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We propose a prescription to constrain the chiral effective model approach to the QCD phase diagram
using the thermal Statistical Model which is a hadronic description consistent with the heavy-ion
experimental data at the chemical freeze-out. In the transition region where thermal quantities of
hadrons blow up, deconfined quarks and gluons should smoothly take over the relevant degrees of
freedom from color confined hadrons. We use the Polyakov-loop coupled Nambu–Jona-Lasinio (PNJL)
model as an effective description in the quark side. We require that the validity regions of these models
should have an overlap on the phase diagram, which gives a condition to reduce model uncertainty. Our
results favor a phase diagram with the chiral and the deconfinement phase transitions both staying close
to the chemical freeze-out points until μB = 500–600 MeV, above which the model parameter is not well
constrained.

© 2010 Elsevier B.V. Open access under CC BY license.
1. Introduction

Exploration of the QCD (Quantum Chromodynamics) phase di-
agram, particularly toward higher baryon-density regime, is of in-
creasing importance in both theoretical and experimental sides [1].
From the theoretical point of view, so far, only the lattice-QCD sim-
ulation [1,2] is the first-principle approach at work to the QCD
phase transitions — chiral restoration and quark deconfinement.
The functional renormalization group (RG) method is also devel-
oping as a promising non-perturbative tool [3,4] but has not been
sufficiently matured yet in hot and dense QCD physics. The chiral
condensate 〈ψ̄ψ〉 and the Polyakov loop Φ are the (approximate)
order parameters for chiral restoration and quark deconfinement,
respectively, which are gauge invariant and measurable on the lat-
tice. The lattice-QCD simulation is, however, of no practical use
unless the baryon chemical potential μB is much smaller than the
temperature T . For μB/T � 1 the notorious sign problem prevents
us from extracting any reliable information from the lattice-QCD
data [5].

The effective model study is an alternative and pragmatic ap-
proach toward the phase diagram of dense QCD. The essential
idea is the following. It is next to impossible to attack hot and
dense QCD directly in the transition region. One can build, instead,
a model that is consistent with hadron properties in the vacuum
and then extend the model description to finite-T and/or finite-
μB environments. What is commonly recognized as the “QCD
phase diagram” is actually a theoretical conjecture based on var-
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ious effective-model studies [1,6]. Hence, the QCD phase diagram
research by means of effective models must be guided and sup-
plemented carefully by the consistency check with other data than
the vacuum hadron properties.

Along this line the Polyakov-loop coupled chiral models such
as the PNJL (Polyakov–Nambu–Jona-Lasinio) [7–11] and the PQM
(Polyakov Quark–Meson) [12,13] models are successful to handle
〈ψ̄ψ〉 and Φ on the equal footing. The important point is that
the Polyakov-loop potential U [Φ] can be determined by Φ(T ) and
the pressure p(T ) known from the lattice simulation of the pure-
gluonic theory [14]. This means that the PNJL and PQM models
include the pressure contribution from gluons as well as quarks,
so that the models are able to deal with the full thermodynam-
ics that is consistent with the full lattice-QCD simulation [8,12].
We note that the dynamics of transverse gluons AT

i is also un-
der the control of the deconfinement order parameter Φ and
thus is to be incorporated in the Polyakov-loop potential U [Φ],
whereas Φ itself is expressed in terms of the longitudinal gluon A4
alone.

Since the theoretical tool to examine 〈ψ̄ψ〉 and Φ is now in our
hands, it is intriguing to proceed to the next question; whether
the chiral and the deconfinement phase transitions would go on
simultaneously or separate after all when the baryon density is
increasing. There are then two key issues. One is the so-called
QCD (chiral) critical point (which is often called the critical end-
point) at which the chiral and the baryon number susceptibilities
diverge [15–17] and higher moments are even more singular [18].
The other one is a triple-point-like region associated with the ap-
pearance of hypothetical quarkyonic matter [19,20] where baryonic
abundance surpasses mesonic one.
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One reasonable way to characterize quarkyonic matter for
finite-Nc QCD is to use two order parameters; the Polyakov loop
Φ = 0 and the quark (baryon) number density nq = 〈ψ†ψ〉 �= 0,
which would definitely work for Nc = ∞ [19]. In principle this
statement is not linked to chiral symmetry, but a substantially
large value of nq is favored by light quarks once chiral symmetric
is restored. In this sense, practically, one can identify the quarky-
onic phase as an exotic state where chiral symmetry is restored
first (and thus nq gets large) and, nevertheless, the confining prop-
erty remains (Φ � 0). In other words the bulk pressure is mostly
dominated by light quarks and only colored excitations near the
Fermi surface feel a confining force. [There is also an argument
that the confining force may cause inhomogeneous chiral conden-
sation [21]. Such a possibility of spatial modulation [22] is beyond
our current scope. In any case it is most unlikely that our present
method would work for such a high density where inhomogeneous
condensates are turned on.]

Phenomenological considerations could, however, lead to a dif-
ferent scenario [23], though some suggestive arguments for the
quarkyonic window have been reported [20,24] and some model
studies are also supportive [7,9]. In general the PNJL and PQM
models at the mean-field level shall favor the quarkyonic pic-
ture; the model predicts the deconfinement temperature weakly
dependent on μB. The Polyakov loop tends to be small for any μB
as long as T is vanishingly small, while the chiral condensate
melts at high μB regardless of T . Such decoupling behavior
is partly because the mean-field treatment implicitly assumes
large Nc.

It is already successful to apply the RG improvement to in-
clude mesonic fluctuations in the phase diagram study [13,25].
The RG method with mesonic fluctuations is indispensable to look
closely into properties at the QCD critical point. In contrast, the
bulk structure of the QCD phase diagram is not affected qualita-
tively. It is still highly non-trivial how to take account of other
fluctuations such as the baryonic contribution and the quark-loop
effects on the Polyakov-loop potential. In this respect the obser-
vation in Ref. [12] is the most interesting and even surprising.
They postulated a μB-dependent form of U [Φ] and found that it
leads to a qualitative change on the phase diagram. We note that
not μB- but T -dependence in U [Φ] would be much less harmful
since U [Φ] at μB = 0 is constrained anyway by the lattice data
as already mentioned. It is thus extremely important to select a
proper choice out for μB-dependent U [Φ]. This work is an at-
tempt to approach this problem from the phenomenological point
of view.

2. Thermodynamics from the Statistical Model

Regarding the QCD phase diagram at finite T and μB useful in-
formation is quite limited. Only the chemical freeze-out points in
the heavy-ion collisions are experimental hints about the phase di-
agram. Although the freeze-out points shape an intriguing curve on
the μB–T plane, as plotted by error-bar dots in Fig. 1, one should
carefully treat them.

The freeze-out points are not direct experimental data but an
interpretation through the Statistical Model [26,27]. In view of the
fact that the Statistical Model is such successful to fit various par-
ticle ratios with μB and T only (other parameters μQ , μs, and μc
are determined by the collision condition), it is legitimate to take
the freeze-out points for experimental data, which in turn validates
the Statistical Model, though why it works lacks for an explana-
tion. In particular baryons should interact strongly at high density,
and nevertheless, it seems that the Statistical Model works for the
particle ratio even near μB ∼ 800 MeV. We do not try to theoret-
ically justify the Statistical Model here, but simply make use of it
Fig. 1. Chemical freeze-out points taken from Refs. [20,26,27]. The red and blue (up-
per and lower) bands represent the regions where the entropy density s and the
baryon number density nB, respectively, increase quickly from 0.3 to 0.8 in the unit
of free quark–gluon values, sfree and nfree (see Eq. (1)). (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the web version of
this Letter.)

accepting that it is anyway a description consistent with the ex-
perimental observation.

It is then a straightforward application of the Statistical Model
to estimate thermodynamic quantities such as the pressure p, the
entropy density s, and the baryon number density nB as functions
of T and μB. We here utilize an open code THERMUS ver.2.1 to
calculate s and nB [28].

Fig. 1 shows s and nB from THERMUS together with the chem-
ical freeze-out points taken from Refs. [20,26,27]. For convenience
we normalized s and nB by

sfree =
{(

N2
c − 1

) + 7

4
NcNf

}
4π2

45
T 3 + NcNf

3
μ2

qT ,

nfree = Nf

(
μ3

q

3π2
+ μqT 2

3

)
. (1)

These are the entropy density and the baryon number density of
free massless N2

c − 1 gluons and NcNf quarks.
Here we note that, in drawing Fig. 1, we have intentionally re-

laxed the neutrality conditions for electric charge and heavy flavors
and simply set μQ = μs = μc = 0. We have done so to make it
easier to compare the results from the Statistical Model to the chi-
ral effective model approach in later discussions. [We note that
one can force the chiral models to satisfy neutrality but it would
be technically involved and, besides, its effect on the phase dia-
gram is minor [29].]

We used Eq. (1) with Nc = Nf = 3. We should note that the
choice of sfree and nfree is (reasonable but) arbitrary and the fol-
lowing discussions do not rely on this choice at all. These sfree
and nfree are just common denominators to display the Statistical
Model and the PNJL model results.

The Statistical Model cannot tell us about the QCD phase tran-
sitions. Still, Fig. 1 is suggestive enough. We can clearly see the
thermodynamic quantities from the Statistical Model blowing up in
a relatively narrow region. [Strictly speaking, they do not blow up,
but just increase significantly.] Two bands indicate where s/sfree
(upper red) and nB/nfree (lower blue) grow quickly from 0.3 to 0.8.
In the Hagedorn’s picture [30] this rapid and simultaneous rise in s
and nB may have a natural interpretation as the Hagedorn limiting
temperature, above which color degrees of freedom is liberated, i.e.
deconfinement takes place.
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Fig. 2. Entropy density normalized by sfree (from 0.3 to 0.8) in the Statistical Model
(bottom band with red color; same as shown in Fig. 1) and that in the PNJL model
with a choice T0 = 200 MeV (top band with green color). The blue band between
two represents the results with the ansatz (4). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this Letter.)

3. Thermodynamics from the PNJL model

Fig. 1 is useful to have a guess-estimate about the deconfine-
ment boundary but we can deduce no information about the chiral
transition. Thus, to address the QCD phase transitions, we must
find another way to connect the thermodynamics in Fig. 1 to the
order parameters 〈ψ̄ψ〉 and Φ . Let us go into details of the chiral
effective model for that purpose.

It is essential to adopt the Polyakov-loop augmented model
here because the entropy density should contain the contribution
from gluons which is taken care of by U [Φ]. The PNJL model that
we use in what follows is defined with the following potential:

U [Φ,Φ̄] = T 4
{
−a(T )

2
Φ̄Φ

+ b(T ) ln
[
1 − 6Φ̄Φ + 4

(
Φ̄3 + Φ3) − 3(Φ̄Φ)2]} (2)

with a(T ) = a0 + a1(T0/T ) + a2(T0/T )2 and b(T ) = b3(T0/T )3.
There are five parameters one out of which is fixed by the Stefan–
Boltzmann law. Other parameters are determined by the pure-
gluonic lattice data as a0 = 3.51, a1 = −2.47, a2 = 15.2, b3 =
−1.75, and T0 = 270 MeV [8]. It is important to note that only
T0 is a parameter with the mass dimension, so that the energy
scale in the gluon dynamics is set by this T0.

In addition, the NJL sector of the PNJL model has five more pa-
rameters in the three-flavor case [7]; the light and heavy quark
masses mud and ms, the momentum cutoff Λ, the four-fermionic
interaction strength gs, and the U(1)A-breaking six-fermionic in-
teraction strength gd, which are all fixed by the pion mass mπ ,
the kaon mass mK , the eta-prime mass mη′ , the pion decay con-
stant fπ , and the chiral condensate 〈ψ̄ψ〉 [31].

In the presence of dynamical quarks, if we keep using T0 =
270 MeV, the simultaneous crossover temperature of deconfine-
ment and chiral restoration is above 200 MeV, which is too high as
compared to the lattice-QCD value. This problem has been nicely
resolved in Ref. [12]; the back-reaction from quark loops affects
the mass scale to change from T0 = 270 MeV for Nf = 0 down to
T0 = 208 MeV for Nf = 2, and T0 = 187 MeV for Nf = 2 + 1 [12].
In this work we choose to use T0 = 200 MeV throughout; our aim
here is to propose an idea and test it qualitatively, but not to come
to quantitative details.
In Fig. 2 we show the entropy density calculated in the mean-
field PNJL model with T0 = 200 MeV in the same way as presented
in Fig. 1. The bottom (top) band in red (green) color is the result
from the Statistical Model (PNJL model). From the figure it is obvi-
ous that the naive PNJL model cannot pass the consistency check
with the Statistical Model for large μB. Even for μB/T 	 1 we
see that the curvature of the band curve is significantly different;
the PNJL model result is too flat horizontally (as suggested in the
large-Nc argument).

4. Problem and ansatz

Such a manifest discrepancy between the Statistical Model and
the PNJL model is a crucial problem in the QCD phase diagram re-
search. This problem cannot be resolved even in the RG improved
PQM model because the baryonic excitations are still missing. To
make the entropy density get saturated for μB � 400 MeV, bary-
onic degrees of freedom must be released at smaller temperature
than predicted by the PNJL model. One can understand this prob-
lem in a more intuitive way too. That is, the color-singlet contri-
bution in the partition function involves the following integration:
∫

d3k f
(
e
−Nc(

√
k2+M2

q−μq)/T )

= 1

N3
c

∫
d3k f

(
e
−(

√
k2+M2

B−μB)/T )
, (3)

where f is an arbitrary function. The left-hand side represents
the Nc-quark contribution and MB = NcMq and μB = Ncμq in the
right-hand side. Then it is clear that the vanishing Polyakov loop
allows for only the color-singlet Nc-quark contribution in the PNJL-
type model but such contribution like Eq. (3) underestimates the
genuine baryonic excitation by a factor 1/N3

c . [In reality the sit-
uation should be better than this because repulsive interactions
between baryons would reduce the baryon density as compared to
the free case.]

Also there is another way to think about the mismatch between
the Statistical Model and the PNJL model. The energy scale in the
pure-gluonic sector in the PNJL setup is specified by one param-
eter T0 that may change depending on T and μB as a result of
the quark-loop effect. We have shifted T0 from 270 MeV down to
200 MeV through which we have incorporated the scale change in-
duced by thermal quarks. In this way we may well consider that
T0(μB) should decrease with increasing μB, as was first pointed
out in Ref. [12].

Our idea here is to make use of Fig. 2 to fix T0(μB) in such
a way to be consist with the Statistical Model (or the output
from THERMUS more specifically). One could have picked up other
thermodynamic quantities than the entropy density, which would
make little difference in the final result. In Ref. [26] the freeze-
out curve is parametrized as T f(μB) = a − bμ2

B − cμ4
B with the

fitting result a = 166(2) MeV, b = 1.39(16) × 10−4 MeV−1, and
c = 5.3(21) × 10−11 MeV−3. Because the behavior of the entropy
density is dominantly controlled by deconfinement (in the PNJL
model), we postulate that T0(μB) is to be correlated with T f(μB).
Let us simply try to use the same b and make an ansatz as

T0(μB)

T0
= 1 − (bT0)

(
μB

T0

)2

= 1 − 2.78 × 10−2
(

μB

T0

)2

, (4)

which yields the blue band in the middle of Fig. 2. Here T0 in the
denominator is T0(μB = 0). We remark that we have set a techni-
cal lower bound T0(μB) � 10 MeV to prevent unphysical negative
T0(μB) for large μB. In any case the validity of our ansatz (4)
should be lost at such large μB. We see at a glance that the results
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Fig. 3. Phase boundaries associated with deconfinement (lower blue band) and chi-
ral restoration (upper red band). Each band represents a region where the (normal-
ized) order parameter develops from 0.4 to 0.6. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this Let-
ter.)

from this modified PNJL model have a reasonable overlap with the
Statistical Model in the whole density region.

We would emphasize that it is naturally U [Φ] that should be
modified. As we have discussed below Eq. (3), the lack of bary-
onic degrees of freedom is attributed to the absence of confine-
ment. Whether confined baryons or deconfined quarks are relevant
is characterized by Φ in principle. Therefore the baryonic abun-
dance at finite μB is to be linked to Φ . This in turn results in
non-perturbative μB-dependence in the potential energy in terms
of Φ . In the perturbative manner one can also understand how
the μB-dependence enters U [Φ]; the loop diagram of the dressed
gluon propagator with μB-dependent screening mass (i.e. quark–
antiquark polarization) yields μB-dependent U [Φ]. We note here
that the μB-dependence from the quark loop is already incorpo-
rated in the PNJL coupling.

Finally we point out that our choice in Eq. (4) happens to be
very close to the independent argument in Ref. [12], in which
the μB-dependence has been estimated from the running coupling
constant as T0(μB) = Tτ e−1/(a0b(μB)) which is expanded numeri-
cally to be T0(μB)/T0 � 1 − 2.1 × 10−2(μB/T0)

2 + · · ·. This simi-
larity is quite indicative of justification.

5. Phase diagram and discussions

Now we get ready to draw a likely candidate for the QCD
phase diagram that is consistent with the Statistical Model ther-
modynamics. Using the standard computational procedure of the
mean-field PNJL model (see Ref. [7] for technical details) we can
solve 〈ψ̄ψ〉 and Φ as functions of T and μB, from which the phase
boundaries of chiral restoration and quark deconfinement can be
located.

Fig. 3 shows the phase diagram from the modified PNJL model
with the ansatz (4). The blue (red) band is a region where
the Polyakov loop Φ (normalized light-quark chiral condensate
〈ūu〉/〈ūu〉0) increases from 0.4 to 0.6. In contrast to the standard
PNJL model results, the phase boundaries here show that the chi-
ral and the deconfinement transitions are almost parallel to each
other, which agrees with the situation considered in Refs. [12,23].
We have found the critical point at (μB, T ) � (45 MeV,330 MeV),
but we should not take the location seriously because it is eas-
ily affected by small changes in the model [7]. Nevertheless, it
is a good news for the critical point search that the QCD phase
boundaries become closer to the chemical freeze-out curve, for the
experimental signature would be detectable only if the fluctuation
at freeze-out reflects the singular nature of criticality.

It is an intriguing observation that the chiral phase transi-
tion may occur (slightly) later than deconfinement. This is con-
sistent with the Statistical Model assumption. In the Statistical
Model the hadron masses are just the vacuum values and any
hadron mass/width modification is neglected, which would be eas-
ily justified if the chiral phase transition takes place later than
the Hagedorn temperature. Under such a phase structure, besides,
our assumption of neglecting μB-dependence in the NJL-model pa-
rameters is as acceptable as the Statistical Model. We can say so
because the NJL part mainly takes care of the hadron properties
and the chiral dynamics which are intact in the Statistical Model.

Here we should state that the present study loses its validity
around μB = 500–600 MeV. This is because the chemical freeze-
out temperatures in such high-density regions are far below the
phase boundaries in Fig. 3 and the (not theoretical but experi-
mental) validity of the Statistical Model is guaranteed up to the
freeze-out points. For a guide to eyes, we draw a dashed line in
Fig. 3 which limits the validity of the present approach. The fact
that the phase boundaries from the model come far above the
validity limit for μB � 500 MeV may indicate that the ansatz (4)
breaks down or that a new state of matter exists there [20].

In the future it is an important question how our phenomeno-
logical ansatz (4) is validated/invalidated from the first-principle
QCD calculation, which will be possibly answered by the func-
tional RG method [4]. In any case, the most important message in
this work is that it is unavoidable to think of μB-dependent U [Φ];
otherwise the results cannot fulfill the consistency with the Statis-
tical Model in small-μB regions. Our ansatz (4) might need more
refinement, but the idea to test the consistency-check at finite μB
using the thermal Statistical Model is one principle to guide future
developments in the QCD phase diagram research.

Finally, to avoid misunderstanding and make our assertion clear,
we reiterate that the central point in this work is neither the
ansatz (4) nor the phase diagram in Fig. 3 but the idea to match
the chiral effective model and the thermal Statistical Model. The
ansatz (4) is a simple example that can satisfy this requirement
from the Statistical Model and Figs. 2 and 3 are demonstrations.
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