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a b s t r a c t

The introduction of high-speed circuits to realize an arithmetic function f as a piecewise
linear approximation has created a need to understand how the number of segments
depends on the interval a ≤ x ≤ b and the desired approximation error ε. For the case
of optimum non-uniform segments, we show that the number of segments is given as
s(ε) ∼ c

√
ε
, (ε → 0+), where c = 1

4

∫ b
a

√
|f ′′(x)|dx. Experimental data shows that this

approximation is close to the exact number of segments for a set of 14benchmark functions.
We also show that, if the segments have the samewidth (to reduce circuit complexity), then

the number of segments is given by s(ε) ∼ c
√
ε
, (ε→ 0+), where c = (b−a)

√
|f ′′|max
4 .

Published by Elsevier B.V.

1. Introduction

A numeric function generator (NFG) is a logic circuit [1–6] that realizes an arithmetic function like f (x) = sin(πx)
over some specified interval a ≤ x ≤ b. We consider the numeric function generator shown in Fig. 1. This architecture
realizes a given function as a set of segments or pieces, where f is approximated in each segment by the linear equation
f (x) ≈ c1x + c0. The values of c1 and c0 are stored in the Coefficients Memory shown in Fig. 1 in a location whose address
is specified by the Segment Index Encoder. In designing this circuit, one partitions the interval a ≤ x < b into segments,
where the coefficients c1 and c0 are the same in each segment and approximate the function to within some specified error.
It is known that the Segment Index Encoder is tractably realized [7].
This circuit is said to realize a non-uniform segmentation because, in general, the segments have different widths.

Indeed,wewill choose the segmentwidths as large as possible so that the approximation is notmore than the approximation
error away from the exact value. In this way, we produce a segmentation that has as few segments as possible.
In contrast, we also consider a uniform segmentation. In this case, all segments have equal width. If the segment widths

are 2m, then the segment index encoder can be removed and the higher order n − m bits used to drive the address of the
Segment Index Encoder, where n is the number of bits to encode x. In this case, the circuit is likely to be smaller and faster.
Up to this point, we have not had an analytical tool to predict the size of the Coefficients Memory as a function of the

function realized, the domain, and the required approximation error. That is, our understanding of its size has only been
through experimental results; i.e. specific implementations [7–11].
In this paper, we derive an expression for the number of segments (size of the Coefficients Memory) for both the non-

uniform and the uniform case. We expect that, as the approximation error decreases, the number of segments needed
to accommodate that improvement increases. Specifically we show that, for non-uniform segmentation, the number of
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Fig. 1. Architecture of a numerical function generator using piecewise linear approximation and non-uniform segmentation.

segments is approximately c
√
ε
, where ε is the approximation error, and c = 1

4

∫ b
a

√
|f ′′(x)|dx. It follows that, the number of

segments also increases as the interval increases, and that the magnitude of the second derivative of the realized function
has a significant influence on the number of segments. In the case of a uniform segmentation, we show that the number of

segments is approximately c
√
ε
, where c = (b−a)

√
|f ′′|max
4 .

2. Non-uniform approximation with unrestricted slope

Let f be a three times continuously differentiable function defined on the domain [a, b]. In the case of unrestricted slope,
our algorithm proceeds by generating a segmentation {x0, x1, . . . , xσ } of [a, b] with the property that, in each of the σ
segments [xi, xi+1], i = 0, . . . , σ − 1, the chord between xi and xi+1 produces a linear approximation (c1x+ c0) to f within
a previously specified approximation error ε:

|f (x)− c1x− c0| ≤ ε, x ∈ [xi, xi+1].
In the example of the sin(πx) function, experimental results show that, for a specified approximation error ε, the
segmentation algorithm, in the case of unrestricted slope, determines a number of segments s that is proportional to 1/

√
ε.

We now show that this is a general result for a large set of functions.
Specifically, we give an asymptotic approximation for the number of segments s(ε) needed to approximate a given

function f (x) to within a given approximation error ε. We say that t(ε) is an asymptotic approximation to s(ε), expressed as
s(ε) ∼ t(ε), if limε→0+ s(ε)/t(ε) = 1. In our use of this, s(ε) is the exact number of segments, while t(ε) is an approximation
to s(ε), which has a simple form. Intuitively, we expect the number of segments to increase as the approximation error ε
decreases. We seek to determine this relationship, since it provides insight into how hardware complexity depends on the
approximation error.
In what follows, we divide the domain [a, b] into two sets depending of the value of f ′′(x). Let

Aε = {x ∈ [a, b] : |f ′′(x)| ≤
√
ε} and (1)

Bε = {x ∈ [a, b] : |f ′′(x)| >
√
ε}, (2)

where ε > 0. Note that (1) Aε is a closed set; (2) Bε is an open set, (3) Aε
⋂
Bε = ∅; and (4) Aε

⋃
Bε = [a, b]. Under the

assumption that the length of Aε tends to zero as ε tends to zero, and Bε is a finite union of open intervals, we have

Theorem 1. Consider a piecewise linear approximation of f on the domain [a, b] that is accurate to within ε, using a piecewise
linear segmentation. Let f be three times continuously differentiable on [a, b]. Then, s(ε), the number of segments in an optimum
segmentation of [a, b], satisfies the following asymptotic approximation:

s(ε) ∼
c
√
ε
, (ε→ 0+), (3)

where

c =
1
4

∫ b

a

√
|f ′′(x)|dx. (4)

Proof. See Appendix.

For example, if we take f (x) = sin(πx) on [0, 12 ], we find

s(ε) ∼
π
∫ 1/2
0

√
sinπxdx

4
√
ε

. (5)

Using MAPLE to numerically evaluate the integral in (5) yields

s(ε) ∼
0.2995
√
ε
.

The following corollary of Theorem 1 relaxes the conditions on the end points of the domain.



C.L. Frenzen et al. / Journal of Computational and Applied Mathematics 234 (2010) 437–446 439

Table 1
Number of segments for non-uniform and uniform segmentations.

Function f (x) Domain of x Non-Uni s ∼ Uniform s ∼ Non-Uni/Uni=

2x [0, 1) 0.2071
√
ε

0.2451
√
ε
=

ln 2
√
8
√
ε

84%

1/x [1, 2) 0.2071
√
ε

0.3536
√
ε
=

1
√
8
√
ε

59%

√
x

[ 1
1024 , 2

) 0.5062
√
ε

45.2327
√
ε
=

2− 1
1024
4
√
ε

√∣∣∣∣ −1
4( 1
1024 )

3/2

∣∣∣∣ 1%

1/
√
x [1, 2) 0.1378

√
ε

0.2165
√
ε
=

√
3

8
√
ε

64%

log2(x) [1, 2) 0.2081
√
ε

0.3003
√
ε
=

1
4
√
ln 2
√
ε

69%

ln x [1, 2) 0.1733
√
ε

0.2500
√
ε
=

1
4
√
ε

69%

sin(πx)
[
0, 12

) 0.2995
√
ε

0.3927
√
ε
=

π

8
√
ε

76%

cos(πx)
(
0, 12

) 0.2995
√
ε

0.3927
√
ε
=

π

8
√
ε

76%

tan(πx)
[
0, 14

) 0.2005
√
ε

0.3927
√
ε
=

π

8
√
ε

51%

√
−ln(x)

[ 1
1024 ,

1
4

) 0.6489
√
ε

26.7609
√
ε
=

31 78
√
2(ln 1024)−1/2−(ln 1024)−3/2

√
ε

2%

tan2(πx)+ 1 [0, 14 )
0.4200
√
ε

0.7854
√
ε
=

π

4
√
ε

53%

−(x log2 x+ (1− x) log2(1− x)) [
1
1024 , 1−

1
1024 ]

0.9058
√
ε

9.5949
ε
=

1− 1
512

4
√
ε

√∣∣∣∣ 1
ln 2( 1

1024−1)
−

1
ln 2 1

1024

∣∣∣∣ 9%

1
1+e−x [0, 1) 0.0550

√
ε

0.0754
√
ε
=

√
e1+e−1

e1+2+e−1
1
4
√
ε

73%
1
√
2π
e
−x2
2 [0,

√
2) 0.1452

√
ε

0.2233
√
ε
=

√
2

4(2π)1/4
√
ε

65%

Corollary 1. Let f be three times continuously differentiable on the open interval (a, b) and |
√
f ′′| be improperly Riemann

integrable1 on the closed interval [a, b], with integrable singularities at the endpoints a or b. Then, s(ε), the number of segments
in an optimum segmentation of [a, b], satisfies the following asymptotic approximation:

s(ε) ∼
c
√
ε
, (ε→ 0+), (6)

where

c =
1
4

∫ b

a

√
|f ′′(x)|dx. (7)

The significance of Corollary 1 is that we can obtain an asymptotic approximation to the number of segments even when
the function has singularities at the endpoints of the interval over which the approximation occurs.
Table 1 shows the asymptotic approximations to the number of segments for 14 functions.2 The third column labeled

Non-Uni shows the number of segments, where the segments are as large as possible (and thus, as few as possible). The
fourth column labeled Uniformwill be discussed in Section 3. The fifth and rightmost column, labeled Non-Uni/Uni, shows
the ratio of the number of non-uniform segments needed compared to the number of uniform segments needed as a
percentage, when the specified approximation error ε is small. For example, for 2x, non-uniform segmentation uses 84%
of the segments needed by uniform segmentation. For

√
x,
√
− ln(x), and−(x log2 x+ (1− x) log2(1− x)), the fifth column

contains 1%, 2%, and 9%, which are much smaller than for any other function. We discuss the derivations for the number of
segments needed for uniform segmentation in Section 3.

3. Uniform approximation with unrestricted slope

In this part, we consider two ways to determine the number of segments needed in the case when a completely free
choice of slope is used with uniform segmentation. The first approach is a direct computation, which can be applied to all
functions considered in this paper, and the second is an asymptotic approximation that applies to amajority of the functions.

1 The function f is improperly Riemann integrable on [a, b] if f is Riemann integrable on every open subinterval (c, d) of [a, b], and the function f becomes
unbounded in the neighborhoods of a or b, and limc→a,d→b

∫ d
c f (x)dx exists.

2 To accommodate a fixed bit representation, for most functions considered in this paper, we choose an interval that is left-closed and right-open. For
example, the interval 0 ≤ x < 1 or [0, 1), in the case of 8-bit precision, consists of 00000000, 00000001, . . . , and 1111111, representing 0, 1256 , . . ., and
255
256 < 1.
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The first approach is illustrated as follows. Consider a uniform segmentation of a function f (x) from x = a to x = b.
Consider a segment beginning at x = α and ending at x = β , where α < β near a point in the domain [a, b], where
|f ′′(x)| is maximum. It is at this point that the maximum error between the function and its linear piecewise approximation
occurs. That is, if we choose the segment width to be small enough at this point so that the error is equal to the specified
approximation error ε, then that small a width for all segments will be sufficient to achieve an error no greater than ε in all
segments. Therefore, the number of segments s, to achieve an approximation error with uniform segmentation is

s =
⌈
b− a
β − α

⌉
. (8)

Consider a piecewise linear approximation, fpl(x) to f (x) of the form fpl(x) = (f (β) − f (α)) x−αβ−α
+ f (α). The error due

to the approximation can be viewed as |f (x) − fpl|. Note that |f (x) − fpl| is 0 at x = α and at x = β . However, we will
approximate f (x) in the domain [α, β] by adding a constant to fpl so that the maximum error in the domain [α, β] is no
greater than 12 |f (x)− fpl|. As a result, the error function e(x) for the domain [α, β] is

1
2 (|f (x)− fpl|). Substituting for fpl, yields

e(x) =
1
2

[
[f (x)− f (α)] − [f (β)− f (α)]

x− α
β − α

]
. (9)

To illustrate, consider the function f (x) =
√
x in the domain [0, 2). f ′′(x) becomes unbounded near x = 0. Thus, we

choose α = 0, and from (9), we have

e(x) =
1
2

[
√
x−

√
β
x
β

]
.

By differentiating e(x)with respect to x, we find that the maximum error occurs at x = β

4 . At this value, the maximum e,

emax, is
√
β

8 . We choose this value to be ε. That is, emax = ε, and, so
√
β

8 = ε. Substituting this into (8) yields

s√x =
⌈
1
32ε2

⌉
. (10)

Thus, as ε decreases (improves), the number of segments needed for a uniform segmentation increases as the inverse of
the square of ε. This results from the fact that f ′′ becomes unbounded near the endpoint 0. A similar analysis can be applied
to the entropy function,−(x log2 x+ (1− x) log2(1− x)), yielding

sentropy =
⌈

1
2e ln 2ε

⌉
. (11)

The number of segments needed for uniform segmentation are shown in Column 4 of Table 1, labeled Uniform.3 All
expressions have the form c

√
ε
, which are the same form as the asymptotic approximation for the number of segments

required in a non-uniform segmentation. This includes the two functions,
√
x and−(x log2 x+(1−x) log2(1−x)), where the

number of segments is given as (10) and (11),when a singularity is included, as discussed above. The segmentation algorithm
with which we compared the asymptotic approximation values had to exclude the singularities, and, for consistency, we
chose an interval without singularities. The right column of Table 1, labeled Non-Uni/Uni shows the ratio of segments
required in a non-uniform segmentation to the number of segments required in a uniform segmentation (expressed as a
percentage). For some functions, like 2x, sin(πx), and cos(πx), this is high, 84%, 76%, and 76%. For such functions, there is
a small penalty for using a uniform segmentation. For other functions, like

√
− ln(x), this percentage is low, 9%, and the

penalty is high. A similar statement is true of
√
x and −(x log2 x + (1 − x) log2(1 − x)), where the percentage number

of segments is 1% and 2%. It is interesting that, when the domain for the
√
x function is reduced to [ 12 , 2], the number of

segments is given by s ∼ 0.3153
√
ε
.

The second approach to determining the number of segments requires the second derivative f ′′(x) to be bounded over
the domain of approximation. We have

Theorem 2. Consider a piecewise linear approximation of a function f (x) on the domain [a, b] with a specified approximation
error ε or less using uniform segmentation. Let the absolute value of the second derivative |f ′′(x)| of f (x) on the domain [a, b] be
finite. Then, the number of segments s is

s ∼
c
√
ε
, (12)

3 Recall that, in order to take advantage of uniform segmentation, we must choose the number of segments to be the next higher power of 2.
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Table 2
Comparing the number of estimated segments with the exact number for nonuniform segmentation.

Function f (x) Interval x Estimated/exact no. of segments
8 16 32 64

2x [0, 1) 5/5 75/75 19,195/19,191 1.26× 109/-
1/x [1, 2) 5/5 75/75 19,195/19,191 1.26× 109/-
√
x

[ 1
1024 , 2

)
11/12 183/184 46,917/46,715 3.07× 109/-

1/
√
x [1, 2) 3/4 50/50 12,770/12,769 8.37× 108/-

log2(x) [1, 2) 5/5 75/76 19,291/19,286 1.26× 109/-
ln x [1, 2) 4/4 63/63 16,061/16,058 1.05× 109/-
sin(πx)

[
0, 12

)
7/7 108/109 27,761/27,752 1.82× 109/-

cos(πx)
(
0, 12

)
7/7 108/109 27,761/27,752 1.82× 109/-

tan(πx)
[
0, 14

)
5/5 73/73 18,579/18,572 1.22× 109/-

√
−ln(x)

[ 1
1024 ,

1
4

)
15/15 235/235 60,142/59,627 3.94× 109/-

tan2(πx)+ 1
[
0, 14

)
10/10 152/152 38,925/38,892 2.55× 109/-

−(x log2 x+ (1− x) log2(1− x))
[ 1
1024 , 1−

1
1024

]
20/21 328/328 83,953/83,740 5.50× 109/-

1
1+e−x [0, 1) 1/2 20/20 5,101/5,101 3.34× 108/-
1
√
2π
e
−x2
2 [0,

√
2) 3/3 53/53 13,453/13,449 8.82× 108/-

where

c =
(b− a)

√
|f ′′|max
4

, (13)

where |f ′′|max is the maximum of the absolute value of f ′′(x) over the domain [a, b].

Proof. See Appendix.

The right column of Table 1 shows the results of Theorem 2. Specifically, all functions in this table satisfy the restriction
that |f ′′(x)| is finite. For example, for sin(πx), |f ′′(x)|max = π2. Therefore, for this function, (13) yields s ∼ π

8
√
ε
, which agrees

with Table 1.

4. Comparison of the estimates with an exact segmentation algorithm

We compare the estimates of the number of segments as obtained by Theorem 1 to the actual number obtained by a
segmentation algorithm that produces the minimum needed (non-uniform segmentation) [12]. Table 2 shows the result.
Each table entry shows this data as ‘‘Estimated/Exact’’, where ‘‘Estimated’’ refers to the estimated number of segments as
obtained by Theorem 1 and ‘‘Exact’’ is obtained by the algorithm of [12]. We were not able to obtain the exact values for 64
bit precision because of extreme computation times. The data shows that the estimates and exact values are close. Note that
the same data for uniform segmentation is not so interesting because Theorem 2 specifies an exact number η of segments.
In order to avoid using the segment index encoder, it is then necessary to use 2dlog2 ηe segments, which is the next power of
2 equal to or greater than η.

5. Concluding remarks

As a result of our analysis, we have an understanding of how the hardware complexity, as measured by the number
of segments, depends on the specified precision ε. Our results also show that, for some functions, it is reasonable to use
uniform segmentation, thus eliminating the segment index encoder. For such functions, our results validate the past research
on uniform segmentation. For example, with the sin(πx) and cos(πx) functions approximated using unrestricted slope,
0.3927
√
ε
segments are needed for uniform segmentation, while no more than 0.2995√

ε
segments are needed for non-uniform

segmentation. This is about 31% more segments. The penalty is substantial, but if memory is inexpensive, and speed is
essential, this may be a welcome tradeoff.
Table 2 shows the estimates obtained are close to the number of segments as determined by an algorithm that obtains

the exact minimum number of segments in a non-uniform segmentation [12]. Thus, we are now able to accurately estimate
the computation time needed to compute a non-uniform segmentation. Although this time occurs only once during a design,
it may be extremely long, and there may be a high premium on doing it once only. We are now able to distinguish between
infeasible and difficult designs.
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Table 3
Number of segments for non-uniform and uniform segmentation for four precisions, 8, 16, 32, and 64 bits.

Function f (x) Interval x Non-Uniform Uniform
8 16 32 64 8 16 32 64

2x [0, 1) 5 75 19,195 1.26×109 6 89 22,717 1.49× 109

1/x [1, 2) 5 75 19,195 1.26×109 8 128 32,773 2.15× 109
√
x [

1
1024 , 2) 12 183 46,917 3.07×109 8206 5.38×108 2.31×1018 4.26× 1037

1/
√
x [1, 2) 3 50 12,770 8.37×108 5 79 20,066 1.32× 109

log2(x) [1, 2) 5 75 19,291 1.26×109 7 109 27,833 1.82× 109

ln x [1, 2) 4 63 16,061 1.05×109 6 91 23,171 1.52× 109

sin(πx)
[
0, 12

)
7 108 27,761 1.82×109 9 143 36,397 2.39× 109

cos(πx)
(
0, 12

)
7 108 27,761 1.82×109 9 143 36,397 2.39× 109

tan(πx)
[
0, 14

)
5 73 18,579 1.22×109 9 143 36,397 2.39× 109

√
−ln(x)

[ 1
1024 ,

1
4

)
15 235 60,142 3.94×109 157 2507 641,600 4.20× 1010

tan2(πx)+ 1
[
0, 14

)
10 152 38,925 2.55×109 18 285 72,793 4.77× 109

−(x log2 x+(1−x) log2(1−x))
[ 1
1024 , 1−

1
1024

]
20 328 83,953 5.50×109 136 34,787 2.28× 109 9.79× 1018

1
1+e−x [0, 1) 1 20 5101 3.34×108 2 28 6989 4.58× 108

1
√
2π
e
−x2
2 [0,

√
2) 3 53 13,453 8.82×108 6 81 20,696 1.36× 109

Table 3 shows the number of segments needed in the case of non-uniform and uniform segmentation for functions
approximated using unrestricted slope as calculated in Sections 4 and 5. Table 3 shows the number of segments needed
for four precisions, 8, 16, 32, and 64 bits.4
From Table 3, we can make conclusions about the feasibility of realizing the various functions. Specifically, we can see

that for 64 bit precision, very large memory size is needed in all cases. For 32 bit precision, both uniform and non-uniform
segmentation yield feasible realizations, except for

√
x and−(x log2 x+ (1− x) log2(1− x)). Also, the memory required to

realize
√
− ln(x) is quite large compared to that required for non-uniform segmentation. For 16 bit precision, all realizations

of the functions are feasible, except for
√
x using uniform segmentation. For 8 bit precision, all realizations are feasible using

either non-uniform and uniform segmentation. In general, for many functions, uniform segmentation is good, especially
when the cost of memory is low.
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Appendix

In the following theorem, we make the following reasonable assumptions.

Assumption 1. As ε→ 0+, themeasure of Aε → 0.

Assumption 2. The open set Bε is a finite union of open intervals.

Given these assumptions, we now state

Theorem 1. Consider a piecewise linear approximation of f on the domain [a, b] that is accurate to within ε, using a piecewise
linear segmentation. Let f be three times continuously differentiable on [a, b]. Then, s(ε), the number of segments in an optimum
segmentation of [a, b], satisfies the following asymptotic approximation:

s(ε) ∼
c
√
ε
, (ε→ 0+),

4 Assuming that themost significant bit is the coefficient of 2−1 , we choose the error, ε, to be one-half of the value of the least significant bit. For example,
for 8 bit precision, we choose the error to be 2−9 . We substitute this for ε in the equations for the number of segments for non-uniform segmentation and
uniform segmentation.
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where

c =
1
4

∫ b

a

√
|f ′′(x)|dx.

Proof. Given ε > 0, divide the domain [a, b] into segments with end points {x0, x1, . . . , xs}, where x0 = a and xs = b.
Assume {x0, x1, . . . , xs} has the fewest segments such that all segments have an approximation error no greater than ε.
Thus, for any segment, if we set

Li(x) = f (x)−
[
f (xi+1)− f (xi)
xi+1 − xi

(x− xi)+ f (xi)
]
, (14)

then

|Li(x)| ≤ 2ε,

for xi ≤ x ≤ xi+1, where i = 0, 1, . . . , s − 1. Without loss of generality, since the segmentation is optimal, we can assume
that, for all but perhaps one segment, there exists an x∗i in (xi, xi+1), for which |Li(x

∗

i )| = 2ε, for i = 0, 1, . . . , s− 1. Now let

x(i)mid =
xi + xi+1
2

and

∆i = xi+1 − xi

be respectively, the midpoint and length of the segment [xi, xi+1] so that

xi = x
(i)
mid −

∆i

2
, (15)

xi+1 = x
(i)
mid +

∆i

2
, (16)

and, for x ∈ [xi, xi+1],

x = x(i)mid − αi(x)
∆i

2
,

where−1 ≤ αi(x) ≤ 1.
Apply Taylor’s approximation to the terms in Li in (14). This yields, after some algebra,

Li(x) =
1
2
f ′′(x(i)mid)

∆2i

4
(α2i − 1)+ O(∆

3
i ).

Hence,

|Li(x)| =
∆2i

8
|f ′′(x(i)mid)|

(
|α2i − 1| + O(∆i)

)
,

for i = 0, 1, . . . s− 1 and xi ≤ x ≤ xi+1. Since−1 ≤ αi(x) ≤ 1,

max
αi(x)∈[−1,1]

|αi(x)2 − 1| = 1.

Therefore,

2ε = max
[xi,xi+1]

|Li(x)| =
∆2i

8
|f ′′(x(i)mid)| (1+ O(∆i)) . (17)

Take the square root of both sides and sum over i from 0 to s− 1:
s−1∑
i=0

√
2ε =

s−1∑
i=0

∆i
√
8

√
|f ′′(x(i)mid)| (1+ O(∆i)) .

We now recognize that x(i)mid must lie in either the set Aε or the set Bε , where

Aε = {x ∈ [a, b] : |f ′′(x)| ≤
√
ε} and (18)

Bε = {x ∈ [a, b] : |f ′′(x)| >
√
ε}, (19)

for ε > 0.
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Thus, we split the sum accordingly:

s−1∑
i=0

√
2ε =

∑
x(i)mid∈Aε

∆i
√
8

√
|f ′′(x(i)mid)| (1 + O(∆i))+

∑
x(i)mid∈Bε

∆i
√
8

√
|f ′′(x(i)mid)| (1+ O(∆i)) . (20)

The first sum on the right in (20) is small, O(ε1/4). Also, since

|f ′′(x(i)mid)| >
√
ε

for ximid ∈ Bε , (17) implies

2ε ≥
∆2i

8
|f ′′(x(i)mid)|(1+ O(∆i)) >

∆2i

8
√
ε(1+ O(∆i)). (21)

It follows from (21) that∆2i = O(
√
ε), and so∆i → 0 as ε→ 0+. Now, (20) can be written as

s(ε)
√
2ε = O(ε1/4)+

∑
x(i)mid∈Bε

∆i
√
8

√
|f ′′(x(i)mid)| (1+ O(∆i)) . (22)

Since∆i → 0 as ε→ 0+, Aε
⋃
Bε = [a, b], and the measure of Aε tends to 0 as ε→ 0+, it follows that the number of terms

in the sum in (22) goes to infinity as ε→ 0+, and so, by our previous assumptions, we can approximate the sum in (22) as
a Riemann integral:∑

x(i)mid∈Bε

∆i
√
8

√
|f ′′(x(i)mid)| (1+ O(∆i)) =

1
√
8

∫
Bε

√
|f ′′(x)|dx (1+ o(1)).

Thus,

s(ε)
√
2ε = O(ε1/4)+

1
√
8

∫
Bε

√
|f ′′(x)|dx (1+ o(1))

and

s(ε) = O(ε−1/4)+
1
4
√
ε

∫
Bε

√
|f ′′(x)|dx(1+ o(1)).

Since the measure of the set Aε → 0, as ε→ 0+, a combination of the above results gives

s(ε) ∼
c
√
ε
, (ε→ 0+),

where

c =
1
4

∫ b

a

√
|f ′′(x)|dx. �

Theorem 2. Consider a piecewise linear approximation of a function f (x) on the domain [a, b] with a specified approximation
error ε or less using uniform segmentation. Let the absolute value of the second derivative |f ′′(x)| of f (x) on the domain [a, b] be
bounded. Then, the number of segments s is

s ∼
c
√
ε
, (ε→ 0+), (23)

where

c =
(b− a)

√
|f ′′|max
4

, (24)

where |f ′′|max is the maximum of the absolute value of f ′′(x) over the domain [a, b].

Proof. For any segment in a uniform segmentation of f (x), the difference between the exact value of f and its linear
piecewise approximation is

Li(x) = f (x)−
[
f (xi+1)− f (xi)
xi+1 − xi

(x− xi)+ f (xi)
]
. (25)
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We require that

|Li(x)| ≤ 2ε. (26)

By a process similar to that used in Theorem 1,

Li(x) =
1
2
f ′′(x(i)mid)

∆2i

4
(α2i (x)− 1)+ O(∆

2
i ). (27)

Let |f ′′| assume its maximum in [xi, xi+1] at x∗i . Since x
(i)
mid = x

∗

i + O(∆i), we have

|f ′′(x(i)mid)| = |f
′′(x∗i )| + O(∆i). (28)

(26) and (27) imply that

1
2

[
max

x∈[xi,xi+1]
|f ′′(x)|

]
∆2i

4
|α2i (x)− 1| + O(∆

3
i ) ≤ 2ε. (29)

(29) can be written as

1
16ε

[
max

x∈[xi,xi+1]
|f ′′(x)|

]
|α2i (x)− 1| + O

(
∆i

ε

)
≤
1
∆2i
. (30)

Now, as in Theorem 1, ∆i
ε
= O(ε−1/2), so that (30) can be written as

∆2i ≤
1

1
16ε

[
max

x∈[xi,xi+1]
|f ′′(x)|

]
|α2i (x)− 1| + O

(
ε−1/2

)
or

∆2i ≤
16ε[

max
x∈[xi,xi+1]

|f ′′(x)|
]
|α2i (x)− 1| + O

(
ε1/2

) . (31)

Now, the right side of (31) is an upper bound for∆2i , where∆i, i = 0, 1, . . . , s− 1 are s segments covering [a, b], in each of
which |Li(x)| ≤ 2ε, xi ≤ x ≤ xi+1. We want a uniform segmentation of [a, b]with theminimum∆i. So, we choose αi = 0 in
(31), replace

[
maxx∈[xi,xi+1] |f

′′(x)|
]
by the maximum of |f ′′(x)| over the entire domain, and take the square root. We use the

equality sign in (31) to conclude that

∆i =
4
√
ε√

max
x∈[a,b]

|f ′′(x)|(1+ O(ε1/2))
.

Thus,

s(ε) =
b− a
∆i
=
d(ε)
√
ε
, (32)

where

d(ε) =

√
max
x∈[a,b]

|f ′′(x)|(b− a) (1+ O(ε1/2))

4
.

Since

lim
ε→0+

d(ε) = d =

√
max
x∈[a,b]

|f ′′(x)|(b− a)

4
,

we see that (32) implies that, for a uniform optimal segmentation

s(ε) ∼
d
√
ε

(ε→ 0+). � (33)
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