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Abstract

The idea of approximate entailment has been proposed in [13] as a way of modeling

the reasoning of an agent with limited resources. They proposed a system in which

a family of logics, parameterized by a set of propositional letters, approximates

classical logic as the size of the set increases.

In this paper, we take the idea further, extending two of their systems to deal

with full propositional logic, giving them semantics and sound and complete proof

methods based on tableaux. We then present a more general system of which the

two previous systems are particular cases and show how it can be used to formalize

heuristics used in theorem proving.

Keywords: Automated Reasoning, Deductive Systems, Approximate Reasoning,

Non-classical Logics, Knowledge Representation.

1 Introduction

Logic has been used in several areas of Arti�cial Intelligence as a tool for

representing knowledge as well as a tool for modeling agents' reasoning. Ideal

agents know all the logical consequences of their beliefs. However, real agents

are limited in their capabilities. Due to these limitations, a real rational agent

must devise some strategy to make good use of the available resources.
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In this work we propose a general framework for modeling limited rea-

soning, and show two systems which are special cases of the more general

framework. Our system is based on Cadoli and Schaerf's approximate en-

tailment [13]. Their method consists in de�ning di�erent logics for which

satis�ability is easier to compute than classical logic and treat these logics as

upper and lower bounds for the classical problem. In [13], these approximate

logics are de�ned by means of valuation semantics and algorithms for test-

ing satis�ability. The language they use is restricted to that of clauses, i.e.,

negation appears only in the scope of atoms and there is no implication.

Our starting point here is their family of logics S3. S3 is a family of logics

parameterized by a set S of relevant propositions. These logics approximate

classical logic (CL) in the following sense. Let P be a set of propositions and

S0 � S1 � : : : � P; let Th(L) indicate the set of theorems of a logic. Then,

by means of successive approximations:

Th(S3(;)) � Th(S3(S
0)) � Th(S3(S

1)) � : : : � Th(S3(P))

where Th(S3(P)) = Th(CL) is the set of classical theorems. From this prop-

erty, we see that it suÆces to prove a result in some S3-approximation to have

a classically valid theorem.

Approximate entailment has been used to formalize approximate diagnosis

[15] and belief revision [5]. However, the knowledge had to be encoded in

clausal form. It happens that each approximation step is characterized by a

formal logic. The �nal step of the approximations is classical logic, in which

every formula is equivalent to one in clausal form. However, in none of the

intermediate systems such equivalence holds.

The original system has been extended to deal with full propositional logic

in [10]. In this paper, we extend another system, S�

3
, which was introduced in

[4]. We provide a proof method based on tableaux for extended S�

3
and then

show that both S3 and S�

3
are particular cases of a system that we call Se.

We provide semantics and a tableaux method for Se. We then show how this

general system can be used to formalize di�erent heuristics used in theorem

proving.

Most proofs are omitted due to space limitations.

Notation: Let P be a countable set of propositional letters. We concen-

trate on the classical propositional language LC formed by the usual boolean

connectives ! (implication), ^ (conjunction), _ (disjunction) and : (nega-

tion).

Throughout the paper, we use lowercase Latin letters to denote proposi-

tional letters, lowercase Greek letters to denote formulas, and uppercase letters

(Greek or Latin) to denote sets of formulas.

Let S � P be a �nite set of propositional letters. We abuse notation and

write that, for any formula � 2 LC , � 2 S if all its propositional letters are

in S. A propositional valuation vp is a function vp : P ! f0; 1g.
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2 The Family S3

In this section, we �rst present Cadoli and Schaerf's system S3 and then the

extended version that deals with full propositional logic.

Schaerf and Cadoli [13] de�ne two approximations of classical entailment:

j=1

S which is complete but not sound, and j=3

S which is classically sound but

incomplete. These approximations are carried out over a set of atoms S � P
which determines their closeness to classical entailment. Here we will concen-

trate only in the latter, namely the S3 family of logics.

In the trivial extreme of S3 approximate entailment, i.e., when S = P,

classical entailment is obtained. At the other extreme, j=3

;
corresponds to

Levesque's logic for explicit beliefs [12], which bears a connection to Relevance

Logics such as those of Anderson and Belnap [1].

In an S3 assignment, if p 2 S, then p and :p get opposite truth values,

while if p 62 S, p and :p do not both get 0, but may both get 1. The name

S3 comes from the possible truth assignments for literals outside S. If p 62 S,

there are three possible S3 assignments, the two classical ones, assigning p and

:p opposite truth values, and an extra one, making them both true. The set

of formulas for which we are testing entailments is assumed to be in clausal

form.

Formally, the semantics of the logic S3(S) over clauses is constructed by

de�ning an S3-valuation of literals into f0; 1g such that:

� v3S(:p) = 1 i� v3S(p) = 0, if p 2 S.

� if p 62 S, we can have one of 3 possibilities:

� v3S(:p) = 1 and v3S(p) = 0

� v3S(:p) = 0 and v3S(p) = 1

� v3S(:p) = v3S(p) = 1

This valuation can be generalized simply to clauses. By varying S, we

generate a family of logics. Also, satis�ability, validity and entailment are

de�ned in the usual way.

Although in classical logic any formula is equivalent to one in clausal

form, the usual transformation does not preserve truth-values under the non-

standard S3 semantics. The S3 family of logics has been extended to proposi-

tional formula in [10], where a sound and complete incremental proof system

for it was also provided.

The generalized semantics for S3 is the following:

De�nition 2.1 An S3-valuation v3S is a function, v3S : LC ! f0; 1g, that ex-
tends a propositional valuation vp (i.e., v

3

S(p) = vp(p)), satisfying the following
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restrictions:

(i) v3
S
(� ^ �) = 1 , v3

S
(�) = v3

S
(�) = 1

(ii) v3
S
(� _ �) = 0 , v3

S
(�) = v3

S
(�) = 0

(iii) v3
S
(�! �) = 0 , v3

S
(�) = 1 and

v3
S
(�) = 0

(iv) v3
S
(:�) = 0 ) v3

S
(�) = 1

(v) v3
S
(:�) = 1; � 2 S ) v3

S
(�) = 0

Rules (i){(iii) are exactly those of classical logic. Rules (iv) and (v) restrict

the semantics of negation: rule (iv) states that if v3
S
(:�) = 0, then negation

behaves classically and forces v3
S
(�) = 1; rule (v) states that if v3

S
(:�) = 1,

negation must behave classically only if � 2 S. Formulas outside S may

behave classically or paraconsistently, i.e., both the formula and its negation

may be assigned the truth value 1.

Note that an S3-valuation is not uniquely de�ned by the propositional

valuation it extends. This is due to the fact that if � 62 S and v3
S
(�) = 1, the

value of v3
S
(:�) can be either 0, in which case � has a classical behavior, or 1,

in which case � behaves paraconsistently. A comparison between S3 semantics

and axiomatization and da Costa's Paraconsistent Logic C1 was done in [9].

We de�ne a formula � to be S-valid in S3 if v
3

S
(�) = 1 for any S3-valuation.

A formula is S-satis�able in S3 if there is at least one v
3

S
such that v3

S
(�) = 1.

The S3-entailment relationship between a set of formulas � and a formula �

is represented as

� j=3

S
�

and holds if every valuation v3
S
that simultaneously satis�es all formulas in �

also satis�es �. A formula is S-valid if it is entailed by ;, represented as j=3

S
�.

An inference system for the full logic S3 based on the KE-tableau method-

ology was developed in [10] and further developed in [11]. KE-tableaux were

introduced by D'Agostino [7] as a principled computational improvement over

Smullyan's Semantic Tableaux [14], and have since been successfully applied

to a variety of logics [6,2,3].

KE-tableaux deal with T - and F -signed formulas. An expansion of a

tableau is allowed when the premises of an expansion rule are present in a

branch; the expansion consists of adding the conclusions of the rule to the end

of all branches passing through the set of all premises of that rule.

For each connective, there are at least one T - and one F -linear expansion

rules. Linear expansion rules always have a main premise, and may also have

an auxiliary premise. They may have one or two consequences. The only

branching rule is the Principle of Bivalence, stating that a formula has to be

either true of false. Figure 1 shows KE-tableau expansion rules for the family
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S3.

T �! �

T �

T �

(T !1)

T �! �

F �

F �

(T !2)

F �! �

T �

F �

(F !)

F � ^ �

T �

F �

(F^1)

F � ^ �

T �

F �

(F^2)

T � ^ �

T �

T �

(T^)

T � _ �

F �

T �

(T_1)

T � _ �

F �

T �

(T_2)

F � _ �

F �

F �

(F_)

T :�

F �
(T:) provided � 2 S

F :�

T �
(F:)

T � F �
(PB)

Fig. 1. KE-rules for S3

The only way in which such a tableau system di�ers from a classical one

is in the (T :) rule, which comes with a proviso:

T :�

F �
provided that � 2 S

The meaning of this rule is that the expansion of a branch is only allowed

if it contains the rule's antecedent and the proviso is satis�ed, that is, the

formula in question belongs to S. This rule is actually a restriction of the

classical rule, stating that if � 62 S the (T :)-rule cannot be applied. Let us

call the system thus obtained KES3.

This makes our system immediately subclassical, for any tableau that

closes for KES3 also closes for classical logic. So any theorems we prove in

KES3 are also classical theorems.

So KES3 is correct and incomplete with respect to classical logic. In fact,

KES3 is complete and correct with respect to the semantics above.

Theorem 2.2 ([10]) �1; : : : ; �n j=3
S
� i� any possible KES3 tableau for �1;

: : : ; �n ` � closes. Furthermore, if one S3 tableau for �1; : : : ; �n ` � closes,

any such tableau closes.
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3 The Dual Family S
�

3

Cadoli and Schaerf in a subsequent work [4] have proposed a dual family of

logics which they called S�

3
. An S�

3
-valuation of literals into f0; 1g such that:

� v3�
S
(:p) = 1 i� v3�

S
(p) = 0, if p 2 S.

� if p 62 S, we can have one of 3 possibilities:

� v3�
S
(:p) = 1 and v3�

S
(p) = 0

� v3�
S
(:p) = 0 and v3�

S
(p) = 1

� v3�
S
(:p) = v3�

S
(p) = 0

Only this last line di�ers from the previous S3 family, in that for an atom

p 62 S, both p and :p may be false. As a result, in such a logic, the formula p_
:p is not valid for p 62 S, which characterizes such logics as paracomplete. This

logic was presented in [4] with the same setting as S3 was presented: formulas

in clausal form only (in fact, negation normal form was also accepted); no

extension to full logic; no proof theory.

In an analogous way to our extension of S3, we extend here S�

3
to full

propositional logic.

De�nition 3.1 An S�

3
-valuation v3�

S
is a function, v3�

S
: LC ! f0; 1g, that

extends a propositional valuation vp (i.e., v3�S (p) = vp(p)), satisfying the fol-

lowing restrictions:

(i) v3�S (� ^ �) = 1 , v3�S (�) = v3�S (�) = 1

(ii) v3�S (� _ �) = 0 , v3�S (�) = v3�S (�) = 0

(iii) v3�S (�! �) = 0 , v3�S (�) = 1 and

v3�S (�) = 0

(iv) v3�S (:�) = 0; � 2 S ) v3�S (�) = 1

(v) v3�S (:�) = 1 ) v3�S (�) = 0

The de�nition of S�

3
-logical consequence, j=3�

S is totally analogous to that of

j=3

S.

Also, in an analogous way, we de�ne a KE-tableau proof system for the

S-parameterized family of logics S�

3
. The rules for the connectives !, ^ and

_ are the same as in S3 (which are the same as the classical rules). The rules

for negation are now:

T :�

F �
and

F :�

T �
provided that � 2 S

The rule (T :) is the classical one, while (F :) comes with a proviso. This

is dual to the situation in S3.
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As an example we illustrate two tableaux. The �rst one is the principle
of contradiction, p;:p ` q, which was not a theorem in paraconsistent S3

but is now a theorem in S
�

3
. The second example is the principle of excluded

middle ` p _ :p, which was a theorem in S3, but which is not a theorem in

paracomplete S
�

3
.

T p

T :p

F q

F p

�

F p _ :p

F p

F :p

{

In the �rst tableau, we simply apply (T :) to the second line to close the

tableau. In the second tableau, we would want to apply (F :), but since we
consider S = ;, the proviso precludes us from doing that, and the tableau

remains open.

We have the following soundness and completeness result for KES�

3
tableaux.

Theorem 3.2 �1; : : : ; �n j=
3�

S
� i� any possible KES�

3
tableau for �1; : : : ; �n `

� closes. Furthermore, if one S
�

3
tableau for �1; : : : ; �n ` � closes, any such

tableau closes.

From the way KES�

3
was built, it is clear that it is also an approximation

of classical logic from below. Also, it appears that S3 and S
�

3
are incom-

patible families, due to the following properties, that come straight from the

de�nitions of v3
S
and v

3�

S
.

Lemma 3.3 For � 62 S:

(a) In S3, if v
3

S
(�) = 1, then v

3

S
(:�) may be either 0 or 1.

(b) In S
�

3
, if v3�

S
(�) = 1, then v

3

S
(:�) = 0.

(c) In S
�

3
, if v3

S
(�) = 0, then v

3

S
(:�) may be either 0 or 1.

(d) In S3, if v
3�

S
(�) = 0, then v

3

S
(:�) = 1 .

However, as we are going to see, this does not consist in any kind of

incompatibility, and we may have systems that obey both rules.

If we concentrate on both tableau methods that approximate classical logic

from below, we see that both consist of a restriction of one rule in a classical

tableaux.

It turns out that constructing a proof theoretical approximation of classical

logic is a trivial task!

Creating a Family that Approximates Classical Logic. It suÆces

that one restricts the use of one (or a set of) rules of one's favorite proof

method to a limited set a formulas, in a way that eventually the rule will

be applicable to all classical formulas.
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The hard bit, however, is to �nd a corresponding semantics for such a sys-

tem. In the following, we show all the possibilities of approximating classical

logic from below by restricting the KE-tableau method, and provide it with a

generic semantics as well.

4 A Generalized Approximation Inference

We have seen how to restrict (T:) in KES3 and how to restrict the use of (F:)

in KES�

3
. We assumed that the parameter set S governing both approxima-

tions was the same, but since there was no interactions between the S3-rule

and the S�

3
rule, this assumption has no consequences. Now, we are going for

greater generality, and we assume di�erent context sets for each rule. This

gives us a system where every connective behaves classically only for formulas

which belong to the corresponding context set: ST

^
, SF

^
, ST

_
, SF

_
, ST

!
, SF

!
, ST

:

and SF

:
.

An initial step towards this generalization was given in in [11], with a

system that dealt with ST

:
and ST

!
.

We present a generalization of the KE-tableaux, that we call KESe, that

deals with context sets for all the tableau rules. The system is obtained by

adding restrictions to each expansion rule, as illustrated in Figure 2.

T �! �

T �

T � if � 2 ST
!

(T !1)

T �! �

F �

F � if � 2 ST
!

(T !2)

F �! �

T � if � 2 SF
!

F � if � 2 SF
!

(F !)

F � ^ �

T �

F � if � 2 SF
^

(F^1)

F � ^ �

T �

F � if � 2 SF
^

(F^2)

T � ^ �

T � if � 2 ST
^

T � if � 2 ST
^

(T^)

T � _ �

F �

T � if � 2 ST
_

(T_1)

T � _ �

F �

T � if � 2 ST
_

(T_2)

F � _ �

F � if � 2 SF
_

F � if � 2 SF
_

(F_)

T :�

F � if � 2 ST
:

(T:)
F :�

T � if � 2 SF
:

(F:)

T � F �
(PB)

Fig. 2. KE-rules for the generalized system

Lemma 4.1 KESe can simulate the dynamic evolution of both KES3 and

KES�3 .
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Proof. To see that KESe can simulate the dynamic evolution of KES3, it

suÆces to set S = ST

:
and all other S parameters to the full set of propositional

letters. In practice, this amounts to lifting the proviso of all rules except for

the (T:) rule. Similarly for KES�
3
. 2

As usual, we want our system to be based on a sound and complete sub-

classical semantics

4.1 Semantics for Generalized Approximate Inference

De�nition 4.2 An Se-valuation ve
S
is a function, ve

S
: LC ! f0; 1g, that ex-

tends a propositional valuation vp (i.e., v
e

S
(p) = vp(p)), satisfying the following

restrictions:

(^1) ve
S
(� ^ �) = 1; � 2 ST

^
) ve

S
(�) = 1

(^2) ve
S
(� ^ �) = 1; � 2 ST

^
) ve

S
(�) = 1

(^3) ve
S
(� ^ �) = 0; ve

S
(�) = 1; � 2 SF

^
) ve

S
(�) = 0

(^4) ve
S
(� ^ �) = 0; ve

S
(�) = 1; � 2 SF

^
) ve

S
(�) = 0

(_1) ve
S
(� _ �) = 0; � 2 SF

_
) ve

S
(�) = 0

(_2) ve
S
(� _ �) = 0; � 2 SF

_
) ve

S
(�) = 0

(_3) ve
S
(� _ �) = 1; ve

S
(�) = 0; � 2 ST

_
) ve

S
(�) = 1

(_4) ve
S
(� _ �) = 1; ve

S
(�) = 0; � 2 ST

_
) ve

S
(�) = 1

(!1) v
e

S
(�! �) = 0; � 2 SF

!
) ve

S
(�) = 1

(!2) v
e

S
(�! �) = 0; � 2 SF

!
) ve

S
(�) = 0

(!3) v
e

S
(�! �) = 1; ve

S
(�) = 1; � 2 ST

!
) ve

S
(�) = 1

(!4) v
e

S
(�! �) = 1; ve

S
(�) = 0; � 2 ST

!
) ve

S
(�) = 0

(:1) ve
S
(:�) = 0; � 2 SF

:
) ve

S
(�) = 1

(:2) ve
S
(:�) = 1; � 2 ST

:
) ve

S
(�) = 0

It is easy to see that the semantics of S3 is a particular case of the sys-

tem above, where the sets ST

^
, SF

^
, ST

_
, SF

_
, ST

!
, SF

!
, and SF

:
contain all the

propositional letters of the language and S = ST

:
. Similarly, the semantics of

S�
3
corresponds to S = SF

:
and ST

^
= SF

^
= ST

_
= SF

_
= ST

!
= SF

!
= ST

:
= P.

4.2 Soundness and Completeness

We say that KESe is sound with respect to the Se semantics if whenever a

tableau closes for an input sequent, then the sequent's antecedent formulas

entail its consequent in Se. Conversely, the KESe-tableau method is complete
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with respect to the Se semantics if for all sequents such that the the antecedent

entails the consequent in Se, all KESe-tableaux close.

We extend an Se-valuation to signed formulas making ve
S
(T�) = 1 i�

ve
S
(�) = 1 and ve

S
(F�) = 1 i� ve

S
(�) = 0. A valuation satis�es a branch

in a tableau if it simultaneously satis�es all the signed formulas in the branch.

To prove soundness, we �rst show the correctness of all linear expansion

rules of KESe.

Lemma 4.3 If the antecedents of the KESe linear expansion rules are S-

satis�ed in Se by ve
S
so are its conclusions.

Lemma 4.4 If a branch is satis�ed by a valuation ve
S
prior to the application

of PB, then at least one of the two branches generated is satis�ed by a valuation

ve
S
after the application of PB.

Theorem 4.5 (Soundness) Suppose a tableau for �1; : : : ; �n ` � closes.

Then �1; : : : ; �n j=
e

S
�.

Proof. We show the contrapositive. So suppose �1; : : : ; �n 6j=e

S
�, so there

is a valuation ve
S
such that ve

S
(�1) = : : : = ve

S
(�1) = 1 and ve

S
(�) = 0.

In this case, the initial tableau for �1; : : : ; �n ` � is such that all formulas

T �1; : : : ; T �n; F � are satis�ed by ve
S
.

By Lemmas 4.3 and 4.4, we see that each application of an expansion rule

preserves at least one satis�able branch. As closed branches are not satis�able,

at least one branch remains open and the tableau cannot close. 2

We say that a branch of a tableau is complete if there are no more appli-

cable expansion rules.

Lemma 4.6 An open complete branch in a KESe-tableau is S-satis�able in

Se.

Theorem 4.7 (Completeness) If �1; : : : ; �n j=
e

S
� then any possible KESe

tableau for �1; : : : ; �n ` � closes.

Proof. Suppose for contradiction that there is a tableau for �1; : : : ; �n `

� with an open complete branch B. Then by Lemma 4.6 there is an Se
valuation that satis�es B, which includes T �1; : : : ; T �n; F �, contradicting

�1; : : : ; �n j=
e

S
�. 2

4.3 Applications of Se

We examine here the use of Se as a formalization of proof strategies using

KE-tableaux. In a tableau expansion, more than one rule may be applicable

at a time, and the choice of which rule to use may have dramatic e�ects, for

a short proof may exist but the wrong choice of rule application may lead to

an explosion in the number of branches.

Let X 2 fT; Fg and � 2 f^;_;!;:g. The use of an SX
�

context set in

KESe-tableaux may lead to a delay in using the rule (X�). This works as
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follows: suppose the rule (X�) is classically applicable at one point in the

branch expansion, but the corresponding proviso, � 2 SX
�
, is not met at that

point. The use of the rule (X�) is then blocked. All other applicable rules

would take precedence, and will be applied. After their application, there are

two possibilities: either all branches passing through that (X�)-blocked point

are closed, in which case there is nothing to be done, or there is at least one

open branch. In the latter case, the formula � is inserted in SX
�
, the logic is

changed to one \closer" to classical logic, from Se(S
X

�
) to Se(S

X

�
[ f�g), so

that the proviso is now met. The expansion of the tableau can then proceed

incrementally in the new logic, without having to restart from square 1.

In the systems S3 and S
�

3
we have seen that most of the sets SX

�
were equal

to P. So the choice of which set SX
�

to be chosen to be di�erent from P has

to do with which rule application we want to postpone.

Clearly, we do not want to postpone the application of one-premised linear

rules. These rules, which correspond to the �-rules in Smullyan's analytic

tableaux, never generate a new branch and are all commutative, for the appli-

cation of one rule does not invalidade the application of another. This means

that for theorem proving purposes we would want to have

SF
!

= ST
^
= SF

_
= ST

:
= SF

:
= P

Note that the context sets of S3 and S�
3
are included in the sets above

that we want to maintain �xed in P. In fact, this is in accordance to some

experiments made in [8] with the implementation of KES3 tableaux, in which

a decrease in performance was noted from the use of KES3 strategy in re-

spect to classical KE in which the one-premised rules were given application

precedence, as above.

The two-premised rules are normally associated with the branching pro-

cess, which is the important point to concentrate on when trying to reduce the

size of a proof. There are two premises in those rules. The main premise is the

main formula, which in Smullyan's analytic tableaux are associated to �-rules

and the branching process. The other premise is the auxiliary formula, which

is associated with the KE branching heuristics. According to such heuristics,

given a main formula of a two-premised rule where the auxiliary formula is

absent, one should branch using PB so as to generate, in one of the branches,

the missing auxiliary formula.

As a result, a strategy for tableau branching based on Se should keep track

of the formulas in the context sets SF
^
; ST

_
and ST

!
.

The resulting strategy goes in accordance with the general intuition of

tableau expansion: �rst expand the formulas that do not generate new branches,

and only then expand the branching rules. Furthermore, our new strategy now

places further restrictions on the branching rule, for we are giving preference

to branch over a formula that is already on one of the sets SF
^
; ST

_
and ST

!
.

That is, our strategy gives preference for branching over subformulas of for-

mulas over which there has already occurred a branching operation higher up
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in the tableau.

Example 4.8 In this example we will consider S = SF
^

= ST
_

= ST
!
. That

is, if there is a branching over some formula, subsequent branches over sub-

formulas of it will be privileged. This strategy is good if there are irrelevant

formulas, for it helps to avoid using them for the branching heuristics.

To see that, consider the sequent

A; (A! B)_(A! C); ((A^B_C) ! D)_(A^(B_C) ! E); (G^F )!

(B _ C) ` D _ E

which generates, with initially S = ;, the initial tableau

1: T A

2: T (A! B) _ (A! C)

3: T (A ^ (B _ C)! D) _ (A ^ (B _ C)! E)

4: T (G ^ F )! (B _ C)

5: F D _ E

Note that line 4 is totally irrelevant to the proof, and we want to avoid using

it. After the �rst expansion of line 5 into

6: F D (F_)5

7: F E (F_)5

we have a choice of lines 2, 3 and 4 over which to apply the branching heuris-

tics. As all those lines are T -marked, we choose a formula that has some atoms

in common with the F -marked formulas in tableau; this justi�able, for the F -

marked formulas are those we are trying to prove, and so we chose formulas

that are relevant to the goal.

This choice leads to a branch over 3, with branching formulas F A ^ (B _

C)! D and T A ^ (B _ C)! D. The left-hand branch develops as follows:

8a: F A ^ (B _ C)! D

9a: T A ^(B _C) !E (T_) 3; 8a S := fA;B;C;Dg

10a: T A ^ (B _ C) (F !) 8a

11a: T E (T !) 9a; 10a

�

In line 9a, the use of (T_) using 3 as main premise and 8a as auxiliary premise

forces the insertion of all atoms of 8a into S. Since S = SF
^
= ST

_
= ST

!
, this

new S allows the use of (T !) to obtain line 12a, which closes the branch

with line 7.

102



Finger and Wassermann

On the right-hand branch, we obtain the following expansion:

8b: T A ^ (B _ C)! D

9b: F A ^ (B _ C) (T !) 8b; 6

10b: F (B _ C) (F^) 9b; 1

11b: F B (F_) 10b

12b: F C (F_) 10b

The fact that B;C 2 S licenses the use on (T !) in line 9b; similarly, A 2 S

licenses (F^) in line 10b. At this point we have to branch over lines 2 or 4.

But 4 is blocked, for some of its atoms are outside A, which does not occur

with line 2. So the expansion proceeds branching over A! B.

13ba: T A! B 13bb: F A! B

14ba: T B (T !) 13ba; 1 14bb: T A! C (T_) 2; 13bb

� 15bb: T C (T !) 14bb; 1

�

As all branches are closed, the tableau is proved in Se and also in classical

logic.

5 Conclusions and Future Work

In this paper, we have extended the system S�

3
[4] to deal with full propositional

logic, obtaining a family of paracomplete logics which is dual to the family of

paraconsistent logics S3. Comparing the semantics and proof methods of both

systems, we noted that the idea behind those systems, namely restricting the

application of a rule, could be further generalized. This generalization gave us

the system Se, for which we gave a semantic and a sound and complete proof

method. We then showed how Se can be used to formalize di�erent heuristics

used for theorem proving.

Future work includes extending the implementation of the theorem prover

for KE and KES3 to KESe and testing it extensively with di�erent context

sets.
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