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Abstract

Let F be a local field. The action of GLn(F) on the Grassmann variety Gr(m, n, F) induces
a continuous representation of the maximal compact subgroup of GLn(F) on the space of L2-
functions on Gr(m, n, F). The irreducible constituents of this representation are parameterized
by the same underlying set both for Archimedean and non-Archimedean fields [G. Hill, On the
nilpotent representations of GLn(O), Manuscripta Math. 82 (1994) 293–311; A.T. James A.G.
Constantine, Generalized Jacobi polynomials as spherical functions of the Grassmann manifold,
Proc. London Math. Soc. 29(3) (1974) 174–192]. This paper connects the Archimedean and non-
Archimedean theories using the quantum Grassmannian [M.S. Dijkhuizen, J.V. Stokman, Some
limit transitions between BC type orthogonal polynomials interpreted on quantum complex
Grassmannians, Publ. Res. Inst. Math. Sci. 35 (1999) 451–500; J.V. Stokman, Multivariable
big and little q-Jacobi polynomials, SIAM J. Math. Anal. 28 (1997) 452–480]. In particular,
idempotents in the Hecke algebra associated to this representation are the image of the quantum
zonal spherical functions after taking appropriate limits. Consequently, a correspondence is
established between some irreducible representations with Archimedean and non-Archimedean
origin.
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1. Introduction

This paper is concerned with relationships between the Archimedean and non-
Archimedean places of a number field. Since the early works of Weil, Artin, Iwa-
sawa, Tate [30] and the far reaching conjectures of Langlands, deep relations have
been discovered between the arithmetic of a number field and the representation theory
of algebraic groups over the local fields. It is within the framework of representation
theory that the relations between the local fields, the places of the number field, will
be discussed here.

Local fields occur naturally as the completions of global fields. A global field is
either a number field, that is a finite extension of the rational numbers, or a function
field, that is a field of rational functions of a curve defined over a finite field. A
local field can be either Archimedean (R or C) or non-Archimedean (Laurent series
over a finite field or a finite extension of Qp). In the function field case all the
completions are non-Archimedean and thus carry the same nature. In contrast, in the
number field case both Archimedean and non-Archimedean completions occur, thus
having a completely different nature. For example, the former is connected and the
latter is totally disconnected.

Let F be a local field. For a non-Archimedean field, let O be the ring of integers
and ℘ be the maximal ideal. Let KF be the maximal compact subgroup of GLn(F),
for some n ∈ N which will be fixed throughout this paper. We have

KF =
⎧⎨
⎩

O(n) = the orthogonal group, F = R;
U(n) = the unitary group, F = C;
GLn(O) � lim← GLn(O/℘k), F non-Archimedean.

In particular, for Archimedean fields KF is a Lie group while for non-Archimedean
fields it is totally disconnected. In order to be able to compare between them we
appeal to representation theory. In this paper we focus on a special representation
of KF, the Grassmann representation, which arises from its natural action on XF

m =
Gr(m, n, F), the variety of m-dimensional subspaces of a fixed n-dimensional space
over F. The natural representation space is L2(XF

m) or its dense subspace of smooth
functions S(XF

m), with the action

[g · f ](x) = f (g−1x), f ∈ L2(XF
m), g ∈ KF.

As far as the decomposition to irreducibles is concerned, there is no difference between
the two spaces. By smooth functions we mean infinitely differentiable for Archimedean
places and locally constant for non-Archimedean ones. To define the L2 structure, the
transitive action of KF on XF

m is used, and the measure on XF
m is taken to be the

projection of the normalized Haar measure from the group. Then, for all local fields,
for the Archimedean ones [12] and for the non-Archimedean ones [11], the following
decomposition holds.
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Theorem 1 (James-Constantine, Hill). For any local field F and m�[n2 ], the Grass-
mann representation is a multiplicity free direct sum of irreducible representations of
KF indexed by �m, the set of partitions with at most m parts.

Let {UF
� }�∈�m

be the irreducible representations which occur in L2(XF
m). In view

of the independence of the labeling set on the field, it is natural to ask the following
question.

Question 2. Fix � ∈ �m. Are {UF
� }F related when F runs over all local fields?

Our goal is to address this question. For this purpose, the Hecke algebra of inter-
twining operators HF

m = S(XF
m ×KF XF

m) will be used. This is the convolution algebra
of smooth functions on XF

m×XF
m which are invariant under the diagonal action of KF.

An element of HF
m defines an intertwining operator by realizing it as an integration

kernel. The measure on �F
m := XF

m ×KF XF
m, denoted by dhF, is the projection of the

Haar measure from the group and described explicitly in §2.1 and §2.2. As this algebra
is commutative for all local fields, the first part of Theorem 1 follows. The minimal
idempotents of the algebra have been computed in [12] for Archimedean fields and in
[5] for non-Archimedean fields:

• Archimedean fields [12]. The minimal idempotents in the Hecke algebra are naturally
associated to polynomial representations of GLm. In particular, they are parameterized
by �m. They are eigenfunctions of the Laplacian on the Grassmann manifold with
distinct eigenvalues.
• Non-Archimedean fields [5]. The minimal idempotents in the Hecke algebra are

naturally associated with finite quotients of Om, the free module of rank m. In
particular, they are parameterized by �m. The idempotents are computed in terms of
combinatorial invariants of the lattice of submodules of Om.

Interestingly, geometry plays an important role in both cases; geometrically defined op-
erators which commute with the group action are sufficient to separate representations.
In the Archimedean case, it is the Laplacian on the Grassmann manifold, whereas in
the non-Archimedean case, a family of discrete averaging operators plays the same
role. The identical parametrization of irreducibles is reflected by the same parametriza-
tion of idempotents in the Hecke algebras for the different local fields. To show the
link between the irreducibles labeled by the same partition for the different fields, the
quantum Grassmannian will be used in the following scheme.

Each of the Hecke algebras HF
m is characterized by a triplet (space, measure, idem-

potents)

(
�F

m, dhF, {eF
� }�∈�m

)
.

These will be ‘interpolated’ by similar objects which arise in the quantum Grassmannian
Uq(n)/Uq(m)× Uq(n−m) (cf. [7] for a detailed discussion). The objects which will
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be used are

(
�q

m, dSq
m, {Eq

�}�∈�m

)
.

The precise definition of these q-objects is given later on. Roughly, �q
m is the q-

exponentiation of a shift of �m; dSq
m(x; a, b, t) is the q-Selberg measure [9,13,14,2]

defined on �q
m; and {Eq

�(x; a, b, t)}�∈�m
are the zonal spherical functions which occur

in the quantum Grassmannian. The zonal spherical functions, also called multivariable
little q-Jacobi polynomials [7,28], are orthogonal with respect to the q-Selberg measure.

By taking appropriate limits, the q-objects interpolate between the objects related
to the local fields. In the Archimedean limit q → 1, the space �q

m becomes dense in
the Archimedean space, and the atomic q-Selberg measure approximates the continuous
Selberg measure. In the non-Archimedean limit q → 0, the space itself remains discrete,
and the q-measure specializes to give the non-Archimedean measure. Thus, for any local
field F, the distribution f �→ ∫

�F
m

fdhF is the limit of the distribution f �→ ∫
�q

m
fdSq

m

(§3, Theorem 8). Under the same limits the quantum zonal spherical functions {Eq

�}
are mapped to {eF

� } (§3, Theorem 10).

1.1. Related works

Similar interpolations between p-adic and real zonal spherical functions using q-
special functions have been established in several instances. For PGL2, the zonal
spherical functions which occur in the principal series of the groups PGL2(R) and
PGL2(Qp), have been shown to be limits of q-ultraspherical polynomials (see [4] for
the p-adic limit and [16] for the real limit). The p-adic limit of the higher rank case
appeared in the work of Macdonald [21,20], whereas the real limit was proved by
Koornwinder. 1 For compact groups, such interpolation has appeared in the work of
Haran [10] for the case of the maximal compact subgroup of GLn and its action on
the projective line. This has also been further generalized by Porat [24] to invariants
of the GLn-action on the projective space with respect to upper triangular matrices.

1.2. Organization of the paper and notations

The paper is organized as follows. In Section 2 we describe the Grassmann repre-
sentation in its various appearances, the Archimedean in §2.1, the non-Archimedean in
§2.2 and the quantum in §2.3. This section contains a description of all the ingredients
required for carrying out the above plan, with the necessary adjustments and comple-
ments. In Section 3, the ingredients are glued together to establish the interpolation.
Section 4 contains an example, the one-dimensional case, and Section 5 is devoted to
possible extensions of this work.

Notations: Whenever possible, the notations of [21] have been followed; partitions
are written in a non-increasing order and are identified with the corresponding Young

1 Lecture at the INI program on Symmetric Functions and Macdonald Polynomials, April 2001.
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diagrams. For a partition � = (�1, �2, . . .), let �′ denote the transposed diagram, |�| =∑
i �i its weight and n(�) = ∑

(i − 1)�i . The rank of the partition is the number
of its nonzero parts, and its height is the largest part. We shall also use the notation
� = (1�1 2�2 . . .) where �i = |{j |�j = i}|.

Two partial orderings on partitions are used; The partial order defined by the inclusion
of Young diagrams � , and the dominance order �. 2 The set of partitions which consist
of at most m parts will be denoted by �m. For any ring A, we set G(A) = GLn(A).
In addition to q, three other parameters (a, b, t) are used. Depending on the context,
they are sometimes rewritten using exponents (�, �, �). For � = (�1, . . . , �m) ∈ �m,
the vector (q�1 , . . . , q�m) is denoted by q�; the set of all such elements is denoted by
q�m ; and � = (m − 1, m − 2, . . . , 0). R and C stand for the real and complex fields,
and K for a non-Archimedean local field with residue field of cardinality pr = |O/℘|.
Multivariable indeterminants such as (x1, . . . , xm) are abbreviated by x, and Am =
C[x1, . . . , xm]�m is the algebra of symmetric polynomials with m variables. Integration
with respect to any measure, discrete or continuous, is denoted by the integral sign.

2. The Grassmann representation

2.1. Archimedean theory

This section is concerned with the Archimedean fields R and C. All the objects
involved are well known (see [12,31]), but are described here for completeness. The
corresponding maximal compact subgroup K is the orthogonal group O(n) in the real
case, and the unitary group U(n) in the complex case.

2.1.1. Space and measure
Points in the space �R

m = XR
m ×O(n) XR

m [resp. �C
m = XC

m ×U(n) XC
m] represent the

relative position of two m-dimensional subspaces in the real [resp. complex] Grassmann
manifold modulo the action of O(n) [resp. U(n)]. They are given in terms of m
critical angles 0��1 � · · · ��m ��/2 which are conveniently rewritten [12, §5] using
ui = sin2(�i ) to give 3

�R
m � �C

m � �m := {u = (u1, . . . , um)|0�u1 � · · · �um �1}. (2.1)

The projection of the normalized Haar measure from K to the orbit space �m is given
by special values of the parameters in the Selberg measure [26,1] which is given by

dSm(u; �, �, �) = s
�,�,�
m

m∏
i=1

u
�/2−1
i (1− ui)

�/2−1
∏
i<j

|ui − uj |�du, (2.2)

2 � � �⇐⇒ |�| = |�| and
∑j

i=1 �i �
∑j

i=1 �i ∀j ∈ N.
3 We choose the co-ordinates sin2(�i ) rather than cos2(�i ), see §2.2.1.
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where

s
�,�,�
m =

m∏
j=1

�(�/2+ �/2+ (m+ j − 2)�/2)�(�/2)

�(�/2+ (j − 1)�/2)�(�/2+ (j − 1)�/2)�(j�/2)
. (2.3)

That this is a probability measure on �m is due to Selberg [26]. We are interested in
the following specializations:

dhR(u) = dSm(u; n− 2m+ 1, 1, 1),

dhC(u) = dSm(u; 2(n− 2m+ 1), 2, 2).

2.1.2. Idempotents
Define an inner product on the algebra of symmetric polynomials Am by

〈f, g〉�,�,� =
∫
�m

f (u)g(u) dSm(u; �, �, �), f, g ∈ Am. (2.4)

Let {M�}�∈�m
be the monomial basis of Am

M�(x) =
∑
	

x
	1
1 · · · x	m

m , (2.5)

where the summation is over all distinct permutations 	 of �. The generalized Jacobi
polynomials {E�(x; �, �, �)}�∈�m

are defined by the following conditions [12,31]

(1) E� = d�M� + lower terms, d� 
= 0,
(2) 〈E�,M�〉�,�,� = 0 ∀� ≺ �,
(3) Normalization: ‖E�‖2 = E�(0; �, �, �).

Our normalization, which is different from the one in [12,31], is chosen so that the
idempotents in the Hecke algebras are given by the generalized Jacobi polynomials for
the same special values as above:

eR
� (u) = E�(u; n− 2m+ 1, 1, 1),

eC
� (u) = E�(u; 2(n− 2m+ 1), 2, 2).

The generalized Jacobi polynomials are also eigenfunctions with distinct eigenvalues of
a second-order differential operator which specializes to the Laplace–Beltrami operator
on the real/complex Grassmann manifolds after the parameters have been specialized.
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2.2. Non-Archimedean theory

Let O be the ring of integers of a non-Archimedean local field K. Let ℘ = (�) be
the maximal ideal and pr the cardinality of the residue field O/℘. By the principal
divisors theorem, any finite O-module is of the form ⊕j

i=1O/℘�i for a partition � =
(�1, . . . , �j ), which will be referred to as the type of the module. As an example, �m

above parameterizes all types of finite O-modules with rank bounded by m. Note that
in the partial order defined by the inclusion of Young diagrams, ��� if and only if a
module of type � can be embedded in a module of type �. In such case we shall use
the notation

(�

�

)
= # of submodules of type � contained in a module of type �. (2.6)

Elements in �m with height bounded by k are denoted by �k
m = {� ∈ �m | 0���km} =

{isomorphism types of submodules of (O/℘k)m}.
The non-Archimedean theory is completely determined by finite quotients. More

precisely, let Ok = O/℘k and let Ik stand for Ker{G(O)→ G(Ok)}. Each irreducible
representation of the (pro-finite) group G(O) factors through the groups G(Ok), except
for a finite set of k ∈ N whose cardinality is the level of the representation. In particular,
the Grassmann representation can be filtered as follows:

(0) ⊂ L2(XK
m)I1 ⊂ · · · ⊂ L2(XK

m)Ik ⊂ · · · ⊂ L2(XK
m) (�)

and each of its irreducible constituents is contained in some finite term. The kth term
in this filtration is in fact a representation of G(Ok), and the direct limit of this
sequence is precisely the smooth part of the Grassmann representation. The finite space
Ik\XK

m can be canonically identified with Xkm = Gr(m, n, Ok), the Grassmannian of
free submodules of (Ok)

n of rank m. Thus, we may identify the representation space
L2(XK

m)Ik with Fkm = F(Xkm), the space of C-valued functions on Xkm .
Let Hkm = EndG(Ok)(Fkm) be the Hecke algebra associated with the representation

Fkm . It is isomorphic to the convolution algebra F(Xkm ×G(Ok) Xkm) by interpreting
elements of the latter as G(Ok)-invariant summation kernels (see [5, §2.2] for details).
The G(Ok)-orbit of an element (y, z) ∈ Xkm × Xkm is determined by the type of the
intersection y∩z, giving rise to the identification �k

m � Xkm×G(Ok) Xkm . The following
diagram summarizes the objects involved and the maps between them.

G(O) XK
m ×XK

m → XK
m ×G(O) XK

m dhK HK
m

↓ ↓ ↓ ↓ ↑
G(Ok) Xkm ×Xkm → �k

m dhk Hkm

↓ ↓ ↓ ↓ ↑
G(Ok−1) X(k−1)m ×X(k−1)m → �k−1

m dhk−1 H(k−1)m
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Here dhK and dhk stand for the projection of the Haar measure from G(O) to
XK

m ×G(O) XK
m and �k

m, respectively. The map from �k
m to �k−1

m is easily described

using the transposed Young diagrams, and is given by �′ = (�′1, . . . , �′k) �→ �̄
′ =

(�′1, . . . , �′k−1). We have

G(O) � lim← G(Ok), HK
m � lim→ Hkm,

XK
m ×G(O) XK

m � �̂m := lim← �k
m, dhK = lim→ dhk.

2.2.1. Space and measure
Points in the space �K

m = XK
m ×G(O) XK

m correspond to the relative position of two
m-dimensional spaces modulo the diagonal G(O)-action. By the above discussion it
may be identified with �̂m = lim← �k

m, namely with ‘partitions’ (�i )
m
i=1 where the value

∞ is allowed [5, §2.3.1]. By analogy with the Archimedean space (2.1) it is convenient
to rewrite it as

�K
m = {p−� = (p−�1 , . . . , p−�m)|� ∈ �̂m} ⊂ �R,C

m . (2.7)

Note that this embedding is topological, and has the advantage that the origin 0 =
(0, . . . , 0) is the common representative of the orbit of the trivial relative position for
all local fields, namely, 0 = [(x, x)] ∈ XF

m ×KF XF
m. This is also the reason for the

choice of the co-ordinates ui = sin2(�i ) rather than ui = cos2(�i ) for the Archimedean
spaces.

The following proposition computes the measures dhk and dhK. Note that the mea-

sure dhK vanishes outside the set �̇
K
m = {p−�|� ∈ �m} ⊂ �K

m .
Notation: Let [i]q = 1 − qi for i ∈ N, [i]q ! = [i]q [i − 1]q · · · [1]q and

[
i
i′
]
q
=

[i]q !
[i′]q ![i−i′]q ! . The index q is omitted whenever q = p−r = |O/℘|−1.

Proposition 3.

(1) dh1(�) =
[

m
�′1

][
n−m

m−�′1

]
[

n
m

] p−r�′1(n−2m+�′1) (k = 1)

dhk(�)

dhk−1(�̄)
=

[
�′k−1

�′k

] [n− 2m+ �′k−1]!
[n− 2m+ �′k]!

p−r�′k(n−2m+�′k) (k > 1)

(2) dhK(p−�) =
[

m
m−�′1,�′1−�′2,...

] [n−m]!
[m−�′1]![n−2m]![

n
m

] p−r
∑

(�′i )2−r(n−2m)
∑

�′i .
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Proof. The proof of part (2) follows directly from part (1) using

dhK(p−�) =
∏
k �1

dhk(�)

dhk−1(�̄)
, (2.8)

where dh0 = 1.
To prove (1), start with k = 1. The measure dh1 appeared in connection with the

q-Johnson association scheme [6], but is included here for completeness. Fix spaces
z1 ⊂ y1 of dimensions �′1 �m in (O/℘)n. Then

n1 = |{y| dim y = m, y ∩ y1 = z1}| =
[ n−m

m− �′1

]
pr

pr(m−�′1)2
,

n2 = # of choices for z1 =
( 1m

1�′1

)
=

[ m

�′1

]
pr

,

n3 = # of m-dimensional subspaces in (O/℘)n =
[ n

m

]
pr

and dh1(�) = n1n2/n3, which together with the relation
[

i
i′
]
q
= [

i
i′
]

1/q
qi′(i−i′), gives

the desired formula.
For k > 1, fix two Ok-modules f ⊂ F of types 
 = km �kn = �. Let F̄ = F/℘k−1F

where z �→ z̄ is the quotient map. For any module y, let t(y) denote its isomorphism
type. Then for any ��km:

dhk

(
�
)

dhk−1
(
�̄
) =

(�



)−1

( �̄

̄

)−1

∣∣{z | t(z ∩ f ) = �, t(z) = 

}∣∣∣∣{z̄ | t(z̄ ∩ f̄ ) = �̄, t(z̄) = 
̄
}∣∣ (Haar → counting measure)

=
( �̄


̄

)
(�




) ·
(


�

)
( 
̄

�̄

) ·
∣∣{z | z ∩ f = y0, t(z) = 


}∣∣∣∣{z̄ | z̄ ∩ f̄ = ȳ0, t(z̄) = 
̄
}∣∣ (y0 fixed of type �)

=
(

p−rm(n−m)

)([
�′k−1

�′k

]
pr�′k(m−�′k)

)( [n− 2m+ �′k−1]!
[n− 2m+ �′k]!

pr(m−�′k)(n−m)

)
.

The computation of the first two terms is straightforward (alternatively, use the explicit
formulas in [5, §4.1]), and for the third term we argue as follows. Let y0 ⊂ f be
a fixed submodule of type �. Let z̄ be a fixed submodule of F̄ of type 
̄ such that
f̄ ∩ z̄ = ȳ0. Then |{z|z∩f=y0, t(z)=
}|

|{z̄|z̄∩f̄=ȳ0, t(z̄)=
̄}| counts the number of submodules z ⊂ F of type
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 which fit into the following diagram:

z �−→ z̄

∪ ∪
y0 = z ∩ f �−→ ȳ0
∩ ∩
f �−→ f̄

That is, we need to count liftings of z̄ which intersect f precisely in y0. First, observe
that we may assume �′k = 0. This amounts to moding out a k�′k -type summand of y0.
A second observation is that counting different liftings of z̄ is equivalent to deforming
a fixed basis of a chosen lifting. Namely, let z be a lifting of z̄ and let Bz be a basis for
z. Complete this basis to a basis BF of F. If z′ is another lifting of z̄, then it has a basis
Bz′ which is a deformation of Bz with elements from ℘k−1BF . There are in fact many
such bases, however, if we deform only with elements from ℘k−1(BF \Bz) we get that
z′ = z′′ ⇐⇒ Bz′ = Bz′′ . Putting the last two observations together, we now fix z which
fits into the diagram above together with a basis Bz, and count proper deformations
which also fit the diagram. Let Bz =∐k

i=0 Bi
z and Bf =∐k

i=0 Bi
f be bases of z and f

respectively such that
∐

i �k−iBi
z =

∐
i �k−iBi

f is a basis for y0. The assumption �′k = 0

implies that Bk
f = Bk

z = ∅. Elements of Bz \ Bk−1
z can be deformed arbitrarily, and

there are |℘k−1(BF \Bz)| · |Bz \Bk−1
z | = pr(n−m)(m−�′k−1) such deformations. However,

when deforming the jth basis element of Bk−1
z , elements from ℘k−1(Bf \Bk−1

f ) together
with the span of the previously chosen j − 1 elements must be avoided in order not to
enlarge the intersection y0. Thus, the number of possible deformations of this element
is (pr(n−m)−pr(m−�′k−1+j−1)). Multiplying all contributions gives the desired result for
the third term

(pr(n−m) − pr(m−�′k−1)) · · · (pr(n−m) − pr(m−1)) · pr(n−m)(m−�′k−1)

and completes the proof of the proposition. �

2.2.2. Idempotents
We have the following inner product on HK

m :

〈f, g〉K =
∫
�K

m

f ḡdhK, ∀f, g ∈ HK
m. (2.9)

The idempotents in the algebra HK
m , considered as functions on �K

m , are orthogonal

with respect to the measure dhK. Since �̇
K
m = p−�m is an open dense subset of

�K
m = p−�̂m (see [5, §2.3]), and carries the full measure of the space by Proposition

3, it suffices to know the restrictions of functions to �̇
K
m . The explicit computation of
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the minimal idempotents in HK
m has been carried out in [5, §4.2]. The algebra HK

m is
equipped with the following natural bases:

• {gK
� }�∈�m

—geometric basis (delta functions supported on points in �̇
K
m ).

• {cK
� }�∈�m

—cellular basis.

• {eK
� }�∈�m

—algebraic basis (minimal idempotents).

The cellular basis is an intermediate basis which plays an important role in the non-
Archimedean theory and also for the interpolation. It is lower triangular with respect
to the geometric basis, defined explicitly by

cK
� =

∑
���

(�

�

)
gK

� . (2.10)

On the other hand, it is upper triangular with respect to the algebraic basis; The
subspaces

J K
� = SpanC{cK

� |���}, J K
�− = SpanC{cK

� |� < �}

are in fact ideals, and {J K
� /J K

�−}�∈�m
exhaust the irreducible HK

m -modules (hence the

term cellular basis). As eK
� is by definition the idempotent which corresponds to the

representation J K
� /J K

�− we have

〈eK
� ,cK

� 〉K = 0, ∀���. (2.11)

2.3. Quantum Grassmannians and some symmetric functions

In this section, we describe the q-objects which interpolate between the objects
related to the local fields. For more details, the reader is referred to [14,2] for the
measure theoretic considerations (the q-Selberg measure), to [28,29] for the spherical
functions analysis (multivariable little q-Jacobi polynomials), to [23,22,18,19] for the
generalized binomial coefficients and the shifted Macdonald polynomials and to [7]
for the description of quantum Grassmannians. Throughout this section the parameters
q, t, a and b are used, where the first two are the standard Macdonald parameters. In
some parts restrictions are set on their values.

2.3.1. The q-Selberg measure
The q-Selberg measure is a multivariable generalization of the q-beta measure [3].

Let q, t, a, b ∈ (0, 1) and let � = (m− 1, m− 2, . . . , 0). Let

�q
m = {q�t� = (q�1 tm−1, q�2 tm−2, . . . , q�m)|� ∈ �m} ⊂ �R,C

m (2.12)
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and denote

(x)∞ = (x; q)∞ =
∞∏
i=0

(1− qix), (2.13)

(x1, . . . , xl)∞ =
l∏

i=1

(xi)∞. (2.14)

The q-Selberg measure is given by

dSq
m(x; a, b, t)

=
m∏

j=1

(atm−j , btj−1, tj , qxj )∞
(abtm+j−2, t, q, bxj )∞

a�j t2j−2
∏
j<i

(qxj /txi)∞
(txj /xi)∞

(
1− xj

xi

)
(2.15)

for x = q�t� ∈ �q
m. Askey conjectured [3, §2] that dSq

m(x; a, b, t) is a probability
measure supported on �q

m for t = q�, � ∈ N. This was proved independently by
Habsieger [9] and Kadell [13], and was further generalized by Aomoto [2, Proposition
2] for any � ∈ R>0. Our notation follows [2] with the dictionary

a ↔ q�−(m−1)(2�−1), m↔ n,

b↔ q�+1, xj ↔ q−1tn−j+1,

t ↔ q�, t� ↔ q−1�F

and Proposition 2 in [2] translates into

∫
�q

m

dSq
m =

∑
q�t�∈�q

m

dSq
m(q�t�; a, b, t) = 1. (2.16)

Note that the order of the variables is reversed with respect to [2,28,14] since partitions
there are written in non-decreasing order while here they are written in non-increasing
order. Also, we avoid the use of the q-Jackson integral, which is illuminating when
one takes the Archimedean limit but is less adapted for taking the non-Archimedean
limit.

2.3.2. Multivariable little q-Jacobi polynomials
Define an inner product on the algebra of symmetric polynomials Am by

〈f, g〉q,a,b,t =
∫
�q

m

f (�)g(�)dSq
m(�; a, b, t), f, g ∈ Am.
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Definition 4 (Stokman, [28]). The multivariable little q-Jacobi polynomials
{Eq

�(x; a, b, t)}�∈�m
are the unique polynomials defined by

(1) Eq

� = d�M� + lower terms, d� 
= 0,
(2) 〈E�,M�〉q,a,b,t = 0, ∀� ≺ �,
(3) Normalization: 4 ‖Eq

�‖2 = Eq

�(0; a, b, t).

The multivariable little q-Jacobi polynomials have interpretation as zonal spherical
functions in the representation of Uq(n) which arises from its action on Uq(n)/Uq(m)×
Uq(n − m). As we focus only on the zonal spherical functions, the reader is referred
to [7] for a detailed discussion on the quantum Grassmannian.

2.3.3. The basis {Cq

�}
In the absence of an explicit formula for the multivariable little q-Jacobi polynomials,

a key role in the interpolation between the idempotents in the Hecke algebras is played
by a q-version of the non-Archimedean cellular basis (2.10). In short, it consists of a
symmetrized and normalized version of the shifted Macdonald polynomials. We review
their definition and some of their properties. The only parameters to be used here are
(q, t). Let

v� = v�(q, t) =
∏

(i,j)∈�
(1− q�i−j t�

′
j−i+1),

v′� = v′�(q, t) =
∏

(i,j)∈�
(1− q�i−j+1t�

′
j−i ).

The shifted Macdonald polynomials, also known as interpolation Macdonald polynomi-
als, were defined in [23,15,25]. They were further studied in [22], in which an integral
representation is given and a binomial formula. They are defined as follows [22, §1].

Definition 5. The shifted Macdonald polynomials {P �
� (x; q, t)}�∈�m

are polynomials in
m variables defined by the following conditions:

(1) P �
� has degree |�|,

(2) P �
� is symmetric in the variables xit

−i ,
(3) P �

� (q�; q, t) = 0 unless ���,

(4) P �
� (q�; q, t) = (−1)|�|t−2n(�)qn(�′)v′�.

The values of these polynomials on points q� with ��� are connected to two-
parameter generalized binomial coefficients, defined in [18, §4; 22, §1]

4 Note the different normalization comparing to [28].
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Definition 6. The generalized binomial coefficients
(�

�

)
q,t

are defined by the identity

(v′�)
−1P�(x; q, t)

m∏
i=1

(xi; q)−1∞ =
∑
�

(�

�

)
q,t

tn(�)−n(�)(v′�)−1P�(x; q, t)

where the P�’s are the Macdonald polynomials.

The connection between the generalized binomial coefficients and the shifted Mac-
donald polynomials is given by

(�

�

)
q,t
= P �

� (q�)

P �
� (q�)

, [19, §7; 22, §1] (2.17)

The q-analogue of the non-Archimedean cellular basis which was described in §2.2.2,
is the following symmetrized and normalized version of the shifted Macdonald poly-
nomials

Definition 7. The basis {Cq

�(x; t)}�∈�m
of Am is defined by

Cq

�(x1, . . . , xm; t) =
P �

� (x1t
1−m, x2t

2−m, . . . , xm; q, t)

P �
� (q�; q, t)

, � ∈ �m. (2.18)

3. Interpolation

We are now in a position to state our results concerning the interpolation. Most of
them are multidimensional generalizations of Haran’s work [10] regarding interpolation
between projective spaces (Grassmannians of lines) over local fields. By interpolation,
we mean that the q-objects described in §2.3 have limits which are the local objects
described in §2.1 and §2.2. The functions or measures of which we take limits are of
m variables and might carry one, two or three parameters, in addition to q.

3.1. Definition of the limits

Two kinds of limits are considered; For f q = f q(x; a, b, t) ∈ C[x] define the
Archimedean limit by

[
lim
Arch

f q
]
(u; �, �, �) = lim

q→1
f q(u; q�/2, q�/2, q�/2), u ∈ �R,C

m (3.1)
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and, the Non-Archimedean limit by

[
lim

NonArch
f q

]
(p−�; �, �, �) = lim

q→0
f q(q�p−��;p−�, p−�, p−�), p−� ∈ �K

m. (3.2)

In both limits, the parameter q disappears and the parameters a, b, t are replaced by
�, �, �. In practice, the non-Archimedean limit amounts to first substituting (a, b, t) =
(p−�, p−�, p−�), and then substituting q = 0. To get interpretation of these functions
in the Hecke algebras HF

m, set

(�, �, �) = r(n− 2m+ 1, 1, 1), (3.3)

where for non-Archimedean places r = [O/℘ : Fp], the degree of the residue field
over its prime field, and since this degree is the same as [K : Qp] for non-ramified
extensions, we set r = 1 for a real place and r = 2 for a complex place.

3.2. Interlude for setting the strategy

We shall follow the following plan. First, we observe that the Archimedean and
non-Archimedean weak limits of the distribution

f �→
∫
�q

m

fdSq
m,

are the distributions

f �→
∫
�F

m

fdhF,

when substituting the appropriate parameters (3.3). Second, we observe that the flag
which is used to define the zonal spherical functions in the quantum Grassmannian
converges to the flag which is used to define the idempotents {eF

� }. We then con-
clude that the zonal spherical functions in the quantum Grassmannian converge to the
idempotents.

3.3. Limits of the measure

We now prove (the non-Archimedean part of)

Theorem 8. For any local field F the measure on the space XF
m ×KF XF

m is a limit of
the q-Selberg measure.

Proof. For the Archimedean limit see [28]; As q → 1 the space �q
m approximates the

space �m, and the distribution f �→ ∫
�q

m
fdSq

m weakly converges to the distribution
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f �→ ∫
�m

fdSm. In fact, the possible existence of the Archimedean limit was the main
motivation for introducing the q-Selberg measure.

For the non-Archimedean limit, we show that the function dhK is a limit of the
function dSq

m. Substituting a typical element �� = q�t� in the q-Selberg measure gives

dSq
m(q�t�; a, b, t) = f1 · f2 · f3 , � ∈ �m,

where

f1 =
m∏

j=1

(atm−j , btj−1, tj )∞
(abtm+j−2, t, q)∞

(normalization constant),

f2 =
m∏

j=1

(q�j+1tm−j )∞
(bq�j tm−j )∞

a�j t2�j (j−1) (local factors),

f3 =
∏
j<i

(q�j−�i+1t i−j−1)∞
(q�j−�i t i−j+1)∞

(1− q�j−�i t i−j ) (mixed factors).

Taking the non-Archimedean limit of these expressions gives

[
lim

NonArch
f1

]
(p−�; �, �, �) =

m∏
j=1

(1− p−�−(m−j)�)(1− p−�−(j−1)�)(1− p−j�)

(1− p−�−�−(m+j−2)�)(1− p−�)
,

[
lim

NonArch
f2

]
(p−�; �, �, �) =

m∏
j=1

p−�j [�+2(j−1)�] ∏
{j :�j=0}

(1− p−�−(m−j)�)−1,

[
lim

NonArch
f3

]
(p−�; �, �, �) =

∏
j<i

�i=�j

1− p−(i−j)�

1− p−(i−j+1)� ,

so that the product of these terms is [limNonArch dS
q
m](p−�; �, �, �). To get the non-

Archimedean measure for the Grassmannian we specialize (�, �, �) = r(n−2m+1, 1, 1)

and get

[
lim

NonArch
f1

]
(p−�; r(n− 2m+ 1), r, r) = [m]![n−m]!

[1]m[
n
m

][n− 2m]! ,[
lim

NonArch
f2

]
(p−�; r(n− 2m+ 1), r, r) = 1

[m− �′1]!
p
−r

∑m
j=1 �j (n−2m+2j−1)

,

[
lim

NonArch
f3

]
(p−�; r(n− 2m+ 1), r, r) = [1]m∏k

i=0[�′i − �′i+1]!
,
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which will agree with the second part of Proposition 3 once we show that the exponents
of p are the same, that is

−
m∑

j=1

�j (n− 2m+ 2j − 1) = −
∑

(�′i )2 − (n− 2m)
∑

�′i .

However, since
∑

�′j =
∑

�i , the last equality reduces to

m∑
j=1

�j (2j − 1) =
∑

(�′i )2

and this equality follows from the fact that both sides evaluate the cardinality of
EndO(⊕O/℘�i ). Thus, we conclude that

dhK(p−�) =
[

lim
NonArch

dSq
m

] (
p−�; r(n− 2m+ 1), r, r

)
. �

3.4. Limits of functions

In [17, §2], Koornwinder has given an alternative proof for Haran’s non-Archimedean
limit of little q-Jacobi polynomials which involves the one variable shifted Macdonald
polynomials. This section consists of a generalization of this proof to the multidimen-
sional case.

Proposition 9.
[

lim
NonArch

Cq

�

]
(p−�;p−r ) = cK

� (p−�).

Proof. Using 2.17, Definition 7 and the definition of the non-Archimedean limit, we
observe that

[
lim

NonArch
Cq

�

]
(p−�;p−r ) = Cq

�(q�p−r�;p−r )
∣∣
q=0 =

(�

�

)
0,p−r

. (3.4)

Hence, recalling 2.10, we should show that
(�

�

)
0,p−r =

(�
�

) = cK
� (p−�). Indeed

(�

�

)
q,t
= t−n(�)+n(�) J�/�(1, t, t2, . . . ; q, t) [18, §15] (3.5)

where J�/� are symmetric functions defined in terms of the integral Macdonald poly-
nomials J
 = v
P
 by

J�/� =
v′�
v′�

∑



(v′
)−1f
�

,�J
 [18, §15; 21, VI(7.5)] (3.6)
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with f
�

,� = f

�

,�(q, t) defined by

P�(x; q, t)P
(x; q, t) =
∑
�

f
�

,�(q, t)P�(x; q, t) [21, VI (7.1’)] (3.7)

We now substitute (3.6) into (3.5) and specialize to the case q = 0. As v′�(0, t) ≡ 1
we get

(�

�

)
0,t
= t−n(�)+n(�)

∑



f
�

,�(0, t)J
(1, t, t2, . . . ; 0, t), (3.8)

however,

J
(1, t, t2, . . . ; q, t) = tn(
) [21, p. 366(9)]

f
�

,�(0, t) = tn(�)−n(�)−n(
)g

�

,�(t

−1) [21, p. 217(3.6) and p. 343(7.2)(ii)]

where g
�

,� are the Hall polynomials [21, Chapter II]. Thus

(�

�

)
0,t
=

∑



g
�

,�(t

−1) (3.9)

Since g
�

,�(p

r) is by definition the number of O-submodules of type � and co-type 

in an O-module of type �, summing over all the co-types 
, gives the total number of
submodules of type �, and we have

[
lim

NonArch
Cq

�

]
(p−�;p−r ) =

(�

�

)
0,p−r

=
(�

�

)
= cK

� (p−�). �

With this in hand we can prove (the non-Archimedean part of)

Theorem 10. For any local field F the idempotents in the Hecke algebra associated
with the Grassmann representation are limits of multivariable little q-Jacobi polynomi-
als.

Proof. The partial orderings � and � can be completed simultaneously to a total or-
dering, e.g. the lexicographical ordering. Let M = Flag{M�|� ∈ �m} be the flag defined
by the monomial basis of Am with respect to such total ordering. The multivariable
little q-Jacobi are obtained by applying the Gram-Schmidt procedure to the flag M,
with respect to the inner product 〈·, ·〉q,a,b,t (Definition 4).

The Archimedean limit, E� = limArch E
q

� , follows as this inner product deforms con-
tinuously to the inner product 〈·, ·〉�,�,�, which is used to define the generalized multi-
variable polynomials (§2.1), see [29] for details.
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As for the non-Archimedean limit, we observe that the flag M is also defined by
the basis {Cq

�}�∈�m
; Indeed,

Cq

� = P �
� (q�)−1P� + lower terms w.r.t. � (by the binomial formula [22, (1.12)])

P� = M� + lower terms w.r.t. � (by definition [21, VI(4.7)])

Thus, using the total ordering which refines both partial orderings, {Cq

�} and {M�} define

the same flag M. The idempotents basis in the non-Archimedean Hecke algebra HK
m

are obtained by applying the Gram–Schmidt procedure to the cellular basis {cK
� }. As

the q-Selberg measure deforms continuously to the non-Archimedean measure dhK

(by Theorem 8), and the basis {Cq

�} converges to the cellular basis (by Proposition
9), the multivariable little q-Jacobi polynomials converge to the idempotents up to
constants. Our normalization in Definition 4 is designed to eliminate these constants,
as for idempotents one has ‖eK

� ‖2 = eK
� (0). �

4. Example

This section is devoted to the one-dimensional case which was treated in [10] (see
also [17]), as it admits a completely explicit description. For m = 1, the representation
of KF arises from its action on the projective space XF

1 = Pn−1
F . The representation

L2(Pn−1
F ) decomposes into irreducible representations {UF

� }�∈�1 where �1 = N0. The

space Pn−1
F ×KF Pn−1

F , which describes the KF-relative position of two lines, is given
by [0, 1] (normalized angles) for an Archimedean place and by {p−�}�∈N0∪{∞} ⊆ [0, 1]
for a non-Archimedean place. The triplets (space, measure, idempotents) are given as
follows.

Archimedean. For u ∈ [0, 1] and � ∈ N0 let

dS(u; �, �) = �( �
2+ �

2 )

�( �
2 )�(

�
2 )

u
�
2−1(1− u)

�
2−1du

E�(u; �, �) = ( �
2 )�(

�
2+ �

2 )�

(
�
2 )� �!

2�−1+ �
2+ �

2
�−1+ �

2+ �
2

2F1
[−�,�+ �

2+ �
2−1

� ; u]

where (y)j = y(y + 1) · · · (y + j − 1) is the shifted factorial and 2F1 is the hy-
pergeometric function. 5 dS(u; �, �) is the normalized beta measure on the unit
interval, and {E�(u; �, �)}�∈N0 are the normalized Jacobi polynomials. For the spe-
cial values (�, �) = (n− 1, 1) and (�, �) = 2(n− 1, 1) the triplet ([0, 1],dS(u; �, �),
{E�(u; �, �)}�∈N0) specializes to the real and complex triplets ([0, 1],dhR, {eR

� }�∈N0)

and ([0, 1],dhC, {eC
� }�∈N0). The dimensions of the irreducible representations

5
2F1

[ �1, �2

�3
; u

]
=∑∞

j=0
(�1)j (�2)j

(�3)j j ! uj .



U. Onn / Advances in Mathematics 204 (2006) 152–175 171

are given by

dim UR
� = E�(0; n− 1, 1) = 2�+ n

2 − 1

�+ n
2 − 1

( n−1
2 )�(

n
2 )�

( 1
2 )��!

,

dim UC
� = E�(0; 2n− 2, 2) = 2�+ n− 1

n− 1

(n+ �− 2

�

)2
.

Non-Archimedean. The case m = 1 is greatly simplified by the fact that the terms
in the filtration §2.2 (�) are in bijection with the irreducibles, and each step in the
filtration contains exactly one new irreducible representation. It follows that � and k
are identified and

dim UK
� = |Pn−1

O/℘� | − |Pn−1
O/℘�−1 | =

⎧⎨
⎩

(1−p−r(n−1))

(1−p−r )
pr(n−1), � = 1,

(1−p−rn)(1−p−r(n−1))

(1−p−r )
pr(n−1)�, ��2

and is equal to 1 for � = 0, where |Pn−1
O/℘� | = 1−p−rn

1−p−r pr(n−1)� for ��1, and

|Pn−1
O/℘0 | = 1. The measure is easily seen to be

dhK(p−�) =

⎧⎪⎨
⎪⎩
|Pn−1

O/℘
|−1

|Pn−1
O/℘
| =

1−p−r(n−1)

1−p−rn , � = 0,

1
|Pn−1

O/℘
|
|An

℘/℘� |−1

|An

℘/℘� | =
(1−p−r )(1−p−r(n−1))
(1−p−rn)p−r(n−1)� , ��1,

where An stands for the affine n-space. For the idempotents, we use again the fact
that the filtration admits only one new irreducible in each step, but this time on the
level of the Hecke algebras. The Hecke algebra HK

1 is the direct limit the algebras
{H�}�∈N0 (� = k1 of §2.2). Each of these algebras contains a unit element 1�, which
as a function on the orbits space is given by |Pn−1

O/℘� |1{p−�|���}. Thus on p−N0 we

have

eK
� =

{
10 = 1p−N0 , � = 0,

1� − 1�−1 = |Pn−1
O/℘� |1{p−�|���} − |Pn−1

O/℘�−1 |1{p−�|���−1}, ��1,

cK
� =

∑
���

gK
� = 1{p−�|���}

and the non-Archimedean triplet is (p−N0 ∪ {0},dhK, {eK
� }�∈N0).
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Quantum. For q ∈ (0, 1) and � ∈ N let

dSq(q�; a, b) = (a; q)∞
(ab; q)∞

(b; q)�

(q; q)�
a�,

Eq

�(x; a, b) = (1− abq2�−1)(abq−1; q)�(a; q)�

(1− abq−1)(q; q)�(b; q)�a
� 2
1

[q−�, q�−1ab

a
; q, qx

]
,

Cq

�(x) = (x; q−1)�

(q�; q−1)�
= (x − 1)(x − q) · · · (x − q�−1)

(q� − 1)(q� − q) · · · (q� − q�−1)
,

where (y; q)j = (1− y)(1− yq) · · · (1− yqj−1) is the q-shifted factorial and 2
1 is
the basic hypergeometric function. 6 dSq(q�; a, b) is the normalized q-beta measure
on the set {q�}∞�=0 and the associated orthogonal base consists of the normalized
little q-Jacobi polynomials [8,17], {Eq

�(x; a, b)}�∈N0 . Then the q-triplet is given by

(qN0 , dSq(q�; a, b), {Eq

�(x; a, b)}�∈N0).

Remarks.

• The parameter t does not appear in the one-dimensional case.
• The formula

Dq

�(a, b) = Eq

�(0; a, b) = (1− abq2�−1)(abq−1; q)�(a; q)�

(1− abq−1)(q; q)�(b; q)�a
�

interpolates between the dimensions of the irreducible representations UF
� .

• The non-Archimedean limit for dSq , Dq

� and Cq

� is immediate. For more details
regarding this limit see [10;17, §2]. The Archimedean limit of the q-beta measure
and basic hypergeometric series is discussed in [3, §1; 8, pp. 1–28].

5. Related problems

5.1. The module of intertwining operators S(XF
m1
×KF XF

m2
)

For m1 �m2 �[n/2], one can consider in a similar manner the module of intertwining
operators between the representations S(XF

m2
) and S(XF

m1
). This results in a very similar

discussion, where the only difference occurs in the parameters �, � and �, while the
geometry remains as in the equal dimension case for m = m1. As an example see [17]
for the case m1 = 1.

6
2
1

[ a1, a2

a3
; u

]
=∑∞

j=0
(a1;q)j (a2;q)j
(a3;q)j (q;q)! uj .
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5.2. Dimensions of the irreducible representations

The q-dimension of the irreducible representation Uq

� in the quantum Grassmannian,
which independently on the normalization is given by

Dq

�(a, b, t) = Eq

�(0; a, b, t)2

‖Eq

�(x; a, b, t)‖2 (5.1)

interpolates between the dimensions of the irreducible representations which correspond
to � for all local fields.

5.3. Haran’s process

The case m = 1 was studied extensively by Haran in [10]. Haran also constructs
discrete random processes in order to obtain the bases for the Archimedean places, the
non-Archimedean places and the q-case. The bases are defined on the Martin boundary
of the processes. It would be interesting to find a generalization of these processes in
the case of Grassmannians.

5.4. Other algebraic groups

A natural venue for further study is to consider other maximal compact subgroups
KF of reductive algebraic groups and natural multiplicity free representations of them
V F. The finite analogue of such representations can be found in [27], in which such
representations of Chevalley groups over finite fields are studied. These can be con-
sidered as the level zero part of representations of the maximal compact subgroups.
Roughly, the picture is

V R, V C ←− q −→ V K

↑
V O/℘ = level zero part of V K.

For example, the particular case of GLn(O/℘), which admits the |O/℘|−1-Hahn poly-
nomials as idempotents, is just the first term in the filtration described in §2.2.
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