
Theoretical Computer Science 410 (2009) 4044–4066

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Reactive systems, (semi-)saturated semantics and coalgebras
on presheaves
Filippo Bonchi a,∗, Ugo Montanari b,1
a CWI, Science Park 123, XG Amsterdam, Netherlands
b Dipartimento di Informatica, Universita’ di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy

a r t i c l e i n f o

Keywords:
Behavioral equivalences
Reactive systems
Logic programming
Petri nets

a b s t r a c t

The semantics of process calculi has traditionally been specified by labelled transition
systems (ltss), but, with the development of name calculi, it turned out that reaction
rules (i.e., unlabelled transition rules) are often more natural. This leads to the question
of how behavioral equivalences (bisimilarity, trace equivalence, etc.) defined for lts can be
transferred to unlabelled transition systems. Recently, in order to answer this question,
several proposals have been made with the aim of automatically deriving an lts from
reaction rules in such a way that the resulting equivalences are congruences. Furthermore,
these equivalences should agree with the standard semantics, whenever one exists.
In this paper, we propose saturated semantics, based on aweaker notion of observation

and orthogonal to all the previous proposals, and we demonstrate the appropriateness of
our semantics by means of two examples: logic programming and open Petri nets. We also
show that saturated semantics can be efficiently characterized through the so called semi-
saturated games. Finally, we provide coalgebraic models relying on presheaves.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The operational semantics of process calculi is usually given in terms of transition systems labelled with actions, which,
when visible, represent both observations and interactions with the external world. The abstract semantics is given in
terms of behavioral equivalences, which depend on the action labels and on the amount of branching structure considered.
Behavioral equivalences are often congruences with respect to the operations of the language, and this property expresses
the compositionality of the abstract semantics.
A simpler approach, inspired by classical formalisms like λ-calculus, Petri nets, term and graph rewriting, and pioneered

by the Chemical AbstractMachine [5], defines operational semantics bymeans of structural axioms and reaction rules. Process
calculi representing complex systems – in particular those able to generate and communicate names – are often defined in
thisway, since structural axioms give a clear idea of the intended structure of the states, while reaction rules, which are often
non-conditional, give a direct account of the possible steps. Transitions caused by reaction rules, however, are not labelled,
since they represent evolutions of the systemwithout interactionswith the externalworld. Thus reduction semantics in itself
is neither abstract nor compositional. To enhance the expressiveness of reduction semantics, Leifer and Milner proposed,
in [33], a systematic method for deriving bisimulation congruences from reduction rules. The main idea is the following:
a process p can do a move with label c[−] and become p′ iff c[p] p′. This definition was inspired by the work of Sewell

∗ Corresponding author. Tel.: +31 20 592 9333; fax: +31 20 592 4199.
E-mail addresses: fibonchi@di.unipi.it (F. Bonchi), ugo@di.unipi.it (U. Montanari).

1 Tel.: +39 050 2212721; fax: +39 050 2212726.

0304-3975/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2009.06.010

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82309962?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:fibonchi@di.unipi.it
mailto:ugo@di.unipi.it
http://dx.doi.org/10.1016/j.tcs.2009.06.010

F. Bonchi, U. Montanari / Theoretical Computer Science 410 (2009) 4044–4066 4045

[51]. Also, the approach of observing contexts imposed on agents at each step was introduced in [43], yielding the notion of
dynamic bisimilarity.
Leifer and Milner also introduced the categorical notions of relative pushout (RPO) and idem relative pushout (IPO) in

order to specify a/the minimal context that allows the state to react with a given rule. This construction leads to labelled
transition systems (lts) that use only contexts generated by IPOs, and not all contexts, as labels, and thus are smaller than
in the latter case. Bisimilarity, trace equivalence and failure equivalence on this lts (called IPO semantics) are congruences
under rather restrictive conditions.
In this paper our aim is, as in the ordinary case, to derive a bisimilarity congruence from given reduction rules. However,

we introduce in the transition system all context-labelled transitions which make a state and a rule match. We call the
resulting equivalences saturated. Saturated equivalences are coarser than IPO ones and have nice properties, e.g., they are
always congruences, but the lts is infinite-branching inmore cases. Here we develop a semi-saturated technique that allows
one to compute saturated equivalenceswithout considering allmatching contexts. In fact, if we call Alice the player choosing
the move and Bob the player choosing a matching reply, we prove that if Alice chooses an IPO move and Bob replies with
any matching move, the resulting equivalence is the saturated one, even if the moves to be considered are usually much
less.
Moreover, we show that in some relevant cases saturated equivalences are exactlywhatwewant, while IPO equivalences

are too fine. In the paper we discuss two important cases: logic programming and open Petri nets.
We model logic programming in a way similar to [15]. It turns out that saturated trace congruence coincides with the

ordinary logic semantics of logic programming, while the IPO trace congruence yields a finer semantics, know in the logic
programming community as S-semantics [22]. Interestingly enough, a goal (i.e., a conjunction of atomic goals) and the head
of a clause must adapt in two different ways: both must be instantiated, but in addition the head must be (∧-)composed
with other formulas which stay idle in the reduction. We are able to obtain both adaptations at the same time within our
approach, without resorting to an infinite number of rules, as it is usually the case for the ordinary construction, since agents
are normally forced to be closed.
Open Petri nets [30,4] are an interactive extension of P/T nets. They can interact with each other by exchanging tokens

through open places, i.e., those places that are visible from the environment. We model open Petri nets as a special kind
of multiset rewriting systems, where multisets of tokens can be added only into open places. Again, while IPO bisimilarity
yields a finer semantics, the saturated bisimilarity coincides with the semantics previously proposed in [4].
In the last part of the paper, we introduce coalgebraic models for IPO and saturated bisimilarity. Universal Coalgebra

[47] provides a categorical framework where abstract semantics of interactive systems are described as morphisms to their
minimal representatives. More precisely, given an endofunctor B on a category C, a coalgebra is an arrow α : X → B(X) of C
and a coalgebra morphism from α to β is an arrow h : X → X ′ of Cwith h ;β = α ; B(h). Under certain conditions on C and
B, a category of coalgebras admits a final object. Ordinary labeled transition systems (with finite or countable branching)
can be represented as coalgebras with final object for a suitable functor on Set. Then, in order to prove that two states are
equivalent, we have to check if they are identified by the final morphism, and the image of the given coalgebra through the
latter is the minimal representative.
However, this representation of interactive systems forgets about the algebraic structure, which is usually very relevant

in practical cases, since compositionality is the key tomaster complexity. In particular, the property that bisimilarity respects
the operations (i.e., that it is a congruence, which is essential for making abstract semantics compositional) is not reflected
in the structure of the model.
In [54], bialgebras are introduced as amodelwith both algebraic and coalgebraic structure,while a related approach based

on structured coalgebras is presented in [19]. In this paper we will use coalgebras on a category of presheaves SetC, where
objects of C represent interfaces of systems and arrows represent environment, i.e., (unary) contexts in which systems can be
embedded. Coalgebras on presheaves have been widely used in order to model nominal process calculi [53,24,23] but with
a slightly different flavor. In these works, the index category only models the names of systems: usually, objects are sets of
names and arrows are (injective) names substitutions. Here instead, the index category C is a Lawvere-like category where
arrows are algebraic contexts. By using such kind of categories, standard results of the theory of coalgebras guarantee the
compositionality of bisimilarity.
This paper is an extended version of [11,12]. In the former, we have introduced saturated semantics and the semi-

saturated game by using, as examples, logic programming and a fragment of open π-calculus [48] that is not presented
here, since it could be more conveniently modeled via an extended framework that we have introduced in [13]. In [12], we
have introduced coalgebraic models for IPO and saturated semantics by means of structured coalgebras. The coalgebraic
models based on presheaves that we will show in this paper are essentially the same as the structured coalgebraic ones of
[12], but they are presented in a new perspective that highlights the links between coalgebras on presheaves and reactive
systems. Most of the examples come from the Ph.D. thesis of the first author [6] and they have never been published.

2. The theory of reactive systems

In this section, we summarize the theory of reactive systems proposed in [33] to derive labelled transition systems (ltss)
and bisimulation congruences from a given reaction semantics. The theory is centered on the concepts of term, context and
reaction rules: contexts are arrows of a category, terms are arrows having as source 0 (a special object that denotes ‘‘no

4046 F. Bonchi, U. Montanari / Theoretical Computer Science 410 (2009) 4044–4066

holes’’), and reaction rules are pairs of terms. Hereafter, given a category C, |C| denotes the class of its objects, ||C|| the class
of its arrows and C[i, j] (with i, j ∈ |C|) the class of arrows having source i and target j.

Definition 1 (Reactive System). A reactive systemR consists of:

1. a category C,
2. a distinguished object 0 ∈ |C|,
3. a composition-reflecting subcategory D of reactive contexts,
4. a set of pairsR ⊆

⋃
i∈|C| C[0, i] × C[0, i] of reaction rules.

The reactive contexts are those in which a reaction can occur. By composition-reflecting we mean that d; d′ ∈ D implies
d, d′ ∈ D. Note that the rules have to be ground, i.e., left-hand and right-hand sides have to be terms without holes and,
moreover, with the same codomain.
From reaction rules, one generates the reaction relation by closing themunder all reactive contexts. Formally the reaction

relation is defined by taking p q if there is 〈l, r〉 ∈ R and d ∈ D such that p = l; d and q = r; d.

Definition 2 (Free Lawvere Theory and Free Term Category [32]). LetΣ be a signature. The free Lawvere theory forΣ , denoted
as Th[Σ], is a category with object natural numbers and morphisms c : m → n being n-tuples of m-holed terms.
Composition is substitution of terms, and identities idn : n → n are 〈−1,−2, . . . ,−n〉. An arrow t : m → n of Th[Σ]
is linear if each of the m holes appears exactly once in t . The free term category of Σ , denoted as CΣ , is the subcategory of
Th[Σ] having the same objects, but only linear arrows.

During the whole paper, we will think of the base category C as a Lawvere-like category (i.e., a category where arrows
represent terms and contexts of a signature). Thus we will often refer to an arrow c ∈ ||C|| as to a unary context c[−], and
to the composition of arrows c; d as to d[c[−]].

Example 1 (Term Rewriting). A term rewriting system consists of a signature Σ and a set of rules R of the form l → r ,
where l and r are terms ofΣ . The operational semantics is simply obtained by contextualizing and instantiating l and r . In
other words, p q if and only if there exist l→ r ∈ R such that there exist a context c[−] and an instantiation i, such that
p = c[l[i]] and q = c[r[i]].
In order to see a term rewriting system as a reactive system, we have to restrict our attention to ground term rewriting

systems, i.e., those where the rules are ground (namely, these cannot be further instantiated). Every ground term rewriting
system defines a reactive system where CΣ is the base category, the distinguished object is the natural number 0, all the
contexts are reactive (i.e., D = CΣ) and the set of rules isR.

Definition 3 (Quotiented Lawvere Theory and Quotiented Term Category). Let Σ be a signature and E be a congruence
relation over the arrows of Th[Σ]. The Lawvere theory quotiented by E is the category Th[Σ/E] having the same objects
as Th[Σ], but arrows [p] : m → n are equivalence classes of arrows p : m → n of Th[Σ]. It is easy to verify that the
composition operator is well defined and Th[Σ/E] is still a category. In the same way, we can define the term category
quotiented by E, denoted as CE

Σ .

Example 2 (Simple Process Calculus (SPC) [51,52]). Consider the following fragment of CCS for a set of channels nameN .

p, q = 0
∣∣ a ∣∣ ā ∣∣ p | q a ∈ N .

The signature Σ consists of a set of input and output constants parametrized over N , the null process 0, and the binary
operator of parallel composition |. Processes are considered up to structural congruence≡which is the smallest congruence
that ensures associativity, commutativity and identity (w.r.t. 0) of the parallel operator. The intuitive operational semantics
is that a process sending on a channel named a ∈ N and a process receiving on the same channel, can react and disappear.
In symbols ā | a 0.
The reactive system of simple process calculus is SPC = 〈C≡Σ , 0, C

≡
Σ ,R〉 where C≡Σ is the term category over Σ

quotiented by≡, the object 0 is the natural number, all contexts are reactive and the set of rulesR is {〈ā | a, 0〉 s.t. a ∈ N }.

The operational behavior of a reactive system is expressed as an unlabelled transition system. On the other hand, many
useful behavioral equivalences are only defined for ltss. In order to obtain an lts, we can plug a term p into some context
c[−] and observe if a reaction occurs. In this case, we have that p

c
−→. Categorically speaking, thismeans that p; cmatches l; d

for some rule 〈l, r〉 ∈ R and some reactive context d. This situation is formally depicted by diagram (i) in Fig. 1: a commuting
diagram like this is called a redex square. Formally, a redex square is four arrows p, c, l, d such that p; c = l; d, d ∈ D and,
for some r , 〈l, r〉 ∈ R.

Definition 4 (Saturated Transition System). The saturated transition system (satts for short) is the lts having as states arrows
with source 0 and transitions are defined as p

c
→SAT q iff c[p] q.

F. Bonchi, U. Montanari / Theoretical Computer Science 410 (2009) 4044–4066 4047

Fig. 1. Redex Square and RPO.

Fig. 2. (i) An open input Petri net; (ii) bb
y
→SAT bc; (iii) bb

xy
→SAT bcx; (iv) The ipots of a, b and cx.

Note that satts is often infinite-branching since all contexts that allow reactions may occur as labels. Another problem of
satts is that it has redundant transitions. For example, consider the term a of SPC. The observer can put this term into the

context a | − and observe a reaction. This corresponds to the transition a
a|−
→SAT 0|0. However we also have a

p|a|−
→SAT p | 0 | 0

as a transition, yet p does not contribute to the reaction. Hencewe need a notion of ‘‘minimal context that allows a reaction’’.
Leifer and Milner define idem pushouts (IPOs) to capture this notion.

Definition 5 (RPO). Let the diagrams in Fig. 1 be in some category C. Let (i) be a commuting diagram. Any tuple 〈i5, e, f , g〉
whichmakes (ii) commute is called a candidate for (i). A relative pushout (RPO) is the smallest such candidate. More formally,
it satisfies the universal property that, given any other candidate 〈i6, e′, f ′, g ′〉, there exists a unique mediating morphism
h : i5 → i6 such that (iii) and (iv) commute.

Definition 6 (IPO). A commuting square like diagram (i) of Fig. 1 is called idem pushout (IPO) if 〈i4, c, d, idi4〉 is its RPO.
Definition 7 (Redex RPOs). A reactive system has redex RPOs if every redex square has an RPO.
Definition 8 (IPO Transition System). The IPO transition system (ipots for short) is the lts having as states arrowswith source
0 and transitions are defined as p

c
→I r; d iff d ∈ D, 〈l, r〉 ∈ R and diagram (i) in Fig. 1 is an IPO.

In other words, if inserting p into the context c[−] matches l; d, and c[−] is the ‘‘smallest’’ such context (according to the
IPO condition), then p transforms to r; dwith label c[−], where r is the reduct of l.
Bisimilarity on ipots is referred to as IPO bisimilarity (denoted by∼I), and Leifer andMilner have shown that if the reactive

system has redex RPOs, then it is a congruence (i.e., it is preserved under all contexts).

Theorem 1 (From [33]). IfR has redex-RPOs, then∼I is a congruence.
It can be easily shown that bisimilarity over satts is always a congruence, whether or not the underlying category has redex
RPOs. In this paper, we will focus on this bisimilarity, which will be called saturated bisimilarity (denoted by∼S).

Proposition 1. In all reactive systems,∼S is a congruence.

Example 3 (Running Example: Open Input Petri Net). Given a set X , we write X⊕ for the free commutative monoid over X .
A multiset m ∈ X⊕ is a function from X to ω (the set of natural numbers) that associates a multiplicity to every element
of X . Given two multisets m1 and m2, m1 ⊕ m2 is defined as ∀x ∈ X , m1 ⊕ m2(x) = m1(x) + m2(x). We write ∅ and ε to
denote, respectively, the empty set and the empty multiset. In order to make the notation lighter, we will use aab to denote
the multiset {a, a, b}. Sometimes we will use anbm to denote the multisets containing n copies of a andm copies of b.
An open input Petri net [4] (open net, for short) is N = 〈S, T , pre, post, IP〉 where S is the set of places, IP ⊆ S is the set

of input places, T is the set of transitions (with S ∩ T = ∅), pre, post : T → S⊕ are functions mapping each transition to
its pre- and post-set2. Amarking m over a net N is a multiset of tokens over the places of N , i.e.,m ∈ S⊕. Amarked net is an
open net N together with a markingm.
Fig. 2(i) shows an open net where, as usual, circles represents places and rectangles transitions. Arrows from places to

transitions represent pre, while arrows from transitions to places represent post . Ingoing arrows without source denote
input places. Thus in Fig. 2(i) the input places are x and y.

2 Open input Petri nets are a subclass of Open nets [4]. Besides input places, open nets have also output places. We consider only input places in order to
make the example simpler.

4048 F. Bonchi, U. Montanari / Theoretical Computer Science 410 (2009) 4044–4066

The operational semantics of marked nets is expressed by the following rules, where we use •t and t• to denote,
respectively, pre(t) and post(t).

t ∈ T

N,• t ⊕ c
τ
−→ N, t• ⊕ c

i ∈ IP⊕

N,m
+i
−→ N,m⊕ i

The transitions generated by the leftmost rules are the standard transitions of P/T nets, while the rightmost rule allows
the environment to insert tokens into input places. The abstract semantics of open nets is defined in [4] as the standard
bisimilarity over such lts.
Given an open input Petri net N = 〈S, T , pre, post, IP〉, we can define the corresponding reactive system as N =

〈OPNN , 0,OPNN ,T〉, where OPNN is defined as follows:

- 0 and 1 are the only objects,
- arrows 0→ 0 and 0→ 1 are multisets on S, while arrows 1→ 1 are multisets on IP ,
- identities are the empty multisets and composition is the union of multiset.

The set of rules T is {〈•t, t•〉 : 0 → 0 | t ∈ T }. Intuitively, each transition of the net defines a reaction rule as a pair of
arrows with source and target 0. Instead, arrows from 0 to 1 model the states of the net (i.e., multisets over all the places),
while arrows from 1 to 1 model contexts (i.e., multisets over input places).
It is easy to see that (when restricting to OPNN [0, 1]) the reaction relation () for N coincides with the τ -transitions

defined by the ordinary operational semantics. For saturated transition instead, look at Fig. 2(ii). It describes the transition
bb

y
→SAT bc. The rule is the pair of arrows 〈by, c〉 : 0 → 0 (corresponding to the left-topmost transition of Fig. 2(i)). This

rule is contextualized with b : 0 → 1 (that is a token in a closed place), while the state bb : 0 → 1 can be contextualized
only with tokens in input places. Note that the state bb can use only the rule 〈by, c〉. Indeed all the other rules contain a, c, e
in the left hand side and tokens in those places cannot be added to bb : 0→ 1.

However, the saturated transition system for bb is infinite branching, since bb
xiyj+1
→SAT bcxiyj for all i, j ∈ ω. As an example,

look at the outer square of Fig. 2(iii). For this reason, instead of considering all possible contexts, we want to consider only
the minimal ones. By applying the definition of IPO to the category OPNN , we get that the ipots (restricted to OPNN [0, 1])
coincides with the one generated by the following rule.

t ∈ T m = (m ∩• t)⊕ c i ∈ IP⊕ •t = (m ∩• t)⊕ i

N,m
i
→I N, t• ⊕ c

Fig. 2(iv) shows the ipots of multisets a, b and cx. This labeled transition system is finite because it takes into account only
the minimal contexts. Now, reconsider the multiset bb. We have that bb

y
→I bc , but bb 6

xy
→I bcx. Indeed, in Fig. 2, diagram (i)

is an IPO, while diagram (ii) is not, since the multiset x is not really needed to perform the transition.
It is worth noting that OPNN has RPOs, while it does not have pushouts. For example there is no pushout for the arrows

a : 0→ 1 and by : 0→ 0.

3. Suitability of IPO and saturated semantics

After their introduction, several attempts have been made to encode several specification formalisms (Petri nets [38,
34,49], Mobile Ambients [9,10], CCS [39,8], λ-calculus [40,20], asynchronous π-calculus [29], fusion calculus [27], etc.) as
reactive systems, either hoping to recover the standard observational equivalences, whenever such a behavioral semantics
exists, or trying to distill a meaningful new semantics. Unfortunately, IPO semantics is often too fine-grained. As shown in
[10], IPO bisimilarity for Mobile Ambients is strictly contained in the one proposed in [35]. In [11], we showed that, for the
open π-calculus, IPO bisimilarity is strictly included into open bisimilarity. For the case of CCS, IPO bisimilarity is strictly
included in the ordinary bisimilarity for a bigraphical encoding [39],while the two coincidewhen encoding CCS into ordinary
graphs [8]. In [29], it is shown that IPO bisimilarity coincides with the ordinary semantics of a summation-free fragment of
the asynchronous π-calculus. However, we conjecture that extending the encoding to processes with summation, the two
semantics do not coincide anymore. Indeed, in our opinion, the axiom a?x.(a!x | p)+ τ .p ∼ τ .p is hard to capture with IPO
bisimilarity.
Also, for open nets, IPO bisimilarity is too strict.

Example 4 (∼I is Too Strict in Open Input Petri Nets). Consider the ipots of the multisets e and cx of the net N shown in
Fig. 2(iv). The former can interact both with the rule 〈e, f 〉 generating the transition e

ε
→I f and with the rule 〈ey, fy〉

generating the transition e
y
→I fy. The latter can interact only with the rule 〈cx, d〉 generating the transition cx

ε
→I d. Thus

e 6∼I cx, but they are equivalent according to the standard abstract semantics (Example 3). Intuitively, e and cx cannot be
distinguished by an external observer that can insert tokens into input places and observe if some reaction occurs.Moreover,
e ∼S cx. Indeed, when e proposes the sattsmove e

y
→SAT fy, cx can answer with cx

y
→SAT dy and fy ∼S dy since both cannot

move.

F. Bonchi, U. Montanari / Theoretical Computer Science 410 (2009) 4044–4066 4049

Now consider the multiset a and b. We have that a �IPO b but they are bisimilar according to the ordinary semantics, and
moreover a ∼S b. Indeed when a proposes a

xy
→SAT e, b can answer with b

xy
→SAT cx and, as shown above, e ∼S cx.

The above examples show that∼I is strictly finer than the standard semantics for nets. It is easy to prove that the latter
coincides with∼S (restricted to the homset OPNN [0, 1]).

In the above example, saturated semantics coincides with ordinary semantics. However, when considering full process
calculi equipped with recursion, saturated semantics are often too coarse. For example, the CCS processes ω = τ .Ω and
Θ = τ .Ω + a.Ω are saturated bisimilar [42], yet not strong bisimilar. This problem becomes potentially serious when
considering weak semantics. Intuitively, two systems are saturated bisimilar if they cannot be distinguished by an external
observer that, in anymoment of their execution, can insert them into some context and observe a reduction. However, since
in weak semantics, reductions cannot be observed, all systems are equivalent.
This argument suggests to us that, in general terms, saturated semantics should be equipped with some basic

observations on the states, in the style of barbs [42]. In [10], the first author together with Gadducci and Monreale, has
shown that for Mobile Ambients [16], IPO bisimilarity is still too strict, while saturated bisimilarity (properly extended with
barbs) coincideswith the bisimilarity defined in [45].Moreover, aweak variant of saturated bisimilaritywith barbs coincides
with the one defined in [35].
In Section 5, we will show that, in Logic Programming, saturated trace equivalence (extended with an observation φ)

coincides with the ordinary logic equivalence of Logic Programming.
In the next section, we will introduce semi-saturated semantics that allows us to ‘‘efficiently characterize’’ saturated

semantics. The idea is presented for the case of bisimilarity (using, as a running example, open nets), but it is very general,
and can be employed also for barbed bisimilarity (as shown in [16]).

4. Semi-saturated semantics

In this section, we introduce semi-saturated game: a general technique that allows one to efficiently characterize saturated
semantics. By efficiently, we mean that we avoid considering the whole saturated transition system (satts) that is usually
too big, since it is labeled with all possible contexts. Instead of the satts, we use the IPO transition system (ipots), whose
labels are just theminimal contexts that allow some reaction. However,we do not consider the usual abstract semantics over
the ipots but a slightly refined version of them: if we call Alice the player choosing the move and Bob the player choosing a
matching reply, when Alice chooses an IPO move, Bob can reply with a move from satts.
Wewill prove that semi-saturated semantics coincide with saturated semantics whenever the reactive system has redex

IPOs.

Definition 9 (Redex IPOs). A reactive system has redex IPOs, if every redex square has at least one IPO as candidate.

Clearly this constraint is weaker than having redex RPOs (Definition 7) that is required by Theorem 1. Having RPOs means
to have a minimum candidate (i.e., a candidate smaller than all the others), while having IPOs allows one to have several
minimal candidates (also not comparable among them). The following example shows the difference between redex IPOs
and redex RPOs.

Example 5 (IPOs in Simple Process Calculus). Recall the category C≡Σ of Example 2. This is the term category of a signature
having some constants and a binary operator that is associative, commutative and with identity. This category does not
posses RPOs: consider the exterior squares in diagrams (i) and (ii) below (note that they are equal). This square has no RPOs
since it has, as candidates, the arrows inside which are not comparable (in the sense that neither is smaller than the other).
But note that both the candidates are IPOs, since they have, as candidates, only isomorphic diagrams.

1

1

a|−1
@@�����

−1
// 1

a|−1

OO

1
−1

oo

a|−1
^̂=====

0
a

^̂===== a

@@�����

1

1

a|−1
::tttttttt

〈−1,a〉
// 2

−1 |−2

OO

1
〈a,−1〉

oo

a|−1
ddJJJJJJJJ

0
a

ddJJJJJJJJ a

::uuuuuuuu

In this section we will show semi-saturated games for both bisimilarity (Section 4.1) and a generalization of trace
equivalence (Section 4.2).

4.1. Semi-saturated and symbolic bisimilarity

Herewe introduce two alternative and, in some cases, finitary characterization of saturated bisimilarity andwewill prove
that they coincide with∼S .

Definition 10 (Semi-saturated Bisimulation). A symmetric relation R is a semi-saturated bisimulation if and only if whenever
p R q,

4050 F. Bonchi, U. Montanari / Theoretical Computer Science 410 (2009) 4044–4066

• if p
c
→I p′ then q

c
→SAT q′ and p′ R q′.

We call the union of all semi-saturated bisimulations semi-saturated bisimilarity (denoted by∼SS).

Theorem 2 states that, in the presence of redex IPOs, this kind of bisimilarity coincides with saturated bisimilarity (and thus
it is a congruence). In this way, we can prove that two processes are saturated bisimilar just starting with IPO moves. Once
an IPOmove is chosen, the context c[−] is fixed, and thus only the moves from c[q]must be considered. Leifer andMilner
have shown that∼I is a congruence if the reactive system has redex RPOs, i.e., if for each redex-square there exists an RPO.
For∼S it is sufficient to require that the reactive system has redex IPOs.

Theorem 2. IfR has redex-IPOs, then semi-saturated bisimilarity coincides with saturated bisimilarity (i.e., p ∼SS q ⇐⇒ p ∼S
q).

Proof. We prove that∼SS ⊆∼S , showing that the contextual closure S of semi-saturated bisimilarity

S = {〈c[p], c[q]〉 | p ∼SS q, c ∈ C}

is a saturated bisimulation.

i6

i4

f
@@�����

i5

d′′
^̂=====

i2
c

^̂=====
g

@@�����
i3

d′
^̂=====

d

mm

0
p

^̂>>>>> l

@@�����

i6

i4

f
@@�����

i5

d′′
^̂=====

i2
c

^̂=====
g

@@�����
i3

e
^̂=====

0
q

^̂>>>>> l′

@@�����

(i) (ii)

Suppose that c[p]
f
→SAT p′. Then for some 〈l, r〉 ∈ R and d ∈ D we have that the exterior square of diagram (i) commutes

and p′ = d[r]. SinceR has redex IPOs we are able to construct an IPO as the inner square of diagram (i) and then p
g
→I d′[r].

Since p ∼SS q we have that q
g
→SAT e[r ′] for some e ∈ D and 〈l′, r ′〉 ∈ R with d′[r] ∼SS e[r ′]. Now we can put the upper

square of diagram (i) on the redex square generating this transition and we obtain diagram (ii) that trivially commutes.

Hence c[q]
f
→SAT d′′[e[r ′]], and (p′, d′′[e[r ′]]) ∈ S because p′ = d[r] = d′′[d′[r]] and d′[r] ∼SS e[r ′].

To prove that∼S ⊆∼SS it is sufficient to observe that if p
a
→I p′ then p

a
→SAT p′. �

The above theorem allows one to recover saturated bisimilarity without considering all the transitions of satts, i.e., all
possible contexts that allow some reaction. The following definition offers an alternative characterization of semi-saturated
bisimulations: when Alice propose an IPOmove labeledwith c , Bob can replywith another IPOmove labeledwith a contexts
d smaller than c.

Definition 11 (Symbolic Bisimulation). A symmetric relation R is a symbolic bisimulation if and only if whenever p R q,

• if p
c
→I p′ then ∃d ∈ C, e ∈ D such that d; e = c , q d

→I q′ and p′ R q′; e.

Theorem 3. If R has redex-IPOs, then a symmetric relation R is a semi-saturated bisimulation if and only if it is a symbolic
bisimulation.

i4

i2

c
@@�����

i3

f
^̂=====

0
q

^̂>>>>> l

@@�����

i4

i2

c
@@�����

d // i5

e
OO

i3goo

f
^̂=====

0
q

^̂>>>>> l

@@�����

(i) (ii)

Proof. Suppose that R is a semi-saturated bisimulation. Let p, q be processes such that p R q. Then, p c
→I p′ implies that

q
c
→SAT q′and p′ R q′. Then, by definition of→SAT , there exists a redex square like diagram (i) where q′ = r; f . Since the

reactive systemhas redex IPOs, then there exists an IPO candidate like that in (ii). Note that both g and e are reactive contexts,
since f is reactive. Then q

d
→I r; g . Now note that p′ R q′ = (r; g); e.

The inverse implication is immediate by Theorem 2. �

F. Bonchi, U. Montanari / Theoretical Computer Science 410 (2009) 4044–4066 4051

It is worth noting that the definition does not require that the arriving states p′ and q′ are bisimilar. Indeed, it requires that p′
is bisimilar to q′; e, that is the process q′ inserted into the context e that is missing to d to equate c . This reminds us of several
abstract semantics of different process calculi. Among these, symbolic open bisimilarity [48], asynchronous bisimilarity [2],
efficient bisimilarity for explicit fusion [55] and large bisimilarity [3]. The links between these abstract semantics and the
above definition have been exploited in [13].

Example 6 (∼SS in Open Input Petri Nets). Recall the input net in Fig. 2(i). In Example 4 we have informally shown that
a ∼S b and e ∼S cx. Here we formally prove it by showing that

R = {(a, b), (b, a), (c, c), (e, cx), (cx, e), (d, f), (f , d), (dy, fy), (fy, dy)}

is a symbolic bisimulation. Consider the ipots of marking a, b and cx in Fig. 2(iv).
We can prove that R is a symbolic bisimulation just using→I . As an example consider the pair (a, b). When a

y
→I c then

b
y
→I c and c R c . In this case the arrow d of Theorem 3 is y and e is the identity. When a

xy
→I e then b

y
→I c and e R cx. In this

case the arrow d of Theorem 3 is y and e is x. For all the other pairs, we can proceed analogously.
Alternatively, we can show that R is a semi-saturated bisimulation. Consider (a, b). When a

y
→I c then b

y
→SAT c and

c R c . When a
xy
→I e then b

xy
→SAT cx and e R cx.

4.2. Semi-saturated trace equivalences

In this subsectionwe introduce φ-trace equivalence, an abstract semantics that is parametric w.r.t. a predicate φ and that
generalizes canonical trace equivalence. In the theory of reactive system, this semantics is not be considered yet. We are
introducing it, because it will be relevant in Section 5 as abstract semantics of logic program. All the proofs are in Appendix
A.
As in the case of bisimilarity, we define saturated and IPO φ-trace equivalence. The former is always a congruence, while

the latter only when there exists redex and context RPOs. Moreover, we will introduce a semi-saturated version of it and we
prove that this coincides with the saturated one, whenever the system has redex and context IPOs.

Definition 12 (φ-trace Equivalence). Let X be a set of states, L a set of labels and→⊆ X × L × X a transition relation. Let
−;− : L × L → L be an associative operator on labels and let φ be a property on X . We say that p, q ∈ X are φ-trace
equivalent (p 'φ q) if the following conditions hold:

• φ(p) if and only if φ(q),

• if p
l
� p′ ∧ φ(p′) then q

l
� q′ ∧ φ(q′),

• if q
l
� q′ ∧ φ(q′) then p

l
� p′ ∧ φ(p′),

where p
l
� p′ iff p

l1
→ p2 . . . pn

ln
→ p′ and l = l1; l2; . . . ; ln with n ≥ 1.

Note that the above definition generalizes the notion of trace equivalence: when φ holds in every state of X and ; is string
concatenation, then we have the classical trace semantics for→.
In the rest of this section we will study this equivalence in the setting of reactive systems, and we will fix the ; operator

to be context composition. As we did for bisimilarity, we can define this equivalence on the ipots (IPO φ-trace equivalence
denoted by'φI) or on the satts (saturated φ-trace equivalence denoted by'

φ

SAT).
In order to obtain a congruence, we have to require the following conditions:

1. φ is defined on all arrows, and the arrows satisfying φ form a composition-reflecting subcategory;
2. all contexts are reactive.

The first requirement is not very strong, and we will show that, in our encoding of logic programming, it holds. The second
constraint is rather restrictive, but there aremany formalisms forwhich it holds, as, for example, term rewriting (Example 1),
dpo graph rewriting [21], logic programming (Section 5) and open input Petri nets (Example 3).

Proposition 2. In a reactive system where all contexts are reactive and φ defines a composition-reflecting subcategory, 'φSAT is
a congruence.

IPO bisimilarity is a congruence under the constraint of having all redex RPOs, while here IPO φ-trace equivalence is a
congruence under the assumption that RPOs exist not only for redex squares but also for squares where the four arrows
are contexts. We say that a reactive system has redex and context RPOs if it satisfies this constraint. We have to require this
condition since we are working with the transitive closure of→I . A similar condition is needed in [14] where the authors
require one to have all RPOs, in order to show that weak bisimulation is a congruence.
Let us explain what we mean by contexts. When defining the encoding of a formalism into a reactive system, one is

interested only in some arrows of the base category that represent the state of the formalism. For example, in the reactive
system for open nets N , only the arrows of OPNN of type 0 → 1 represent the state of the open net. In the case of logic

4052 F. Bonchi, U. Montanari / Theoretical Computer Science 410 (2009) 4044–4066

programming (Section 5) only arrows of type p→ tn represent logic formulas. By contextswemean only those arrows of the
base category that can be be post-composed with such arrows. In the case of open nets, contexts are arrows of type 1→ 1,
while in logic programming arrows of type tn → tm. Then the existence of RPOs is not needed for all the arrows of the base
category, but only for such contexts.

Proposition 3. In a reactive system with redex and context RPOs, where all contexts are reactive and φ defines a composition-
reflecting subcategory,'φI is a congruence.

As for bisimulation, we can define a semi-saturated version of φ-trace equivalence.

Definition 13. Let R be a reactive system, and φ a property on the arrows of C. We say that p and q are semi-saturated
φ-trace equivalent (p 'φSS q) if the following holds:

• φ(p) if and only if φ(q),

• if p
l
�I p′ ∧ φ(p′) then q

l
�S q′ and φ(q′),

• if q
l
�I q′ ∧ φ(q′) then p

l
�S p′ and φ(p′),

where�I and�S are the transitive closures of→I and→SAT .

As semi-saturated bisimilarity corresponds to saturated bisimilarity, semi-saturated φ-trace equivalence is saturated φ-
trace equivalence, under the weak constraint of the existence of redex IPOs.

Theorem 4. In a reactive systemwith redex IPOs, where all contexts are reactive, and such thatφ defines a composition-reflecting
subcategory, then'φSS ='

φ

SAT .

5. Logic programming

Logic programming, together with open input Petri nets (Example 4), points out that IPO abstract semantics are
sometimes too strict, while saturated ones are, at some extent, more suitable. In this section, it turns out that saturated
trace equivalence coincides with the ordinary logic semantics of logic programming, while IPO trace equivalence yields a
finer semantics, known in the logic programming community as S-semantics [22].
A logic signature Γ is a pair (Σ,Π), where Σ is a set of function symbols and Π is a set of predicate symbols with an

associated arity. As usual, given a set X of variables, we denote by TΣ (X) the free Σ-algebra over X . A term over X is an
element of TΣ (X). Given a term t , Var(t) is the smallest set of names X such that t ∈ TΣ (X). An atomic formula over X has
the form P(t1, . . . , tn) where P is a predicate with arity n, and t1, . . . , tn are terms over X . A formula is a finite conjunction
of atomic formulas: a1 ∧ · · · ∧ an where ∧ is associative and it has the empty formula � as unit. Note that in the standard
definition ∧ is also commutative, but to simplify our construction, as it is the case in Prolog, we do not consider it to be
commutative (however the resulting behavior is the same).
If X and Y are sets of variables, a substitution from X to Y is a function σ : X → TΣ (Y). If t is a term over X and σ

a substitution from X to Y , then the term over Y , obtained by simultaneously substituting in t all the occurrences of the
variables in X with their image under σ , is called the application of σ to t and written t; σ (or σ(t)). If σ is a substitution
from X to Y , and σ ′ from Y to Z , then σ ; σ ′ from X to Z is defined by applying σ ′ to each image of the variables in X under
σ . Given σ : X → TΣ (Y) and X ′ ⊆ X the restriction of σ to X ′, written σ �X ′, is the substitution σ ′ : X ′ → TΣ (Y) acting as
σ on X ′.
A substitution σ is more general than σ ′ if there exists a substitution θ such that σ ′ = σ ; θ . Two substitutions ψ and φ

unify if there exists a substitution σ such that ψ; σ = φ; σ , in this case σ is a unifier of ψ and φ. It is well-known that if
ψ and φ unify, then there exists a unifier that is more general than all the others, called the most general unifier (mgu for
short). It is also well-known that anmgu is the coequalizer in the category of substitutions [26], and in [15] it is shown that
themgu of substitutions with disjoint sets of variables corresponds to a pushout (this will be detailed later).
A logic program is a finite collection of Horn clauses, i.e., expressions of the form h :− b where h is an atomic formula

called the head of a clause, and b is a formula called the body. Rules in Table 1 define the operational semantics of logic
programming. A goal g = a1 ∧ · · · ∧ an reacts with a clause c = h :− b if ai, an atomic formula of the goal g , unifies
with ρ(h) (where ρ substitutes the variables of h with fresh variables not appearing in g). Let σ be the mgu of ai and ρ(h),
then g reacts and becomes g ′ = σ(a1) ∧ · · · ∧ σ(ai−1) ∧ σ(b) ∧ σ(ai+1) ∧ · · · ∧ σ(an). A refutation of g is a derivation
g ⇒σ1 g2 ⇒σ2 · · · ⇒σn gn ending with the empty formula (i.e. gn = �). In this case σ = σ1; . . . ; σn �Var(g) is a computed
answer substitution of g .

F. Bonchi, U. Montanari / Theoretical Computer Science 410 (2009) 4044–4066 4053

Table 1
Operational rules for SLD-resolution.
h :− b ∈ P σ = mgu(a, ρ(h))

P a⇒σ σ(ρ(b))
ρ renames to globally fresh names

P g ⇒σ f
P g1 ∧ g ∧ g2 ⇒σ σ(g1) ∧ f ∧ σ(g2)

5.1. Goals equivalences

Given a logic program, when are two goals equivalent? First note that we already have an lts, but bisimulation is quite
uninteresting in this case because we would like to consider as equivalent two goals with different branching behavior.
Here the interesting point is if, and when, two goals can be refuted. The first naive equivalence that comes to mind is: g1
can be refuted iff g2 can be refuted. This equivalence is, however, very coarse and equates a lot of goals that we would like
to distinguish.
Logic equivalence (denoted by'L) equates g1 and g2 if and only if, for any ground substitution σ , σ(g1) is refuted iff σ(g2)

is refuted. In [22], S-equivalence (denoted by'S) is proposed: g1 and g2 have the same set of computed answer substitutions.
Another interesting equivalence is correct answer equivalence (denoted by'C) that equates two goals iff they have the same
set of correct answer substitutions (defined as follows). Let

σ
−→ be the transition system defined by changing the premise of

the first rule of Table 1: we do not require anymore that σ is the mgu, but only that it unifies a and ρ(h) i.e, σ(a) = σ(ρ(h)).
If g

σ1
−→ g2

σ2
−→ · · ·

σn
−→ �we say that σ = σ1; . . . ; σn �Var(g) is a correct answer substitution of g . In other words σ is a correct

answer substitution of g iff σ(g) is a logical consequence of the program.
In [15], it is shown that, if we work with an infinite set of function symbols, g1 'L g2 iff g1 'C g2.
The following example shows that S-equivalence is somehow too detailed and that logic equivalence is more abstract.

Example 7. Consider the following program, where y is a variable and a is a constant:

P(y) :−� P(a) :−� Q (y) :−�.

Now consider the goals P(x) and Q (x). They are refuted by any ground substitution, which means that they are logic
equivalent (and also correct answer equivalent). However, they are not S-equivalent: in fact the set of computed answer
substitutions for P(x) is {ε, [a/x]}, while the computed answer substitutions for Q (x) are {ε}.

In Section 5.3, we will show that IPO trace equivalence coincides with S-equivalence and thus it is too strict since it
distinguishes the goals P(x) andQ (x)defined above,while saturated trace equivalence exactly coincideswith correct answer
equivalence (and thus logic equivalence) and thus it cannot distinguish between P(x) and Q (x).

5.2. Logic programs as reactive systems

Here we show how logic programs can be seen as reactive systems. This will be used to prove, later, that saturated
semantics correspond to logic equivalence, while standard semantics to the finer S-equivalence.
Consider two basic sorts t for terms and p for formulas (predicates are atomic formulas). We use ε to denote the empty

string and tn to denote the string composed of n occurrences of t. Given a logic signature Γ = (Σ,Π), we define Γ ′ as
the signature Γ enriched with the symbols ∧ that takes two formulas and returns one formula and � a constant formula.
Let E be the set of axioms describing that ∧ is associative (not commutative) and has identity �. Let Xp and Xt be sets of
predicate and term variables. We use TΓ ′/E(Xp, Xt) to denote the Γ ′-algebra freely generated by (Xp, Xt) quotiented by E. A
substitution for this algebraic specification is a function σ : (Xp, Xt) → TΓ ′/E(Yp, Yt). A term of this algebra in sort p is a
logic formula having term and predicate variables from Xt and Xp.
In order to model logic programs as reactive systems, we will use the category Th[Γ ′/E]op, that is the dual category

of Th[Γ ′/E], i.e., the Lawvere theory [32] associated to the specification Γ ′, E. This category has been used in [15] as base
category for a tile system of logic programming. Since the Lawvere theory is usually well-known for one sorted signature,
here we are considering a two-sorted signature, and we report, below, the definition of Th[Γ ′/E]op.

Definition 14. The category Th[Γ ′/E]op is defined as follows.

• objects are strings s ∈ {t, p}∗ representing ordered canonical variables,
• arrows s1 → s2 are substitutions assigning to each variable in s1 a term of TΓ ′/E with variables in s2,
• the identity arrow is the identity substitution and
• composition of arrows is composition of substitutions.

As an example of an object, consider the string pntm. This represents n ordered canonical predicate variables (i.e.,
variables indexed from 1 to n) p1, . . . , pn and m ordered canonical term variables x1, . . . , xm. To avoid confusion, it must
be clear that the canonical variables are just placeholders, i.e., their scope is only local. For example, in [f (x1)/x1] the
two x1 are different, while in [f (x1)/x1, g(x1)/x2] only the two occurrences of x1 in f (x1) and g(x1) refer to the same

4054 F. Bonchi, U. Montanari / Theoretical Computer Science 410 (2009) 4044–4066

placeholder. Note that in Definition 2 we talked about holes, while here we are talking about variables; moreover, here
we are considering substitutions instead of tuples of terms. Notice that each tuple of terms can be regarded as a substitution
of canonical variables and vice versa. For example, pt-tuple of terms 〈P(f (x1)), g(x2)〉 : pt → tn is the substitution
[P(f (x1))/p1, g(x2)/x1] : pt→ tn. We will often refer to the arrows of Th[Γ ′/E]op as both tuples of terms and substitutions.
Arrows of the form tn → tm are finite substitutions on Σ (with canonical sets of variables) and the arrows t → ε are

closed terms over Σ , while arrows p → ε are closed formulas over Γ ′. Arrows p → tn are formulas over n canonical
term variables, while arrows p→ ptnp are formulas over n canonical term variables and two canonical predicate variables.
Consider for example 〈P(x1, x2)∧p1, f (x1),Q (f (x2)), p5〉where x1, x2 are terms variables and p1, p5 are predicate variables.
This tuple corresponds to an arrow from ptp2 to t2p5. Note also that the above tuple can represent also an arrow from ptp2

to tptp4.
Furthermore the above tuple can be seen as an arrow having as codomain objects tnpm for n ≥ 2 and m ≥ 5, i.e., the

codomain does not define the exact index of (term or predicate) variables, but the maximum index that the variables can
have. In the following, for a goal g and a natural number n larger than themaximal index of variables appearing in g , we will
write gn to denote the arrow p→ tn.
In the classical interpretation by Leifer andMilner, the arrows having domain objects different from 0 (the distinguished

object) are seen as contexts which can be pre-composed with terms. In our reactive system, these arrows are substitutions
which instantiate the variables of formulas. Horn clauses not only must be instantiated by substitutions, but they must be
also contextualized with the ∧ operator.
In the remainder of this section we will use

- the formula f1 = P(s(x1), x2) ∧ P(x1, t(x3)) and
- the clause c1 = P(y1, t(y2)) :−Q (y1)

as a running example. The head of the c1must be instantiated (e.g., substituting y1with x1 and y2with x3) and contextualized
(plugging it into P(s(x1), x2) ∧ [−]) in order to match f1.
Similar problems arise with process calculi where the rules usually are not ground, and have to be instantiated and

contextualized. For example, the left hand side of the CCS rule a.P | a.Q P | Q matches νa.(a.0 | a.0) instantiating P,Q
to 0 and plugging the left-hand side into the context νa.[−]. Usually this problem is avoided by creating infinitelymany rules
corresponding to all possible instantiations of the rule, and then considering only contextualization, as it is done for bigraphs
[37]. This approach causes the problemof having infinitelymany rules and consequently infinitelymany transitions. For logic
programming, we use an approach that is analogous to the one adopted for CCS in [8], i.e., we consider arrows that can both
contextualize and instantiate. Here we simulate contextualization by substitutions by supplying appropriate variables in
the rules. The redex of a rule is not simply an arrow of the form h : p→ tn that can only be instantiated, but it is an arrow
p1 ∧ h ∧ p2 : p → ptnp that can be instantiated and contextualized (by instantiating the variables p1 and p2). In this way,
we also get a finite branching ipots.
Thus, in our reactive system, the head of the clause c1 above becomes p1∧ P(y1, t(y2))∧p2 and, in this way, it can match

the goal by instantiating p1 to P(s(x1), x2), p2 to � and y1 to x1 and y2 to x3.
Summarizing, we can say that we allow only substitutions and simulate contextualizations by substitutions by supplying

appropriate variables in the rules (see below). In order to integrate this idea with the theory of reactive systems, we have
‘‘reversed’’ the arrows, i.e., a formula over n term variables becomes p→ tn (instead of the maybe more intuitive tn → p).

Definition 15. Given a logic program P on a signature Γ , we define a reactive systemR(P) as follows:

1. Th[Γ ′/E]op is the underlying category,
2. p is the distinguished object,
3. all contexts are reactive,
4. for each clause h :− b, let n be the largest index of variables contained in h and b; then we add the rule

(p1 ∧ h ∧ p2 , p1 ∧ b ∧ p2)

where left and right-hand sides are arrows p→ ptnp and p1, p2 are predicate variables.

Note that h and b do not necessarily have the same number of variables, while our theory requires that the left-hand and
right-hand side of a rule have the same interface (i.e., they must be arrows with the same target). In this case, we extend the
smaller interface.
Recall the definition of redex square (Section 2). A generic redex square for the above defined reactive system is depicted

in diagram (i) of Fig. 3. Arrow c is a substitution that instantiates the variables of g , while arrow d instantiates the variables
of h and contextualizes h, instantiating the predicate variables p1 and p2. Thus, for any reaction step, an atom of the goal is
unified with the head of a clause and p1 is instantiated with the formula on the left of the chosen atom, and p2 is instantiated
with the formula on the right.

Lemma 1. The exterior square of diagram (i) in Fig. 3 commutes if and only if there exist formulas g1, g2 and an atomic formula
a such that g = g1 ∧ a ∧ g2, p1; d = g1; c, p2; d = g2; c and h; d = a; c.

F. Bonchi, U. Montanari / Theoretical Computer Science 410 (2009) 4044–4066 4055

Fig. 3. (i) A generic redex square and a candidate for it. (ii,iii) Two redex squares for f1 = P(s(x1), x2) ∧ P(x1, t(x3)) and h1 the head of the clause
c1 = P(y1, t(y2)) : −Q (y1). The substitution φ1 is [x1/x1, t(x2)/x2, x3/x3], ψ1 is [�/p1, P(x1, t(x3)), s(x1)/y1, x2/y2], φ2 is [x1/x1, x2/x2, x3/x3]
and ψ2 is [P(s(x1), x2)/p1, �/p2, x1/y1, x2/y2].

Proof. Suppose that g = g1∧ a∧ g2 and p1; d = g1; c , h; d = a; c and p2; c = g2; c . Then p1∧h∧p2; d = g1∧ a∧ g2; c , i.e.,
the exterior square of diagram (i) in Fig. 3 commutes. For the other direction, recall that the operator ∧ is associative and it
has as an identity element. Thus, there always exists a, g1 and g2 such that g = g1∧ a∧ g2. If the exterior square commutes,
then g1 ∧ a ∧ g2; c = p1 ∧ h ∧ p2; d. Since ∧ is not commutative, then g1; c = p1; d, g2; c = p2; d and a; c = h; d. �

In general, inR(P), given a rule and a goal, there exist several ways of unifying them: one for each atom of the goal that can
match the head h. Consider, for example, c1 and f1 described above. The head of c1 unifies both with the left predicate of f1
and with the right one, as illustrated by diagrams (ii) and (iii) in Fig. 3. This means that, given a rule and a goal – seen as
arrows – there usually exists no minimal way of matching them (i.e., no pushout exists). The following lemma ensures that
each commuting square fixes a ‘‘way’’ of matching, i.e., chooses the atom of the goal that unifies h.

Lemma 2. Let the exterior square in diagram (i) of Fig. 3 be commuting. Let g1, a, g2 be formulas as described in Lemma 1. Then,
for each candidate 〈e, f , i〉, the following hold: p1; f = g1; e, p2; f = g2; e and h; f = a; e.

Proof. Since the source of e is of type to, then also its target cannot contain predicate variables. Since the target of e is the
same as the target of f , then f must instantiate the predicate variables p1 and p2 or, in other words, f must choose which
atom of g matches the head h. Since f ; i = d, f is forced to make the same choice of d. Then, by Lemma 1, p1; f = g1; e,
p2; f = g2; e and h; f = a; e. �

As a next step, we are going to show that, in our reactive system, a redex RPO is the mgu of a and h, together with the
instantiation of p1 and p2 to appropriate formulas. We start by recalling a theorem from [15].

Theorem 5. The pushout between the arrows a : to → tm and b : to → tn is the most general unifier between a and ρ(b)where
ρ renames the variables {x1 . . . xn} to a globally fresh name.

Proof. First of all, notice that the theorem states the correspondence only for the arrows of type tn → tm rather than all the
arrows of Th[Γ ′/E]op. It is easy to see that the full subcategory of Th[Γ ′/E]op containing objects only of type tn is isomorphic
to Th[Σ]op. It is well known from [26] that the mgu of two substitutions is the coequalizer of the corresponding arrows in
Th[Σ]op. However, in Logic Programming, we are interested only in unification between substitutionswhose set of variables
are disjoint, since the variables in the head of the selected clause have been renamed on purpose to be different from those
in the selected goal. This observation has been firstmade in [15], where it is shown that the pullback in Th[Σ] coincideswith
the mgu of these ‘‘renamed substitutions’’. Our theorem follows by the aforementioned result, by duality (i.e., pullbacks in
Th[Σ] are pushouts in Th[Σ]op).
In order to give a stronger intuition of the correspondence between mgu and pushout, we show an example. Consider

a = [f (x1, x2)/x1] and b = [x1/x1]. These are arrows a : t1 → t2, b : t1 → t1. The pushout in Th[Σ]op (and thus in
Th[Γ ′/E]op) of these arrows is a pair of arrow 〈φ : t2 → t2, ψ : t1 → t2〉, where φ = [x1/x1, x2/x2] and ψ = [f (x1, x2)/x1].
The most general unifier between a and ρ(b) = [x3/x1] is a substitution [x1/x1, x2/x2, f (x1, x2)/x3]. �

Remember that if two substitutions can unify, then there exists anmgu. This, together with Theorem 5, ensures that, for
each commuting square of substitutions, there exists a pushout. Moreover, this result holds not only for substitutions but
also for atomic goals, since two atomic goals unify iff they consist of the same predicate and the terms within the predicate
unify. In the remainder of this section we use g to denote a formula having the same predicate symbols as g , but without
function symbols and where all variables are different. For example f1 = P(u1, u2) ∧ P(u3, u4). Note that the arrow d of a
generic redex square (see diagram (i) in Fig. 3) can always be decomposed into α;ψ ′ where α instantiates p1 and p2 to g1
and g2 and ψ ′ is a substitution. It is exactly this arrow α that chooses which atom of the goal matches h.
The following lemma generalizes the theorem above to non-atomic formulas of the form g1 ∧ a ∧ g2 and g1 ∧ b ∧ g2.

Lemma 3. Let a and h be atomic formulas. Then 〈φ,ψ〉 is the pushout of a and h (depicted in diagram (i) below) if and only if
〈φ′, ψ ′〉 is the pushout of g1 ∧ a ∧ g2 and g1 ∧ h ∧ g2 (diagram (ii)), where φ′ is equal to φ on Var(a) and the identity on the
others variables, and ψ ′ is equal to ψ on Var(h) and such that g1;φ′ = g1;ψ ′ and g2;φ′ = g2;ψ ′.

4056 F. Bonchi, U. Montanari / Theoretical Computer Science 410 (2009) 4044–4066

to

tm

φ
??�����

tn

ψ
__?????

p
a

`̀@@@@@ h

??�����

to
′

tm
′

φ′
??�����

tn
′

ψ ′
__>>>>>

p
g1∧a∧g2

`̀AAAAA (p1 ∧ h ∧ p2);α = g1 ∧ h ∧ g2

>>~~~~~

(i) (ii)

Proof. Suppose that diagram (i) is a pushout, and suppose that there exists u′, v′ such that g1 ∧ a∧ g2; u′ = g1 ∧ h∧ g2; v′.
Then we have that a; u = h; v for u, v, the restrictions of u′ and v′ on Var(a) and Var(h), respectively. Since diagram (i) is a
pushout, then there exists a unique ρ such that φ; ρ = u and ψ; ρ = v.
Now, we can construct a ρ ′ such that φ′; ρ ′ = u′ and ψ ′; ρ ′ = v′. Take ρ ′ = ρ on Var(a;φ) and equal to u′ on all

the other variables. Now, it is easy to see that φ′; ρ ′ = u′. Indeed, for the variables in Var(a), φ′ = φ, ρ ′ = ρ and
u′ = u and φ; ρ = u. For the other variables φ′ is, by construction, the identity and ρ ′ = u′. Now, we have to prove
that ψ ′; ρ ′ = v′. On Var(h), ψ ′ = ψ , ρ ′ = ρ (observe that Var(a;φ) = Var(h;ψ)) and v′ = v and ψ; ρ = v. For the other
variables, recall that by construction g1;ψ ′ = g1;φ′ and g2;ψ ′ = g2;φ′. Then g1;ψ ′; ρ ′ = g1;φ′; ρ ′ = g1; u′ = g1; v′ and
g2;ψ ′; ρ ′ = g2;φ′; ρ ′ = g2; u′ = g2; v′.
Now suppose that there exists another ρ ′1 such that φ

′
; ρ ′1 = u

′ and ψ ′; ρ ′1 = v
′. First of all notice that on Var(a;φ′), ρ ′1

must be equal to ρ ′, otherwise, we can construct a ρ1 (different from ρ) such that φ; ρ1 = u andψ; ρ1 = v. For all the other
variables, notice that φ′ is the identity, and thus in order to have φ′; ρ ′1 = u

′, ρ ′1 must be equal to u
′, i.e., equal to ρ ′.

Now we prove the other direction. Suppose that diagram (ii) is a pushout and suppose that there exist u, v such
that a; u = h; v. Let u′ equal to u on Var(a) and the identity on the others. Let v′ equal to v on Var(h) and such that
g1; u′ = g1; v′ and g2; u′ = g2; v′. Then, (g1 ∧ a ∧ g2); u′ = g1 ∧ h ∧ g2; v′, because g1; u′ = g1; v′, g2; u′ = g2; v′
and a; u′ = a; u = h; v = h; v′. Since, by hypothesis diagram (ii) is a pushout, then there exists a unique ρ ′ such that
φ′; ρ ′ = u′ and ψ ′; ρ ′ = v′. Now we have that φ; ρ = u and ψ; ρ = v, for ρ equal to ρ ′ on Var(a;φ). Now suppose that
there exists a different ρ1 such that that φ; ρ1 = u and ψ; ρ1 = v. Then, as proved in the other direction, we can construct
ρ ′1 different from ρ

′ such that φ′; ρ ′1 = u
′ and ψ ′; ρ ′1 = v

′, but this is impossible, since ρ ′ is unique. �
The meaning of this lemma is more intuitive if one considers formulas. Suppose that a and h unify, and let 〈φ,ψ〉 be their
mgu. Then also g1 ∧ a ∧ g2 and g1 ∧ h ∧ g2 unify and the mgu is the mgu of a and h (since all the variables of g1 and g2 are
different and can be instantiated to g1;φ and g2;ψ).
The following lemma is central since it shows the relationship between RPOs and pushouts: if we fix a way of matching

(the arrowα), thenwe have only oneminimal unifier (i.e, pushout) while if we do not fix it, we have severalminimal unifiers
(i.e., RPOs) one for each way of matching (i.e., for each α).
Lemma 4. Let a and h be atomic formulas, and α as described above i.e., such that (p1 ∧ h∧ p2);α = g1 ∧ h∧ g2. Suppose that
the exterior square of diagram (ii) below commutes. Then 〈x, y〉 is the pushout of g1 ∧ a∧ g2 and g1 ∧ h∧ g2, and z the mediating
morphism (diagram (i)) iff 〈x, α; y, z〉 is the RPO of the exterior square of diagram (ii).

to
′

tm
′

φ′
??�����

x // tq
z

OO

tn
′

tntn
′′

ψ ′
bbFFFFFF

yoo

p
g1∧a∧g2

`̀AAAAA (p1 ∧ h ∧ p2);α
=

g1 ∧ h ∧ g2

;;wwwwww

to
′

tm
′

φ′
??�����

x // tq
z

OO

ptnp

α;ψ ′
aaBBBBB
α;yoo

p
g1∧a∧g2

`̀AAAAA p1∧h∧p2

==zzzzzz

to

tp
i

OO

tm x //
e��

??��

φ′

GG����������
tq

w

OO z

TT

tn
′

tntn
′′yoo

f ′FF

bbFFF
ψ ′

YY44444444444

(i) (ii) (iii)
Proof. Let us consider the diagrams above.We suppose that 〈x, y〉 is the pushout andweprove that 〈x, α; y, z〉 is the RPO. Let
〈e, f , i〉 be a candidate for the exterior square of diagram (ii). Thus, by Lemma2, e(g1) = f (p1), e(g2) = f (p2) and e(a) = f (h).
This means that f factors through α, i.e., f = α; f ′, for f ′ such that e(g1) = f ′(g1), e(g2) = f ′(g2) and e(a) = f ′(h).
Since 〈x, y〉 is the pushout there exists a unique w such that x;w = e and y;w = f ′. From the latter, we have that

α; y;w = α; f ′ = f . Now we have to prove that w; i = z, but this is trivial since z is the unique morphism such that
x; z = φ′ and y; z = ψ ′.
Now we prove the other direction. Suppose that 〈x, α; y, z〉 is the RPO of the diagram. Since 〈x, α; y, z〉 is a candidate, by

Lemma 2, we have that x(a) = α; y(h). As recalled after Theorem 5, if two atomic goals unifies, then there exists their most
general unifier. Now, since a and h unifies then there exists the pushout of a and h (i.e., the mgu). Then, by Lemma 3 there
exists 〈e, f ′〉 as pushout of g1 ∧ a ∧ g2 and g1 ∧ h ∧ g2. Let u be the unique mediating morphism such that e; u = x and
f ′; u = y. Then 〈e, α; f ′, u〉 is a candidate for the square 〈g1 ∧ a ∧ g2, x, p1 ∧ h ∧ p2〉, α; y. Notice that by Proposition 1 of
[33], the latter square is an IPO. Thus there exists a uniquew such that x;w = e, α; y;w = α; f ′ andw; u = id. Now, recall
that α only instantiates the predicate variables p1 and p2 with g1 and g2 that have globally new variables. Then, α is epi and
thus y;w = f ′. Now it remains to prove that u;w = id, but this is trivial. Indeed, since 〈e, f ′〉 is a pushout, there exists a
unique arrow v such that e; v = e and f ′; v = f ′ and both id and u;w satisfy this requirement. �

F. Bonchi, U. Montanari / Theoretical Computer Science 410 (2009) 4044–4066 4057

Then, given a commuting square, this fixes a way of matching (i.e., one α) and so there exists a minimal unifier, that is the
mgu between the head of a clause h and chosen atom a of the formula g .

Theorem 6. R(P) has redex and context RPOs.

Proof. Given a redex square as the one in Fig. 3(i), by Lemma 1 it identifies one atom of the goal that matches h, and the
formulas at the left and at the right of the atom (a, g1 and g2). Recall that if two terms unify, then their mgu exists. Since a
and h unify, theirmgu, i.e., their pushout, exists. We call it 〈φ,ψ〉. By Lemma 3, 〈φ′, ψ ′〉 is the pushout between g1 ∧ a∧ g2
and g1 ∧ a ∧ g2 will exist. Now we can compose α with ψ ′ and we get, by Lemma 4, the RPO of the diagram.
Now we show that RPOs exist also for context squares. First of all note that in context squares all the arrows have the

form tm → tn. These are simple term substitutions and thus, if they commute (unify), then there exists amgu (i.e. a pushout)
of them, and it is for sure an RPO. �

5.3. Saturated and IPO abstract semantics

In this section, we show that S-equivalence corresponds to IPO φ-trace equivalence, while correct answer equivalence
corresponds to saturated φ-trace equivalence (both of them are defined in Section 4.2).
Recall the definition of saturated (Definition 4) and IPO (Definition 8) transition system. In the former, a state f can

perform a transition labeled with a context c going in the states g (in symbols f
c
→SAT g) if and only if c(f) g . This

corresponds to −→ (as defined in Section 5.1) where a formula f can perform a transition labeled with the substitution σ
whenever σ unifies f with a redex. In the latter transition system, f can perform a transition labeled c (in symbols f

c
→I g)

only if c is the minimal context that allows c(f) g . This minimal context is the smallest substitution that unifies the
formula with the head of a clause (i.e., themost general unifier) and thus→I corresponds to⇒ (i.e., SLD transitions).

Theorem 7. Let P be a logic program andR(P) the corresponding reactive system. Let f , g be two formulas and m, n larger than
the maximal index of variables appearing in f and g. Furthermore let σ be a substitution, and let θ : tm → tn be equal to σ on
Var(f) and id otherwise. Then:

• P g
σ
−→ f iff inR(P) it holds that gm

θ
→SAT f n,

• P g ⇒σ f iff inR(P) it holds that gm
θ
→I f n.

Proof. First, note that P g ⇒σ g ′ iff there exists (h : − b) ∈ P and formulas a, g1, g2 such that g = g1 ∧ a ∧ g2,
σ = mgu(a, ρ(h)) and g ′ = σ(g1) ∧ σ(ρ(b)) ∧ σ(g2).
Let c be equal to σ � Var(a) and d = σ � Var(h). By Theorem 5 〈c, d〉 is the pushout of h and a, and by Lemmas 3

and 4, 〈g, p1 ∧ h ∧ p2, c ′, d′〉 is an IPO, where c ′ � Var(a) = c and c ′ = id on the others variables and d′ � Var(h) = d
and it maps p1, p2 to g1; c ′, g2; c ′. Now, by construction, in R(P) there is a rule p1 ∧ h ∧ p2 → p1 ∧ b ∧ p2, and then

g
c′
→I (p1 ∧ b∧ p2); d′ = c ′(g1)∧ d(b)∧ c ′(g2) = σ(g1)∧ σ(b)∧ σ(g2). For the other direction, we can proceed as before,
by applying Lemma 4, Lemma 3 and Theorem 5.
For the other point, note that P g

σ
−→ g ′ iff there exists (h : −b) ∈ P and formulas a, g1, g2 such that g = g1 ∧ a ∧ g2

and σ(a) = σ(ρ(h)) and g ′ = σ(g1) ∧ σ(ρ(b)) ∧ σ(g2).
Now we can proceed as before without thinking back to mgu or IPO redex square, but only to unifiers and redex

square. �

Corollary 1. InR(P) the ipots is finite-branching.

Note that S-equivalence and correct answer equivalence areφ-trace equivalence (Definition 12)where the predicateφ holds
only for the empty goal. Formally we define the predicate �() over all the arrows of the category Th[Γ ′/E]op: �(a) holds iff
a is an arrow obtained by decomposing �n : p→ tn, where �n is � : p→ ε with the interface extended with n extra term
variables. Essentially �() holds for all term substitutions and for empty formulas. The predicate �() defines a composition
reflecting subcategory and, since all contexts are reactive, we can apply our theoretical results (Proposition 2, Proposition 3
and Theorem 4) to'�I ,'

�
SAT and'

�
SS : these three equivalences are congruences (w.r.t. substitutions) and'

�
SAT ='

�
SS .

Now we show that the first corresponds to'S , while the second (and then also the third) correspond to'C (that, in the
case of infinitely many function symbols, is'L).

Theorem 8. Let P be a logic program andR(P) be the corresponding reactive system. Then'S ='�I and'C ='
�
SAT .

Proof. Suppose that p 'S q and p
θ
�I �. Then ∃ θ1, . . . , θn such that θ1; θ2; . . . ; θn = θ and p

θ1
→I p2 · · ·

θn
→I �. By

Theorem 7 we have that p ⇒σ1 p2 . . . pn ⇒σn p
′ with θi = σi � Var(pi). Note that σi � Var(pi); σi+1 � Var(pi+1) is equal

to (σi; σi+1) � Var(pi), and θ = (σ1; . . . σn) � Var(p1). Since θ is a computed answer substitution of p and p 'S q, θ is a
computed answer substitution of q and q⇒φ1 q2 ⇒φ2 q3 · · · ⇒φm � such that φ1;φ2; . . . ;φm �Var(q) = θ . By Theorem 7

q
ψ1
→I q2

ψ2
→I q3 · · ·

ψm
→I � where ψi = φi � Var(qi). As before ψ1;ψ2; . . . ;ψm = φ1 � Var(q1);φ2 � Var(q2); . . . ;φm �

Var(qm) = φ1;φ2; . . . ;φm �Var(q) = θ . Hence q
θ
�I �. The other direction is analogous.

To prove the second equivalence we use Theorem 7 and we can proceed as before. �

4058 F. Bonchi, U. Montanari / Theoretical Computer Science 410 (2009) 4044–4066

6. Coalgebras (on presheaves)

In this section we first introduce the basic notions of the theory of coalgebras [47] and then coalgebras on presheaves
[53,24,23].

Definition 16 (Category of Coalgebras and Cohomomorphisms). LetB : C→ C be an endofunctor on a category C. A coalgebra
for B or B-coalgebra is a pair 〈X, α〉 where X is an object of C (called the carrier) and α : X → B(X) is an arrow (called the
transition structure). A B-cohomomorphism h : 〈X, α〉 → 〈Y , β〉 is an arrow h : X → Y of C such that α; B(h) = h;β .

B-coalgebras and B-cohomomorphisms form the category CoalgB.

Different kinds of dynamical systems (e.g. deterministic automata, Moore and Mealy machines) can be seen as coalgebras
by choosing a certain endofunctor on the category Set. For example, transition systems that are labeled over a set of label L
are in one-to-one correspondence with PL-coalgebras [47], for PL defined below.

Definition 17. Let L be a fixed set of labels and P be the powerset functor. The functor PL : Set→ Set is defined as follows.
For each set X , PL(X) = P(L× X). For each function h, PL(h) = P(L× h).

One desirable property of a category of coalgebras CoalgB is the existence of a final coalgebra 1B, that is aB-coalgebra such that
for any other B-coalgebras 〈X, α〉 there exists a unique cohomomorphism !B

〈X,α〉 : 〈X, α〉 → 1B. Indeed, if a final coalgebra
exists then two elements of the carrier of a coalgebra are bisimilar if and only if they are mapped into the same element
by the final cohomomorphism. This is theoretically very important, because it allows us to define the abstract semantics as
a function (i.e., the unique morphism to a final coalgebra) that maps each system into the canonical representative of its
equivalence class (i.e., its image through the final morphism).
Unfortunately, due to cardinality reasons, the category of PL-coalgebras does not have a final object [47]. One satisfactory

solution consists in replacing the powerset functor P by the countable powerset functor Pc , which maps a set to the family
of its countable subsets. Then, by defining the functor Pc

L : Set → Set as X 7→ Pc(L × X), one has that coalgebras for this
endofunctor are one-to-one with transition systems with countable branching degree. Unlike functor PL, functor Pc

L admits
final coalgebras (Example 6.8 of [47]).
When considering nominal calculi, i.e., those able to generate and communicate names, labeled transition systems are

often too rough. For this reason, indexed labeled transition systems have been introduced in [17]. The coalgebraic models for
this kind of systems consist of colagebras not on the category Set, but on some category of presheaves SetC, for some index
category C. For example, the early and late semantics of the π-calculus [41] can be characterized by proper endo-functors
on SetI [53,23,24] where I is the category of finite sets of names and injective functions. Moreover, by choosing different
index categories, we can also characterize the open semantics of π-calculus [48] (via an endo-functor on SetD [25,36]) and
the semantics of explicit fusion calculus [55] (via an endo-functor on SetE [7]).
Objects of SetC are presheaves on C, i.e., functors from C to Set. Intuitively, X ∈ |SetC| maps each object i ∈ |C| into a

set, that represents the set of systems having i as interface and it maps each arrow c ∈ C[i, j] into a function that transforms
systems with interface i into systems with interface j.
Arrows of SetC are natural transformations between presheaves. Given two presheaves X and Y, a natural transformation

h : X⇒ Y is a |C|-indexed family of functions h = {hi : X(i)→ Y(i) | i ∈ |C|} such that for all c ∈ C[i, j] hi; Y(c) = X(c); hj.
From an algebraic perspective, one can think of presheaves as algebras of a multi-sorted unary specification where

sorts and unary operators are, respectively, objects and arrows of C. In this perspective, natural transformations are simply
homomorphisms between algebras. Thus, if there exists a final coalgebras in CoalgB (for some B : SetC → SetC), then the
final morphism is a natural transformation (an homomorphism that respects the arrows of C) and thus, bisimilarity is a
congruence with respect to all the arrows of C.

Proposition 4. Let C be a category and B : SetC → SetC be an endofunctor. Let 〈X, α〉 be a B-coalgebra. If CoalgB has a final
coalgebra, then bisimilarity is a congruence with respect to the arrows in ||C||, i.e., ∀i ∈ |C|, ∀x, y ∈ X(i) if !B

〈X,α〉(x) =!
B
〈X,α〉(y)

then ∀j ∈ |C|, ∀c ∈ C[i, j], !B
〈X,α〉(X(c)(x)) =!

B
〈X,α〉(X(c)(y)).

7. Reactive systems as coalgebras on presheaves

In this section, we provide coalgebras over presheaves corresponding to the reaction relation, the saturated and the IPO
transition systems for a certain reactive system R = 〈C, 0,D,R〉. We will provide these models at two different levels.
In Section 7.1, we will provide coalgebras for endofunctors over Set|C|, i.e., the category of presheaves over the category |C|
(that contains only objects) and then, in Section 7.2, for endofunctors on SetC. At the first level, bisimilarity is not guaranteed
to be a congruence (since there are not arrows in the category |C|), while at the second level, this is ensured by Proposition 4.
Hereafter, we always assume that the base category C is small, i.e., |C| and ||C|| are proper sets (and not classes). Moreover

we assume that ||C|| is a countable set. The latter requirement is needed to ensure that the reaction relation, the saturated
and the IPO transition systems have countable branching degree. All the proofs are in Appendix B.

F. Bonchi, U. Montanari / Theoretical Computer Science 410 (2009) 4044–4066 4059

7.1. Coalgebraic models of reactive systems

Consider the covariant Yoneda embedding y0 : C→ Set (also denoted by C[0,−]) where 0 is the distinguished object of
R. This presheaf associates to any object i ∈ |C| the set C[0, i], i.e., the set of arrows of C having source 0 and target i, while
to any arrow c ∈ C[i, j] associates the function−; c : C[0, i] → C[0, j] that maps each arrow p ∈ C[0, i] into p; c ∈ C[0, j].
We will use this presheaf as the carrier of our coalgebraic models in the next subsection (where we will define models

on SetC). In this section, we will provide models for certain endofunctors on Set|C|, and thus we will use |y0| : |C| → Set,
i.e., the restriction of y0 to the objects of C. It is worth noting that a presheaf on |C| is just a |C|-sorted set and a natural
transformation h : X⇒ Y is simply a |C|-sorted family of functions {hi : X(i)→ Y(i) | i ∈ |C|}.
Endofunctors on presheaves are usually defined as functors on Set acting pointwise. For example, the following

endofunctor is simply the powerset functor defined pointwise. We choose to give an explicit definition, in order to better
explain those endofunctors that will be introduced in the next subsection.

Definition 18. The endofunctor R : Set|C| → Set|C| is defined as follows.
For all objects X ∈ |Set|C||, for all i ∈ |C|, [R(X)](i) = Pc(X(i)).
For all arrows h ∈ ||Set|C|||, R(h) = {Pc(hi) | i ∈ |C|}.

An R-coalgebra consists of a |C|-sorted set X (i.e., X : |C| → Set) and a |C|-sorted family of functions α = {αi : X(i) →
Pc(X(i)) | i ∈ |C|}. Intuitively, αi associates to any state with interface i, the set of states (all with interface i) that are
reachable through an unlabeled transition. Thus, for each reactive systemsR, we can define the corresponding R-coalgebra
as 〈|y0|, αR

〉where αR
i is defined ∀p ∈ C[0, i] as αR

i (p) = {q | p q}.

Definition 19. The endofunctor D : Set|C| → Set|C| is defined as follows.
For all objects X ∈ |Set|C||,
for all i ∈ |C|, [D(X)](i) = Pc(

∑
j∈|C| C[i, j] × X(j)).

For all arrows h ∈ ||Set|C|||, D(h) = {Pc(
∑
j∈|C| C[i, j] × hj) | i ∈ |C|}.

Thus, a D-coalgebra consists of a |C|-sorted set X and a |C|-sorted family of functions α = {αi : X(i) → Pc(
∑
j∈|C| C[i, j] ×

X(j)) | i ∈ C}. Now, αi associates to any state with interface i, the set of its transitions where the label is an arrow in C[i, j]
(for some j) and the arriving state has interface j. For each reactive systemsR, we can define the D-coalgebra corresponding
to the saturated and the IPO transition system as 〈|y0|, αR

S 〉 and 〈|y0|, α
R
I 〉, respectively, where α

R
S,i and α

R
I,i are defined

∀p ∈ C[0, i] as αR
S,i(p) = {(c, q) | p

c
→SAT q} and αR

I,i(p) = {(c, q) | p
c
→I q}.

7.2. Coalgebras on presheaves for reactive system

In the previous subsection we have provided models for reactive systems as coalgebras on Set|C|. In this subsection, we
lift these models to coalgebras on SetC. These constructions provide both a characterization of∼S and∼I as final semantics
and also an alternative proof of the fact that these are congruent with respect to the arrows in C.
First of all, we would like to define an endofunctor R̂ : SetC → SetC such that 〈y0, αR

〉 is an R̂-coalgebra, but this is
usually impossible since αR is not guaranteed to be an arrow of SetC (i.e., a natural transformation).

Example 8. Recall the reactive system N = 〈OPNN , 0,OPNN ,T〉 that has been introduced in Example 3 corresponding
to the open input Petri net in Fig. 2(i). Recall that OPNN has only two objects (0 and 1) and OPNN [0, 0] = OPNN [0, 1] =
{a, b, c, d, e, f , x, y}⊕ and OPNN [1, 1] = {x, y}⊕. The presheaf y0 : OPNN → Set (i.e., OPNN [0,−]) associates to each object
i, the set OPNN [0, i] and to each arrow m ∈ OPNN [i, j] the function −;m : OPNN [0, i] → OPNN [0, j] that coincides with
−⊕m, by definition of OPNN .
The R-coalgebra (Definition 18) corresponding to N is defined as 〈|y0|, αN

〉 where αN maps each state p into the set
of states q such that p q. As an example, consider the multisets a, ax, c and cx of the open net in Fig. 2(i). We have that
cx d, while all the others cannot react. Thus the transition structure αN maps a, ax and c into ∅, while cx into d.
Now suppose that we would like to lift 〈|y0|, αN

〉 to a coalgebra over SetOPNN for some behavioral endofunctor R̂ :
SetOPNN → SetOPNN . In order to have that 〈y0, αN

〉 is an R̂-coalgebra, αN should be a an arrow in SetOPNN [y0, R̂(y0)], that is,
∀i, j ∈ |OPNN | and ∀m ∈ OPNN [i, j] the following diagram should commute in Set.

y0(i)

αN
i

��

y0(m) // y0(j)

αN
j

��
[̂R(y0)](i)

[̂R(y0)](m)
// [̂R(y0)](j)

4060 F. Bonchi, U. Montanari / Theoretical Computer Science 410 (2009) 4044–4066

But, in our case, this is impossible for all functors R̂. Indeed, take i and j as the object 1 andm as the multiset x. We have that
a, c ∈ OPNN [0, 1] (that is y0(1)) and y0(x)(a) = a; x = ax and y0(x)(c) = c; x = cx and thus αN

1 (y0(x)(a)) = α
N
1 (ax) = ∅

and αN
1 (y0(x)(c)) = αN

1 (cx) = {d}. Now note that both α
N
1 (a) and α

N
1 (c) are equal to ∅, and thus, in order to make the

above diagram commute we must have both [̂R(y0)](x)(∅) = {d} and [̂R(y0)](x)(∅) = ∅. This is clearly impossible for all
functions [̂R(y0)](x).

y0(1)

αN
1

��

y0(x) // y0(1)

αN
1

��
[̂R(y0)](1)

[̂R(y0)](x)
// [̂R(y0)](1)

Summarizing, there cannot exist such functor R̂ because a and c perform the same transitions, while ax and cx perform
different transitions.

The above example shows that usually we cannot define a coalgebra on presheaves that models the reaction relation of a
reactive system. However, it is always possible to define these coalgebraic models for the saturated and the IPO transition
systems.

Definition 20. The endofunctor S : SetC → SetC is defined as follows.
For all objects X ∈ |SetC|,
for all i ∈ |C|, [S(X)](i) = Pc(

∑
j∈|C| C[i, j] × X(j));

for all i, j ∈ |C| and c ∈ C[i, j], [S(X)](c) : [S(X)](i)→ [S(X)](j)maps

A into {(d, q) | (c; d, q) ∈ A}.

For all arrows h ∈ ||SetC||, S(h) = {Pc(
∑
j∈|C| C[i, j] × hj) | i ∈ |C|}.

Notice that the functor S simply extends the definition of D to the arrows of C. Intuitively, an S-coalgebra is a functor
X : C→ Set (i.e., a |C|-sorted set togetherwith a functionX(c) for each c ∈ ||C||) and a natural transformationα : X⇒ S(X).
We can prove that the transition structure αR

S is always a natural transformation from y0 to S(y0).

Proposition 5. 〈y0, αR
S 〉 is an S-coalgebra.

Now consider the coalgebra 〈y0, αR
I 〉 corresponding to the IPO transition system. Usually it is not an S coalgebra, because

αR
I is not a natural transformation from y0 to S(y0).

Example 9. Here we show that αN
I (N is the reactive system of Example 3) is not a natural transformation from y0 to S(y0).

OPNN [0, 1]

αR
I,1

��

−;y // OPNN [0, 1]

αR
I,1

��
Pc(OPNN [1, 1] × OPNN [0, 1])

[S(y0)](y)
// Pc(OPNN [1, 1] × OPNN [0, 1])

Consider the ipots of cx and cxy of the open input petri net in Fig. 2(i). We have that cx
ε
→I d and cxy

ε
→I dy. Thus

αR
I (cx) = {(ε, d)} and α

R
I (cxy) = {(ε, dy)}. The latter is equal to α

R
I (−; y)(cx), but [S(y0)](y)(α

R
I (cx)) = ∅. Indeed, by

Definition 20, [S(y0)](y)(αR
I (cx)) = {(u, v) | (y; u, v) ∈ {(ε, d)}}. Then, the above diagram does not commute.

In order to characterize the IPO transition system as a coalgebra on SetC, we have to define a new endofunctor that behaves
differently on the arrows of C.

Definition 21. The endofunctor I : SetC → SetC is defined as follows.
For all objects X ∈ |SetC|,
for all i ∈ |C|, [I(X)](i) = Pc(

∑
j∈|C| C[i, j] × X(j));

for all i, j ∈ |C| and c ∈ C[i, j], [I(X)](c) : [I(X)](i)→ [I(X)](j)maps

A into {(f ,X(d′′)(q)) | (g, q) ∈ A and the following is an IPO in C}.

F. Bonchi, U. Montanari / Theoretical Computer Science 410 (2009) 4044–4066 4061

k

j

f BB����
l

d′′\\::::

i
c

\\:::: g

BB����

For all arrows h ∈ ||SetC||, S(h) = {Pc(
∑
j∈|C| C[i, j] × hj) | i ∈ |C|}.

Proposition 6. IfR has redex-RPOs, then 〈y0, αR
I 〉 is an I-coalgebra.

Until now, we have characterized the saturated and the IPO transition systems as coalgebras on SetC. In order to also
characterize saturated and IPO bisimilarities as final semantics, we need the existence of final coalgebras.

Proposition 7. CoalgS and CoalgI have final coalgebras.

Since 〈y0, αR
S 〉 is an S-coalgebra and since there exists a final coalgebra 1S in CoalgS, then the unique morphism !S

〈y0,αR
S 〉
:

〈y0, αR
S 〉 → 1S identifies all and only the saturated bisimilar states. Moreover, by Proposition 4, saturated bisimilarity is a

congruence w.r.t. the arrows in ||C||. Analogously for IPO bisimilarity.

Corollary 2. LetR = 〈C, 0,D,R〉 be a reactive system.
Then ∀i ∈ |C| and ∀p, q ∈ C[0, i]:

1. p ∼S q if and only if !S
〈y0,αR

S 〉
(p) =!S

〈y0,αR
S 〉
(q),

2. if p ∼S q then ∀j ∈ |C|, ∀c ∈ C[i, j] p; c ∼S q; c.

IfR has redex-RPOs, then ∀i ∈ |C| and ∀p, q ∈ C[0, i]:

3. p ∼I q if and only if !I
〈y0,αR

I 〉
(p) =!I

〈y0,αR
I 〉
(q),

4. if p ∼I q then ∀j ∈ |C|, ∀c ∈ C[i, j] p; c ∼I q; c.

8. Conclusions

Themain contribution of the paper is the appreciation of saturated semantics. Thesewere already known in the literature
[51,33], but were dismissed as not promising. In this paper (and, more extensively, in [6]) we have shown some interesting
examples where saturated semantics coincide with the ordinary semantics, while IPO semantics are too fine-grained. The
problem of the strictness of IPO semantics is also faced in [44–46] where, inspired by the theory of reactive systems, Rathke
and Sobociński propose a new theory for labels derivations. As future work, we would like to investigate the relationship
between this new theory and saturated semantics. Recent results shown in [9] prove that the two approaches coincide in
the case of Mobile Ambients [16].
Since, by definition, saturated semantics consider all the contexts allowing a reaction (possibly infinitely many), we have

proposed the semi-saturated game that allows to recover saturated semantics by considering only theminimal contexts. This
technique has been introduced here for bisimilarity and (a kind of) trace equivalence, but it can be also applied to different
equivalences. For example, in [9], it has been used for both strong and weak barbed bisimilarity. Moreover, in this paper we
have integrated the semi-saturation into the IPO framework, but it could be applied also to G-reactive systems [50] and
open reactive systems [31]. Besides the theory of reactive systems and the problem of labels derivations, semi-saturated
bisimilarity can be employed for symbolic semantics [28]. In [13,6], we have shown that the symbolic semantics of some
process calculi are instances of our semi-saturated bisimiliarity (properly extended to manage also labeled transitions). For
example, open bisimilarity for π-calculus [48] is an instance of our saturated bisimilarity and its efficient characterization
through symbolic semantics is an instance of our semi-saturated bisimilarity.
The coalgebraic models presented in the last part of the paper provide both a characterization of saturated and IPO

bisimilarity as final semantics and an alternative proof of the fact that they are congruences. In this paper we have
omitted the coalgebraic characterization of semi-saturated bisimilarity that was proposed in [12] by means of normalized
coalgebras. These are a special kind of structured coalgebras [18] that, analogously to the semi-saturated technique, allow
one to efficiently check saturated bisimilarity by considering only the IPO transitions. We are confident that investigating
normalized coalgebras in the perspective proposed in this paper, we could define a general theory that relates coalgebras
over presheaves (that elegantly model many nominal calculi) and normalized coalgebras (that allow one to efficiently check
their abstract semantics).

4062 F. Bonchi, U. Montanari / Theoretical Computer Science 410 (2009) 4044–4066

Appendix A. Proofs of Section 4.2

Proposition 2. In a reactive system where all contexts are reactive and φ defines a composition-reflecting subcategory, 'φSAT is
a congruence.

Proof. We show that {(c[p], c[q]) s.t. p 'φSAT q} ⊆'
φ

SAT .
First of all, we have to prove that φ(c[p]) if and only if φ(c[q]). We prove that, if φ(c[p]) then φ(c[q]) (the other direction is
analogous). Since φ defines a composition-reflecting subcategory, if φ(c[p]) then φ(c) and φ(p). From the latter we derive
that φ(q) (since p 'φSAT q) and from the former we derive φ(c[q]).

Now, Suppose that c[p]
l
�S p′ ∧ φ(p′), then c[p] = p1

l1
→SAT p2 · · · pn

ln
→SAT pn+1 = p′ and l = l1; l2; ...; ln. Then

p
c[−];l1
→SAT p2 and thus p

c[−];l
�S p′. Since p '

φ

SAT q, then q
c[−];l
�S q′ and φ(q′). Because c[−] is reactive, c[q]

l
�S q′. �

Proposition 3. In a reactive system with redex and context RPOs, where all contexts are reactive and φ defines a composition-
reflecting subcategory,'φI is a congruence.

k6

k4

j1
??�����

k2
c[−]

__?????
k3

d1

^̂>>>>>>>>>>>>>

0
p

__>>>>> l1

??�����

k6

k4

j1
??�����

k5

d′′1
__?????

k2
c[−]

__?????
g1

??�����
k3

d′1
__?????

0
p

`̀@@@@@ l1

>>~~~~~

k6

k4

j1
??�����

k5

d′′1
__?????

k2
c[−]

__?????
g1

??�����
k3

e
__?????

0
q

`̀@@@@@ l′1

>>~~~~~

(i) (ii) (iii)

Proof. In order to prove this theoremwewill use the composition and decomposition properties of IPOs, namely Proposition
2.1 and Proposition 2.2 of [33]. We have to prove that if p 'φI q then c[p] '

φ

I c[q].

Suppose that c[p]
j
�I p′ ∧ φ(p′), then c[p] = p1

j1
→I p2 . . . pn

jn
→I pn+1 = p′ and j = j1; j2; . . . ; jn.

To make clear the presentation we first showwhat happens in the case that n = 1, and then we extend the reasoning for
all n. Notice that this is not a proof by induction on n.

If c[p] = p1
j1
→I p2 = p′ and φ(p′), then there exists an IPO square like diagram (i) above, where 〈l1, r1〉 ∈ R and

p2 = r1; d1. Since, by hypothesis, the reactive systems has redex-RPOs, then we can construct an RPO as the one in diagram
(ii) above. In this diagram, the lower square is an IPO, since RPOs are also IPOs (Proposition 1 of [33]). Since the outer square
is an IPO and the lower square is an IPO, by IPO decomposition property, it follows that also the upper square is an IPO.
Moreover, since φ defines a composition-reflecting subcategory, we have that φ(r1), φ(d′1) and φ(d

′′

1). Now the lower square

in diagram (ii) is an IPO, and then p
g1
→I r1; d′1 with φ(r1; d

′

1). Since p '
φ

I q, then q
g1
→I q2 with φ(q2). This means that the

lower square in diagram (iii) is an IPO and 〈l′1, r
′

1〉 ∈ R and q2 = r ′1; e. Notice that since φ(q2), then φ(r
′

1) and φ(e). Now,
since the lower and the upper square of diagram (iii) are IPOs then, by IPO composition, also the outer square is an IPO. This

means that c[p]
j1
→I r ′1; e; d

′′

1 . Moreover, since φ(d
′′

1), then also φ(r
′

1; e; d
′′

1).
We can repeat the procedure above for any n.

ki6

ki4

ji
@@�����

ki5

d′′i
^̂<<<<<

ki2
d′′i−1

^̂<<<<<
gi

@@�����
ki3

d′i
^̂<<<<<

0
pi

__????? li

??�����

kz

k4

j ??�����
ku

d′′n
__?????

k2
c[−]

__????? g

??�����

kz

k8

α
??�����

ku

d′′n
__?????

k4

i1
??�����

k7

d′′′1
__?????

f 2m

??�����

k2
c[−]

__????? f1

??�����

(i) (ii) (iii)

Suppose that c[p] = p1
j1
→I p2 . . . pn

jn
→I pn+1 = p′ and φ(p′). For all i = 1 . . . n, by definition of

ji
→I , we have that the

outer square in diagram (i) is an IPO, where pi; d′′i−1 = pi, 〈li, ri〉 ∈ R and ri; d′i; d
′′

i = pi+1. Moreover p1 = p and d
′′

0 = c[−].
By decomposition property, the lower and the upper square in diagram (i) are IPOs and pi+1 = ri; d′i . Therefore

p = p1
g1
→I p2 · · · pn

gn
→I pn+1. Since pn+1 = pn+1; d′′n and φ(pn+1), it holds that φ(d

′′
n) and φ(pn+1). By composition property,

the diagram (ii) is an IPO, because it is the composition of n squares as the upper square of diagram (i) that are all IPOs.

F. Bonchi, U. Montanari / Theoretical Computer Science 410 (2009) 4044–4066 4063

Let g = g1; g2 . . . gn. Since p '
φ

I q and p
g
�I pn+1 with φ(pn+1), then q

g
�I q′ and φ(q′). Unfortunately this does not mean

that q
g1
→I q2 · · · qn

gn
→I qn+1, because g can be decomposed in many ways. So we have that exists f1, f2, . . . , fm such that

f1; f2; . . . ; fm = g and q
f1
→I q2 . . . qm

fm
→I qm+1 = q′.

Let f im = fi; fi+1; . . . ; fm, then g = f1; f
2
m. Since diagram (ii) commutes, and since by hypothesis the reactive system have

context RPOs,we can construct the RPO between c[−] and f1, like diagram (iii) above,where i1;α = j. Since RPOs are IPO, the
lower square of diagram (iii) is an IPO. Since, the outer square of diagram (iii) is an IPO (it is diagram (ii)), by decomposition

property, it follows that also the upper square is an IPO. Since, q
f1
→I q2 and since the lower square in diagram (iii) is an IPO,

it follows that c[p]
i1
→I q2; d′′′1 .

Now, since the upper square in diagram (iii) is an IPO, we can iterate this procedure, obtaining that c[q]
i1
→I

q2; d′′′1 . . . qm
im
→I qm+1; d′′n . Since j = i1; i2; . . . ; im, then c[q]

j
� qm+1; d′′n and φ(qm+1; d

′′
n) because φ(qm+1) and φ(d

′′
n).

In order to complete the proof, we have to prove that φ(c[p]) if and only if φ(c[q]). This follows from the same arguments
of the proof of Proposition 2. �

Theorem 4. In a reactive systemwith redex IPOs, where all contexts are reactive, and such thatφ defines a composition-reflecting
subcategory, then'φSS ='

φ

SAT .

k4

k2

d′′i−1;hi
??�����

gi
// k5

d′′i

OO

k3
d′i

oo

di
__?????

0
pi

`̀@@@@@ li

>>~~~~~

k6

k4

h
??�����

k5

f 2m;d
′′
n

__?????

k2
id

__?????
f1

??�����
k3

e1
__?????

0
q1

`̀@@@@@ x1

>>~~~~~

k6

k4

id
??�����

k5

f i+1m ;d′′n
__?????

k2
d′′i−1

__?????
fi

??�����
k3

ei
__?????

0
qi

`̀@@@@@ xi

>>~~~~~

(i) (ii) (iii)

Proof. If p 'φSAT q then, trivially, p '
φ

SS q.

For the other inclusion, let us consider the diagrams above. We suppose that p 'φSS q and we prove that p
h
�S p′ ∧ φ(p′)

implies q
h
�S q′ ∧ φ(q′). If p

h
�S p′ then there exist h1, . . . , hn such that h1; . . . ; hn = h and p = p1

h1
→SAT p2 . . . pn

hn
→SAT

pn+1 = p′, and then ∃〈li, ri〉 ∈ R, di ∈ D such that pi; hi = li; di and pi+1 = ri; di. Note that for all i diagram (i) commutes
and the lower square is an IPO, where p1 = p, d′′0 = id and pi = pi; d

′′

i−1. Then p = p1
g1
→I p2 . . . pn

gn
→I pn+1. Since

pn+1 = pn+1; d′′n and φ(pn+1) then φ(pn+1) and φ(d
′′
n). Let g = g1; . . . ; gn, then q

g
�S q′ ∧ φ(q′) and there exist f1, f2, . . . , fm

such that g = f1; f2; . . . ; fm and q = q1
f1
→SAT q2 . . . qm

fm
→SAT qm+1 = q′. By f im we denote fi; fi+1; . . . ; fm. Note that h = g; d

′′
n

,i.e., h = f1; f 2m; d
′′
n , and then q

h
→SAT q2; f 2m; d

′′
n

id
→SAT q3; f 3m; d

′′
n . . . qm; f

m
m ; d

′′
n

id
→SAT qm+1; d′′n (as illustrated in diagram (iii)).

Indeed φ(qm+1; d′′n) because φ(qm+1) and φ(d
′′
n).

In order to complete the proof, we have to prove that φ(c[p]) if and only if φ(c[q]). This follows from the same arguments
of the proof of Proposition 2. �

Appendix B. Proofs of Section 7

Proposition 5. 〈y0, αR
S 〉 is a S-coalgebra.

Proof. In order to prove the above proposition we must just show that αR
S is a natural transformation from y0 to S(y0), i.e.,

we have to prove that ∀i, j ∈ |C| and ∀c ∈ C[i, j], the following diagram commutes.

C[0, i]

αR
S,i

��

−;c // C[0, j]

αR
S,j

��
Pc(
∑
k∈|C| C[i, k] × C[0, k])

[S(y0)](c)
// Pc(

∑
k∈|C| C[j, k] × C[0, k])

4064 F. Bonchi, U. Montanari / Theoretical Computer Science 410 (2009) 4044–4066

Let p ∈ C[0, i]. If p; c d
→SAT q (i.e., (d, q) ∈ αR

S,j(p; c)), then p
c;d
→SAT q (i.e., (c; d, q) ∈ αR

S,i(p)). Now, by definition of S, we
have that (d, q) ∈ [S(y0)](c)(αR

S,i(p)). This prove that α
R
S,j(p; c) ⊆ [S(y0)](c)(α

R
S,i(p)).

The other direction is analogous. �

Proposition 6. IfR has redex-RPOs, then 〈y0, αR
I 〉 is a I-coalgebra.

Proof. In order to prove the above proposition we must simply show that αR
I is a natural transformation from y0 to I(y0),

i.e., we have to prove that ∀i, j ∈ |C| and ∀c ∈ C[i, j], the following diagram commutes.

C[0, i]

αR
S,i

��

−;c // C[0, j]

αR
S,j

��
Pc(
∑
k∈|C| C[i, k] × C[0, k])

[I(y0)](c)
// Pc(

∑
k∈|C| C[j, k] × C[0, k])

Let p ∈ C[0, i]. If p; c
f
→I q (i.e., (f , q) ∈ αR

I,j(p; c)), then there exists d ∈ D, 〈l, r〉 ∈ R such that q = r; d and diagram (i)
below is an IPO.

i6

j

f
AA�������

i

c

]]<<<<<<<
i3

d

^̂================

0
p

^̂======= l

@@������

i6

j

f
AA�������

i5

d′′
^̂======

i

c

]]<<<<<<<
g

@@�������
i3

d′
^̂======

d

ll

0
p

__>>>>>>> l

??������

(i) (ii)

Since diagram (i) is a redex square, and since by hypothesisR has redex-RPOs, we can construct an RPO as in diagram (ii).
Since RPOs are IPOs (Proposition 1 of [33]) then the bottom square of diagram (ii) is an IPO. Moreover, by IPOs decomposition
(Proposition 2.2 of [33]), we have that also the top square is an IPO. Thus p

g
→I r; d′ (i.e., (g, r; d′) ∈ αR

I,i(p)). Since the top
square is an IPO, by definition of I, we have that (f , r; d′; d′′) ∈ [I(y0)](c)(αR

I,i(p)), i.e., that (f , q) ∈ [I(y0)](c)(α
R
I,i(p)).

For the other direction, we proceed as before but we use IPO composition (Proposition 2.1 of [33]) instead of
decomposition. �

Proposition 7. CoalgS and CoalgI have final coalgebras.

Sketch of proof. This proposition was proved in [12] relying on the theory of structured coalgebras [18]. Differently from
the well-known bialgebras [54], structured coalgebras are just coalgebras defined on a category of algebras AlgΓ for some
algebraic specification Γ .
We can look at the category SetC as the category AlgΓ (C), where the specification Γ (C) is defined as follow.

specification Γ (C) =
sorts
i ∀i ∈ |C|

operations
c : i→ j ∀c ∈ C[i, j]

equations
idi(x) = x
e(d(x)) = c(x) ∀d; e = c.

It is easy to see that everyΓ (C)-algebra is a functor from C to Set and viceversa every functor from C to Set is aΓ (C)-algebra.
The same can be said for morphisms. Thus, our functors S : SetC → SetC and I : SetC → SetC are also endofunctors on
AlgΓ (C). These are respectively, the functors F and I of [12], where we proved that final coalgebras exist for these functors.
Hereafter we recall the argument of that proof.
Consider the forgetful functor V : AlgΓ (C) → Set|C|, that maps each AlgΓ (C)-algebra into its (AlgΓ (C)-sorted) carrier set.

Now recall the functorD : Set|C| → Set|C| (Definition 19). It is easy to see that both S and I are liftings ofD along the forgetful
functor V, i.e. V;D = S;V and V;D = I;V.

F. Bonchi, U. Montanari / Theoretical Computer Science 410 (2009) 4044–4066 4065

Proposition 19 of [18] proves that, if an endofunctor BΓ is a lifting (along a forgetful functor) of some functor B having
final coalgebra, then also BΓ has a final coalgebra.
From this proposition and the above observations, it follows that, if D has final coalgebra, then also I and S have final

coalgebras.
To prove that D has final coalgebra we can use a well-known result from [1]: an endofunctor B on some category C has

final coalgebra if C is locally finitely presentable and B is accessible.
Now, D : Set|C| → Set|C| has final coalgebra because Set|C| is locally finitely presentable (Example 1.12 of [1]) and it is

accessible (by standard argument on accessibility of Pc). �

References

[1] Jirí Adamek, Jirí Rosicky, Locally Presentable and Accessible Categories, vol. 189, Cambridge University Press, 1994.
[2] RobertoM. Amadio, Ilaria Castellani, Davide Sangiorgi, On bisimulations for the asynchronous pi-calculus, in: Proc. of CONCUR ’96, in: LNCS, vol. 1119,
Springer, 1996, pp. 147–162.

[3] Paolo Baldan, Andrea Bracciali, Roberto Bruni, Bisimulation by unification, in: Proc. of AMAST ’02, in: LNCS, vol. 2422, Springer, 2002, pp. 254–270.
[4] Paolo Baldan, Andrea Corradini, Hartmut Ehrig, Reiko Heckel, Compositional semantics for open petri nets based on deterministic processes,
Mathematical Structures in Computer Science 15 (1) (2005) 1–35.

[5] Gérard Berry, Gérard Boudol, The chemical abstract machine, Theoretical Computer Science 96 (1992) 217–248.
[6] Filippo Bonchi, Abstract semantics by observable contexts, Ph.D. Thesis, University of Pisa, 2008.
[7] Filippo Bonchi, Maria Grazia Buscemi, Vincenzo Ciancia, Fabio Gadducci, A category of explicit fusions, in: Concurrency, Graphs and Models, in: LNCS,
vol. 5065, Springer, 2008, pp. 544–562.

[8] Filippo Bonchi, Fabio Gadducci, Barbara König, Process bisimulation via a graphical encoding, in: Proc. of ICGT ’06, in: LNCS, vol. 4178, 2006,
pp. 168–183.

[9] Filippo Bonchi, Fabio Gadducci, Giacoma V. Monreale, Labelled transitions for mobile ambients (as synthesized via a graphical encoding), in:
Expressiveness in Concurrency, in: ENTCS, Elsevier, 2008 (forthcoming).

[10] Filippo Bonchi, FabioGadducci, GiacomaV.Monreale, Reactive systems, barbed semantics and themobile ambients, in: Proc. of FoSSaCS ’09, in: Lecture
Notes in Computer Science, vol. 5504, Springer, 2009, pp. 272–287.

[11] Filippo Bonchi, Barbara König, Ugo Montanari, Saturated semantics for reactive systems, in: Logic in Computer Science, IEEE, 2006, pp. 69–80.
[12] Filippo Bonchi, Ugo Montanari, Coalgebraic models for reactive systems, in: Proc. of CONCUR ’07, in: LNCS, vol. 4701, Springer, 2007, pp. 364–380.
[13] Filippo Bonchi, Ugo Montanari, Symbolic semantics revisited, in: Proc. of FoSSaCS ’08, in: LNCS, vol. 4962, Springer, 2008, pp. 395–412.
[14] Roberto Bruni, Fabio Gadducci, Ugo Montanari, Pawel Sobociński, Deriving weak bisimulation congruences from reduction systems, in: Proc. of

CONCUR ’05, in: LNCS, vol. 3653, Springer, 2005, pp. 293–307.
[15] Roberto Bruni, UgoMontanari, Francesca Rossi, An interactive semantics of logic programming, Theory and Practice of Logic Programming 1 (6) (2001)

647–690.
[16] Luca Cardelli, Andrew D. Gordon, Mobile ambients, Theoretical Computer Science 240 (1) (2000) 177–213.
[17] Gian Luca Cattani, Peter Sewell, Models for name-passing processes: Interleaving and causal, in: Logic in Computer Science, IEEE.
[18] Andrea Corradini, Martin Große-Rhode, Reiko Heckel, A coalgebraic presentation of structured transition systems, Theoretical Computer Science 260

(2001) 27–55.
[19] Andrea Corradini, Reiko Heckel, Ugo Montanari, From sos specifications to structured coalgebras: How to make bisimulation a congruence, ENTCS 19

(1999).
[20] Pietro di Gianantonio, Furio Honsel, Marina Lenisa, Rpo, second-order contexts, and λ-calculus, in: Proc. of FoSSaCS ’08, in: LNCS, vol. 4962, Springer,

2008, pp. 334–349.
[21] Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, Ugo Montanari, Grzegorz Rozenberg (Eds.), Handbook of Graph Grammars and Computing by

Graph Transformation, vols. 1–3, World Scientific, 1997–1999.
[22] Moreno Falaschi, Giorgio Levi, Catuscia Palamidessi,MaurizioMartelli, Declarativemodeling of the operational behavior of logic languages, Theoretical

Computer Science 69 (3) (1989) 289–318.
[23] Marcelo P. Fiore, Eugenio Moggi, Davide Sangiorgi, A fully abstract model for the pi-calculus, Information and Computation 179 (1) (2002) 76–117.
[24] Marcelo P. Fiore, Daniele Turi, Semantics of name and value passing, in: Logic in Computer Science, IEEE, 2001, pp. 93–104.
[25] Neil Ghani, Kidane Yemane, Björn Victor, Relationally staged computations in calculi of mobile processes, ENTCS 106 (2004) 105–120.
[26] J. Goguen, What is unification? A categorical view of substitution, equation and solution, in: Resolution of Equations in Algebraic Structures, 1989,

pp. 217–261.
[27] Davide Grohmann,MarinoMiculan, Reactive systems over directed bigraphs, in: Proc. of CONCUR ’07, in: LNCS, vol. 4703, Springer, 2007, pp. 380–394.
[28] Matthew Hennessy, H. Lin, Symbolic bisimulations, Theoretical Computer Science 138 (2) (1995) 353–389.
[29] Ole H. Jensen, Robin Milner, Bigraphs and transitions, in: POPL, IEEE, 2003, pp. 38–49.
[30] Ekkart Kindler, A compositional partial order semantics for petri net components, in: Proc. of ATPN ’97, in: LNCS, vol. 1248, 1997, pp. 235–252.
[31] Bartek Klin, Vladimiro Sassone, Pawel Sobociński, Labels from reductions: Towards a general theory, in: Proc. of CALCO ’05, in: LNCS, vol. 3629,

Springer, 2005, pp. 30–50.
[32] F. William Lawvere, Some algebraic problems in the context of functorial semantics of algebraic theories, in: Proc. of the Midwest Category Seminar

II, in: Lecture Notes in Mathematics, vol. 61, 1968, pp. 41–61.
[33] James J. Leifer, Robin Milner, Deriving bisimulation congruences for reactive systems, in: Proc. of CONCUR ’00, in: LNCS, vol. 1877, Springer, 2000,

pp. 243–258.
[34] James J. Leifer, Robin Milner, Transition systems, link graphs and petri nets, Mathematical Structures in Computer Science 16 (6) (2006) 989–1047.
[35] Massimo Merro, Francesco Zappa Nardelli, Behavioral theory for mobile ambients, Journal of the ACM 52 (6) (2005) 961–1023.
[36] Marino Miculan, Kidane Yemane, A unifying model of variables and names, in: Proc. of FoSSaCS ’05, in: LNCS, vol. 3441, Springer, 2005, pp. 170–186.
[37] Robin Milner, Bigraphical reactive systems, in: Proc. of CONCUR ’01, in: LNCS, vol. 2154, Springer, 2001, pp. 16–35.
[38] Robin Milner, Bigraphs for petri nets, in: Lectures on Concurrency and Petri Nets, in: LNCS, vol. 3098, Springer, 2004, pp. 686–701.
[39] Robin Milner, Pure bigraphs: Structure and dynamics, Information and Computation 204 (2006) 60–122.
[40] Robin Milner, Local bigraphs and confluence: Two conjectures, ENTCS 175 (3) (2007) 65–73.
[41] Robin Milner, Joachim Parrow, David Walker, A calculus of mobile processes, (i) and (ii), Information and Computation 100 (1) (1992) 1–40, 41–77.
[42] Robin Milner, Davide Sangiorgi, Barbed bisimulation, in: Proc. of ICALP ’92, in: LNCS, vol. 623, Springer, 1992, pp. 685–695.
[43] Ugo Montanari, Vladimiro Sassone, Dynamic congruence vs. progressing bisimulation for ccs, Fundamenta Informaticae 16 (1) (1992) 171–199.
[44] Julian Rathke, Pawel Sobocinski, Deconstructing behavioural theories of mobility, in: Theoretical Computer Science, in: IFIP, vol. 273, Springer, 2008.
[45] Julian Rathke, Pawel Sobociński, Deriving structural labelled transitions for mobile ambients, in: Proc. of CONCUR ’08, in: LNCS, vol. 5201, Springer,

2008.
[46] Julian Rathke, Pawel Sobocinski, Making the unobservable, unobservable (2008) (forthcoming).
[47] Jan J.M.M. Rutten, Universal coalgebra: A theory of systems, Theoretical Computer Science 249 (1) (2000) 3–80.
[48] Davide Sangiorgi, A theory of bisimulation for the pi-calculus, Acta Informatica 33 (1) (1996) 69–97.

4066 F. Bonchi, U. Montanari / Theoretical Computer Science 410 (2009) 4044–4066

[49] Vladimiro Sassone, Pawel Sobociński, A congruence for Petri nets, in: Petri Nets and Graph Transformation, in: ENTCS, vol. 127, Elsevier, 2005,
pp. 107–120.

[50] Vladimiro Sassone, Pawel Sobociński, Locating reaction with 2-categories, Theoretical Computer Science 333 (1–2) (2005) 297–327.
[51] Peter Sewell, From rewrite to bisimulation congruences, in: Proc. of CONCUR ’98, in: LNCS, vol. 1466, Springer, 1998, pp. 269–284.
[52] Pawel Sobociński, Deriving process congruences from reaction rules, Ph.D. Thesis, University of Aarhus, 2004.
[53] Ian Stark, A fully abstract domain model for the π-calculus, in: Logic in Computer Science, IEEE, 1996, pp. 36–42.
[54] Daniele Turi, Gordon D. Plotkin, Towards a mathematical operational semantics, in: Logic in Computer Science, IEEE, 1997, pp. 280–291.
[55] Lucian Wischik, Philippa Gardner, Explicit fusions, Theoretical Computer Science 340 (3) (2005) 606–630.

	Reactive systems, (semi-)saturated semantics and coalgebras on presheaves
	Introduction
	The theory of reactive systems
	Suitability of IPO and saturated semantics
	Semi-saturated semantics
	Semi-saturated and symbolic bisimilarity
	Semi-saturated trace equivalences

	Logic programming
	Goals equivalences
	Logic programs as reactive systems
	Saturated and IPO abstract semantics

	Coalgebras (on presheaves)
	Reactive systems as coalgebras on presheaves
	Coalgebraic models of reactive systems
	Coalgebras on presheaves for reactive system

	Conclusions
	Proofs of sec:SStracesecSection Sections
	Proofs of rscoalgebraspresheavessecSection Sections
	References

