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An analysis has been performed to study the problem of magneto-hydrodynamic (MHD)
Jeffery–Hamel flow with nanoparticles. The governing equations for this problem are
reduced to an ordinary form and is solved using collocation method (CM) and numerically
by fourth order Runge–Kutta technique. Also, Velocity fields have been computed and
shown graphically for various values of physical parameters. The objective of the present
work is to investigate the effect of the semi angles between the plates, Reynolds number,
magnetic field strength and nanoparticles volume fraction on the velocity field. As an
important outcome, Increasing Reynolds numbers leads to reduce velocity and excluded
backflow in convergent channel.
& 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

During last few years the incompressible viscous fluid flow through convergent -divergent channels is one of the most
applicable cases in fluid mechanics, civil, environmental, mechanical and bio-mechanical engineering. The mathematical
investigations of this problem were pioneered by Jeffery [1] and Hamel [2] and so, it is known as Jeffery–Hamel problem,
too. One of the most significant examples of Jeffery Hamel problems are those subjected to an applied magnetic field.
The MHD Jeffery–Hamel problem have been extensively studied by several authors and discussed in some textbooks and
articles: [3–7] etc. The term nanofluid was envisioned to describe a fluid in which nanometer-sized particles were
suspended in conventional heat transfer basic fluids. Nanotechnology aims to manipulate the structure of the matter at the
molecular level with the goal for innovation in virtually every industry and public endeavor including biological sciences,
physical sciences, electronics cooling, transportation, the environment and national security [8,9].

As everyone knows, most scientific problems such as Jeffery–Hamel flows and other fluid mechanic problems are
inherently nonlinear. In most cases, these problems do not admit analytical solution, so these equations should be solved
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Nomenclature

Re Reynolds number
H Hartman number
An particle parameter
RðxÞ residual function
Wi weighted function
ci constant
CM collocation method
NUM numerical method
An particle parameter
P pressure
r cylindrical coordinates
f non-dimensional velocity

u velocity component in radial-direction
~u trial function
r cylindrical coordinates
η non-dimensional angle

Greek symbols

ρ density of the fluid
υ kinematic viscosity
ϕ nanoparticle volume fraction
α angle between two plates
θ cylindrical coordinates
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using special techniques. In recent decades, much attention has been devoted to the newly developed methods to construct
an analytic solution of equation; such as Perturbation techniques which are too strongly dependent upon the so-called
“small parameters” [10]. Many other different methods have introduced to solve nonlinear equation such as the Adomian’s
decomposition method [11], homotopy perturbation method (HPM) [12–15], variational iteration method (VIM) [16],
differential transformation method [17], homotopy asymptotic method (HAM) [18–21] and optimal homotopy asymptotic
method (OHAM) [22] and collocation method (CM) [23,24].

Many advantages of CM compared to other analytical and numerical methods make it more valuable and motivate
researchers to use it for solving problems. It has the following benefits: First, unlike all previous analytic techniques, It solves
the equations directly and no simplifications needs. Second, unlike all previous analytic techniques, It does not need to any
perturbation, linearization or small parameter versus homotopy perturbation method (HPM) and parameter perturbation
method (PPM). Third, unlike homotopy asymptotic method, it does not need to determine the auxiliary function and
parameter versus HAM.

The main purpose of this study is to apply collocation method to find approximate solutions of the velocity profile on
MHD Jeffery–Hamel flow with nanoparticles. A clear conclusion can be drawn from the numerical method’s (NUM) results
that the collocation method provides highly accurate solutions for nonlinear differential equations.
2. Problem statement and mathematical formulation

We consider the boundary layer flow of an electrically conducting viscous fluid with nanoparticle. A magnetic field BðxÞ
acts transversely to the flow. As can be seen in Fig. 1.

The steady two-dimensional flow of an incompressible conducting viscous fluid from a source or sink at the intersection
between two non parallel plane walls is considered. We assume that the velocity is purely radial and depends on r and θ
only. The governing equations in polar coordinates are [11,17]

ρnf ∂
r ∂r

r u r; θð Þð Þ ¼ 0 ð1Þ

u r; θð Þ∂u r; θð Þ
∂r

¼ � 1
ρnf

∂p
∂r

þυnf
∂2u r; θð Þ

∂r2
þ1
r
∂u r; θð Þ

∂r
þ 1
r2

∂2u r; θð Þ
∂θ2

�u r; θð Þ
r2

� �
� σB2

0

ρnf r2
u r; θð Þ ð2Þ

1
ρnf r

∂p
∂θ

�2υnf
r2

∂u r; θð Þ
∂θ

¼ 0 ð3Þ

here B0 is the electromagnetic induction, u rð Þ is the velocity along radial direction, P is the fluid pressure, σ is the
conductivity of the fluid, ρnf is the density of fluid and υnf is the coefficient of kinematic viscosity. By introducing φ as a solid
volume fraction, fluid density, dynamic viscosity and the kinematic viscosity of nanofluid can be written as follows:

ρnf ¼ ρf 1�ϕð Þþρsϕs ð4Þ

μnf ¼
μf

1�ϕð Þ2:5
ð5Þ



Fig. 1. Geometry of the MHD Jeffery–Hamel flow in divergent channel (a) 2D view and (b) schematic setup of problem.
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υnf ¼
μf
ρnf

ð6Þ

From Eq. (1) and using dimensionless parameters we get

f θð Þ ¼ r u r; θð Þ ð7Þ

f ηð Þ ¼ f θð Þ
fmax

; η¼ θ

α
: ð8Þ

Substituting Eq. (5) into Eqs. (2) and (3) and eliminating P, we obtain an ordinary differential equation for the normalized
function profile f ηð Þ:

f‴ ηð Þþ2 α ReAn 1�ϕð Þ2:5f ηð Þf 0 ηð Þþ 4� 1�ϕð Þ1:25H
� �

α2f 0 ηð Þ ¼ 0: ð9Þ

The relevant boundary conditions are

f 0ð Þ ¼ 1; f 0 0ð Þ ¼ 0; f 1ð Þ ¼ 0: ð10Þ

The Reynolds number is

Re¼ fmax α

υ
¼Umax rα

υ

divergevt�channel: αg0; fmaxg0
convergevt�channel: α!0; fmax!0

 !
: ð11Þ



Table 1
Thermophysical properties of nanofluids and nanoparticles.

Material Density ðkg=m3Þ Heat capacity ðJ=kg KÞ Thermal conductivity ðW=m KÞ

Al2O3 3970 765 40
Cu 8933 385 401
TiO2 4250 686.2 8.9538
Fluid phase (water) 997.1 4179 0.613
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The Hartmann number is

H¼
ffiffiffiffiffiffiffiffi
σB2

0

ρ υ

s
: ð12Þ

The particle parameter is

An ¼ 1�ϕð Þþρs
ρf
ϕ ð13Þ

Eq. (9) is valid for spherical particles and its values for different materials are listed in Table 1.

3. Principles of collocation method

Suppose we have a differential operator D acting on a function u to produce a function p [24,25]:

D uðxÞð Þ ¼ pðxÞ ð14Þ

We wish to approximate u by a function ~u, which is a linear combination of basic functions chosen from a linearly
independent set. That is:

uffi ~u ¼ ∑
n

i ¼ 1
Ciφi ð15Þ

Now, when substituted into the differential operator,D, the result of the operations is not, in general, pðxÞ. Hence an error
or residual will exist:

EðxÞ ¼ RðxÞ ¼D ~uðxÞð Þ�pðxÞa0 ð16Þ

The notion in the collocation is to force the residual to zero in some average sense over the domain. That isZ
x
RðxÞWiðxÞ ¼ 0 i¼ 1;2;…;n ð17Þ

where the number of weight functionsWi are exactly equal the number of unknown constants Ci in ~u. The result is a set of n
algebraic equations for the unknown constants Ci. For collocation method, the weighting functions are taken from the family
of Dirac δ functions in the domain. That is, WiðxÞ ¼ δðx�xiÞ. The Dirac δ function has the property that

δðx�xiÞ ¼
1 if x¼ xi

0 Otherwise

�
ð18Þ

And residual function in Eq. (16) must force to be zero at specific points.

3.1. Implementation of analytical method

Consider the trial function as:

f ðηÞ ¼ 1þc1η2þc2η3þc3η4þc4η5þc5η6þc6η7þc7η8 ð19Þ

Witch satisfies the boundary condition in Eq. (10) and set it into Eq. (16), residual function, Rðc1; c2; c3; c4; c5; c6; c7; ηÞ, is
found as

Rðc1; c2; c3; c4; c5; c6; c7; ηÞ ¼ αReAn 1�ϕð Þ2:5 12c1η5c3
� þ24c4η11c6þ16c7η7þ4c1η



Table 2
Value of unknown constants Ci at various Re, H, and α when ϕ¼ 0:05.

α �5 �5 þ5 þ5

H Re 0 100 500 100 50 10 50 200

c1 �0:18980343050 �0:1170250892 �0:843677670500 0:1850545794
c2 �0:51213080310 �0:6790852135 0:0008002290346 �2:2725634490
c3 1:71378465000 2:44448599500 �0:177065267200 9:3061472200
c4 �5:23821147300 �6:8505244380 0:007455837047 �22:640263420
c5 7:13282146600 9:22953945400 0:001303268316 30:302274640
c6 �5:78821382800 �7:2538790160 0:006672129808 �22:161738310
c7 1:88175341900 2:22648830800 0:004511473517 6:2810887350

Fig. 2. Effect of Hartmann number (H) on velocity profiles f ðηÞ and f 0ðηÞ when α¼ þ5 ; Re¼ 100 and ϕ¼ 0:05.
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þ24c3η11c7þ26c5η12c6þ16c1η7c5þ28c5η13c7þ22c2η10c7þ6 c2þ30 c6η14c7þ4 c21η
3

þ14c1η6c4þ18c3η8c4þ10c1η4c2þ20c3η9c5þ18c1η8c6þ18 c2 η8 c5þ6 c22 η
5þ14 c26η

13

þ16c2η7c4þ26c4η12c7þ14c2η6c3þ20c2η9c6þ20c1η9 c7þ12c5 η5þ14c6 η6þ8 c23 η
7

þ22c4η10c5þ22c3η10c6þ6c2η2þ24c3ηþ8c3η3þ10c4η4þ10c24η
9þ12c25η

11þ16c27η
15	

�5α2 1�ϕð Þ1:25H c4η4þ28 α2c6η6�6 α2 1�ϕð Þ1:25H c5 η5�2 α2 1�ϕð Þ1:25H c1 η

�7α2 1�ϕð Þ1:25H c6 η6þ8 α2 c1 ηþ16 α2 c3 η3þ32α2c7 η7�8 α2 1�ϕð Þ1:25H c7η7

þ12 α2 c2 η2þ20 α2 c4 η4þ60c4η2þ210c6 η4�3 α2 1�ϕð Þ1:25H c2 η2þ24α2 c5 η5

�4α2 1�ϕð Þ1:25Hc3η3þ120c5η3þ336c7η5 ¼ 0 ð20Þ

On the other hands, the residual function must be close to zero. For reaching this importance, two specific points in the
domain tA 0;1½ � should be chosen. These points are

η1 ¼
1
7
; η2 ¼

2
7
; η3 ¼

3
7
; η4 ¼

4
7

η5 ¼
5
7
; η6 ¼

6
7

ð21Þ

Finally by substitutions these points into the residual function, Rðcn; ηÞ, a set of four equations and seven unknown
coefficients are obtained.

In the following, we will obtain the approximate solution of the third order for α ¼ �5; Re ¼ 50; H ¼ 100 and ϕ¼ 0:05.
In this particular case, the constants c1; c2; c3; c4; c5; c6; c7ð Þ are

c1 ¼ �0:4573621116; c2 ¼ �0:07130345721; c3 ¼ �0:1390392833
; c4 ¼ �0:7602969598; c5 ¼ 1:003347820; c6 ¼ �0:9535254918
; c7 ¼ 0:3781794840

8><
>:

9>=
>; ð22Þ



Table 3
The results of CM and Numerical methods for f ðηÞ and f 0ðηÞ for α¼ �5 ; H¼ 750, Re¼ 10 and ϕ¼ 0:05.

η f ðηÞ f 0ðηÞ

CM NUM Error CM NUM Error

0.00 1.000000000 1.000000000 0.00000000 0.000000000 0.000000000 0.000000000
0.10 0.994278317 0.994271793 6.52460E�06 �0.115195704 �0.115276195 8.04910E�05
0.20 0.976670165 0.976657171 1.29939E�05 �0.239148945 �0.239198571 4.96260E�05
0.30 0.945855446 0.945838378 1.70688E�05 �0.380935195 �0.380968632 3.34366E�05
0.40 0.899546175 0.899526435 1.97393E�05 �0.550885223 �0.550904481 1.92576E�05
0.50 0.834341990 0.834321113 2.08771E�05 �0.761001698 �0.761005495 3.7965E�06
0.60 0.745536091 0.745515460 2.06311E�05 �1.025500935 �1.025492459 8.4760E�06
0.65 0.690394661 0.690374623 2.00382E�05 �1.183311622 �1.183296074 1.5548E�05
0.70 0.626869073 0.626850033 1.90395E�05 �1.361279710 �1.361254959 2.4751E�05
0.75 0.553888111 0.553870569 1.75420E�05 �1.561968173 �1.561933069 3.5104E�05
0.80 0.470248162 0.470232596 1.55660E�05 �1.788107079 �1.788063880 4.3199E�05
0.85 0.374605389 0.374592074 1.33156E�05 �2.042570470 �2.042524533 4.5937E�05
0.90 0.265469361 0.265458387 1.09740E�05 �2.328341147 �2.328291696 4.9451E�05
0.95 0.141198775 0.141190959 7.81570E�06 �2.648461763 �2.648373505 8.8258E�05
1.00 0.000000000 0.000000000 0.00000000 �3.005970697 �3.005710902 0.000259795

Table 4
The results of CM and Numerical methods for f ðηÞ and f 0ðηÞ for α¼ þ5 ; H¼ 600;Re¼ 30 and ϕ¼ 0:02.

η f ðηÞ f 0ðηÞ

CM NUM Error CM NUM Error

0.00 1.000000000 1.0000000000 0.000000000 0.000000000 0.000000000 0.000000000
0.10 0.989831339 0.989838538 7.19830E�06 �0.203096385 �0.203005287 9.10975E�05
0.20 0.959469984 0.959484798 1.48137E�05 �0.403520657 �0.403459692 6.09645E�05
0.30 0.909273894 0.909293747 1.98530E�05 �0.599588715 �0.599547629 4.10865E�05
0.40 0.839713174 0.839736189 2.30155E�05 �0.790897888 �0.790876528 2.13606E�05
0.50 0.751200975 0.751225047 2.40718E�05 �0.979094450 �0.979094189 2.61100E�07
0.60 0.643859464 0.643882692 2.32278E�05 �1.168441426 �1.168457912 1.64860E�05
0.65 0.583016261 0.583038458 2.21973E�05 �1.265734476 �1.265759349 2.48730E�05
0.70 0.517229880 0.517250595 2.07152E�05 �1.366405148 �1.366439696 3.45480E�05
0.75 0.446293494 0.446312228 1.87343E�05 �1.472021770 �1.472066266 4.44960E�05
0.80 0.369913902 0.369930217 1.63148E�05 �1.584479055 �1.584530475 5.14200E�05
0.85 0.287693905 0.287707601 1.36964E�05 �1.706052195 �1.706104499 5.23040E�05
0.90 0.199111677 0.199122776 1.10986E�05 �1.839463171 �1.839516365 5.31940E�05
0.95 0.103496485 0.103504315 7.83060E�06 �1.987961031 �1.988049984 8.89530E�05
1.00 0.000000000 0.000000000 0.000000000 �2.155417798 �2.155678915 0.000261117

Fig. 3. Effect of Hartmann number (H) on velocity profiles f ðηÞ and f 0ðηÞ when α¼ �5 ; Re¼ 100 and ϕ¼ 0:05.
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Fig. 4. Effect of Reynolds number (Re) on velocity profiles f ðηÞ and f 0ðηÞ when α¼ þ5 ; H¼ 50 and ϕ¼ 0:05.

Fig. 5. Effect of Reynolds number (Re) on velocity profiles f ðηÞ and f 0ðηÞ when α¼ �5 ; H¼ 50 and ϕ¼ 0:05.

Fig. 6. Effect of nanoparticle volume fraction ϕ on velocity profiles f ðηÞ and f 0ðηÞ when α¼ þ5 ; H¼ 50 and Re¼ 100.
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Fig. 7. Effect of nanoparticle volume fraction ϕ on velocity profiles f ðηÞ and f 0ðηÞ when α¼ �5 ; H¼ 50 and Re¼ 100.
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After solving these unknown parameters c1; c2; c3; c4; c5; c6; c7ð Þ, the velocity equation will be determined. Using
collocation method, the velocity formulation is as follows:

f ηð Þ ¼ 1�0:4573621116η2�0:07130345721η3�0:1390392833η4

�0:7602969598η5þ1:003347820η6�0:9535254918η7þ0:3781794840η8 ð23Þ

In a similar manner, we will obtain other solutions for different cases of α ; H and Re that shows in Table 2.
4. Result and discussions

In the present study CM method is applied to obtain an explicit analytic solution of the MHD) Jeffery–Hamel flow with
nanoparticles (Fig. 1). First, a comparison between the applied methods, obtained by the numerical method and CM for
different values of active parameters is shown in Fig. 2 till Fig. 7.

The numerical solution is performed using the algebra package Maple 15.0, to solve the present case. The package uses a
second-order difference scheme combined with an order bootstrap technique with mesh-refinement strategies: the
difference scheme is based on either the trapezoid or midpoint rules; the order improvement/accuracy enhancement is
either Richardson extrapolation or a method of deferred corrections [26]. Validity of CM is shown in Tables 2 and 3. In these
tables, the %Error is defined as

% Error¼ jf ðηÞNUM� f ðηÞHAMj ð24Þ

The results are proved to be precise and accurate in solving a wide range of mathematical and engineering problems
especially Fluid mechanic cases. This accuracy gives high confidence to us about validity of this problem and reveals an
excellent agreement of engineering accuracy. This investigation is completed by depicting the effects of some important
parameters to evaluate how these parameters influence on this fluid (Table 4).

From a physical point of view, Figs. 2 –7 are prepared in order to see the effects of the semi angles between the plates,
Reynolds number, magnetic field strength and nanoparticles volume fraction on the velocity distribution. Figs. 2 and 3 shows
the magnetic field effect on the velocity profiles for divergent and convergent channels when α¼ 75;Re¼ 100; ϕ¼ 0:05. The
first result worth pointing out is that, under magnetic field the Lorentz force effect is in opposite of the momentum’s direction
that stabilizes the velocity profile. So it can be see, by increasing Hartmann number, the velocity profiles of convergent channel
is moderate increases αo0. In addition, the result shows that Backflow is occurred in divergent channels α40.

In addition, the effect of Reynolds number on the velocity profile for different values of α is shown in Figs. 4 and 5. The
graph shows that the fluid velocity decreases with Reynolds numbers in the case of divergent channels but increases with Re
in the case of convergent channels. Also, as it clears, by increasing Reynolds number, the thickness of boundary layer
decreases when αo0 and so, fluid in most parts of channels has maximum velocity.

Most noticeably of all, by increasing of nanofluid volume fraction, the fluid velocity decreases in the case of divergent
channels but increases with ϕ in the case of convergent channels as depicted in Figs. 6 and 7.
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5. Conclusion

In this investigation, the analytical approach called collocation method (CM) has been successfully applied to find the
most accurate analytical solution for the velocity distributions of MHD Jeffery Hamel problem with nanoparticles. The
governing equations, continuity and momentum for this problem are reduced to an ordinary single third form by using a
similarity transformation. Furthermore, the obtained solutions by proposed methods have been compared with the direct
numerical solutions generated by the symbolic algebra package Maple 15. The following main points can be concluded from
the present study:
�
 Collocation technique is a powerful approach for solving MHD Jeffery–Hamel flow in high magnetic field with
nanoparticles. It does not needs to any perturbation, linearization or small parameter versus Homotopy Perturbation
Method (HPM) and Parameter Perturbation Method (PPM). Also it does not needs to determining the auxiliary parameter
and auxiliary function versus Homotopy Analysis Method (HAM).
�
 Increasing Reynolds numbers leads to reduce velocity and excluded backflow in convergent channel.

�
 In greater angles, increasing Hartmann number will lead to backflow increases.

�
 When α40 and steep of the channel is divergent, Increasing of nanofluid volume fraction will lead to the fluid velocity

decreases.
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