteration methods, J. Math. Anal. Appl. 56 (1976), 741-750.
- H. F. Senter and W. G. Dotson, Jr., Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 44 (1974), 375-380.