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Abstract-Space-clamped FitzHugh-Nagumo nerve model subjected to a stimulating electrical 
current of form Zo + Zcos yt is investigated via Poincaré map and numerical continuation. If Z = 0, 
it is known that Hopf bifurcation occurs when Zo is neither too smal1 nor too large. Given such 
an Zo. If y is chosen close to the natural frequency of the Hopf bifurcated oscillation, a series of 
exotic phenomena varying with Z are observed numerically. Let 27rX/7 denote the generic period 
we watched. Then the scenario consists of two categories of period-adding bifurcation. The first 
category consists of a sequence of hysteretic, X + X + 2 period-adding starting with X = 1 at Z = O+, 
and ending at some finite Z, say Z,, as X - 00. The second category contains multiple levels of 
period-adding bifurcation. The top leve1 consists of a sequence of X + X + 1, period-adding starting 
with X = 2 at Z = Z, From this sequence, a hierarchy of m -+ m + n -+ n, period-adding in between 
are derived. Such a regular pattern is sometimes interrupted by a series of chaos. This category 
of bifurcation also terminates at some finite Z. Harmonie resonance sets in afterwards. Lyapunov 
exponents, power spectra, and frsctal dimensions are used to assist these observations. 

Keywords-FitzHugh-Nagumo equations, Bistability, Period-adding, Chsos. 

1. INTRODUCTION 
A system formed by the FitzHugh-Nagumo (FHN) equations is known as a simplified model of 
the Hodgkin-Huxley equations for the nerve membrane [l-51. When such a system is space- 
clamped and subjected to a stimulating electrical current shaped by the Heaviside function with 
a step 1,,, persistent oscillations are observed in certain numerical simulations [4,6] if I0 is neither 
too smal1 nor too large. Given such an 10, we are then interested in the consequente of imposing 
a sinusoidal perturbation of form Icos yt upon the base current. In the following sections we 
shall show that, if y is chosen close to the natura1 frequency of the unperturbed oscillation, exotic 
bifurcation phenomena varying with I can take place in a way similar to that in connection with 
the Van der Pol equation [7,8]. Namely, period-adding is a common route to chaos for these two 
types of oscillators. 

The space-clamped FHN equations with the aforesaid forcing term can be written as 

ut=f(u)-w+Io+ICOS~t, f(u) = -u(u - a)(u - l), (1) 

wt = p(eU - w), t>o (2) 

where 0 < Q < 1 and 0, y, and 0 are positive parameters. The current parameters &,1 are 
assumed to be nonnegative. 
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We first recall from om previous work [6) some facts about the case 1 = 0. Iet (u*,v*) 
designate a generic steady state of (1) and (2). If 

19 > ’ - :+ a2 (single steady state), - 

then (u*,v*) is unique for any 1,,. Otherwise, if 

(1 - a)2 
- < 0 < ’ - 3’ a2 (multiple steady states), 

4 

multiple (u*, v*) occur for a certain range of positive 1,,. The condition for 
taking place at (u*, v*) is given by 

f’(u*) = /? and p < 0 (condition for Hopf bifurcation), 

(3) 

(4) 

Hopf bifurcation 

(5) 

where f is defined in (1). In terms of &, the possible bifurcation points are given by 

I$ = eu* - f(u*), U*= (l+o)f&-a+c&3B 
3 

These two points do exist and satisfy I; < I$, if p is smal1 enough. 
There is a significant differente between the existente of single and multiple steady states. If (3) 

holds, soft Hopf bifurcation takes place in the sense that stable periodic solutions are found for I0 
located in an interval, ti, equal to [Ir, I$]; if (4) holds, this interval ‘FI is somewhat larger. We 
cal1 the latter case hard Hopf bifurcation in which bistability is present. There is, however, one 
thing in common that the related periods for either type of bifurcation are in general quite large, 
if a transition to relsxation oscillation is involved in the course of path-following with varied 1,. 

Now, we restore the sinusoidal perturbation Icosyt to a base current I0 with respect to which 
the Hopf bifurcated oscillation is known to have period 27rT,. The perturbation frequency y is 
chosen such that y .T, = U(l), because subharmonic resonance is expected in this range from the 
genera1 consideration of nonlinear dynamics. For a more detailed consequente, direct numerical 
simulation is inevitable. 

The numerical methods we used are presented in Section 2. A mixture of global and local 
analyses is adopted in this work. Section 3 presents several worked examples towards completing 
a bifurcation diagram which reveals a variety of period-adding phenomena typical to a sinusoidally 
forced FHN system. 

2. DESCRIPTION OF NUMERICAL METHODS 

2.1. Poincaré Map and Interpolated Cel1 Mapping 

Over the phase space (i.e., the uv-plane) a uniform grid is constructed to cover a rectangular 
region containing the possible attractors. Started from each grid point, equations (1) and (2) 
are integrated numerically for t running from 0 to 27r/7. As noticed above, y is smal1 in gen- 
eral. Therefore, quality control over such long-term integrations is needed. Numerical solvers of 
Adams-Gear type such as LSODE [9] and of Runge-Kutta type such as RKF45 [lO] are used, and 
they yield similar accuracy. 

To mimic the continuous Poincaré map the grid should be dense enough, and the huge collection 
of grid points are then traced by repeatedly applylng the numerical integration mentioned above. 
It can be expected that such an integration procedure wil1 become quite expensive eventually. 

This burden can be alleviated by the so-called interpolated cel1 mapping [ll]. After constructing 
the discrete grid map by numerical integration over the first period, we introduce cellwise bilinear 
interpolation to obtain a continuous version of this map. Denote it by M. A cell, Ci,j, is a smal1 
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rectangular region formed here by four neighboring grid points indexed as (i, j), (i +l, j), (i, j + 1)) 

(i+l,j+l). Th e ur f th er evolution of these grid points or any other more suitable set of sample 
points can be traced hereafter in a way like table look-up, i.e., for any point x we merely check 
which (i, j) is such that x E Ci,j, and then perform the bilinear interpolation M(x). When a 
sample point runs out of the domain covered by the grid during the iterated interpolation Mn, 
it wil1 be discarded simply. 

2.2. Periodic Solutions and Simple Cel1 Mapping 

Apply the thus constructed Poincaré map 63 times, where p is a big natura1 number. Certain 
dynamic patterns may have been revealed by the particular accumulation of the sample phase 
points. If the system in consideration presents a long transient stage, the desired g might be too 
large to be practical. 

An alternative to speed up such a pattern recognition is provided by the socalled simple cell- 
to-cel1 mapping [12]. In this regard p is restricted to be prime for reason to be clear below, and 
the sample points, if different from the grid points, are assumed to be located over a rectangular 
mesh initially. 

After p times of Poincaré map, the image of each sample point is rounded off to its nearest 
mesh point. If p = 1, we return to the original version of simple cel1 mapping [12]. It is p » 1 
that allows US to perform the round-off in a somewhat post-transient stage and to reduce the 
associated error. By means of this simplification, the pstage Poincaré map can be read as 
S : 2 + 2 where 2 consists of the first K + 1 nonnegative integers with K equal to the amount 
of mesh points. The map S satisfies S(0) = 0 and S-‘(O) stands for those sample points we have 
discarded simply because they run outside the grid domain. This setting makes S have at least 
one periodic solution. 

Since it wil1 just involve integer arithmetic, to iterate the map S is quite simple. If S bas a 
periodic solution of period p, the original system may have a correspondent of period p or p . p 
only. This is the reason for 63 being prime. Although some precautions have been taken, it is stil1 
possible to obtain spurious results from this speedup process. 

2.3. Domains of Attraction and Composite Cel1 Mapping 

When there exist more than one attractors, it is desirable to know their respective domains of 
attraction. Such a desire is the motif of developing the simple cel1 mapping method [12], within 
which an array of indices is generated to point each sample point to the attractor to which it 
belongs. It sometimes happens that components of different attractors are located closely. To 
discriminate them, the cel1 size should be fine enough. 

In practice, this is achieved through local refinement by overlaying the critical regions a nest of 
finer grids. The cellwise interpolation and the round-off procedure as discussed in the preceding 
sections should be modified accordingly to respect the local cel1 size. We cal1 this treatment a 
composite cel1 mapping. 

In conjunction with chaotic dynamics, the high sensitivity to initial conditions may stil1 be 
overlooked by the careful simplifications introduced thus far. For instance, a chaos is sometimes 
recognized as several distinct groups of periodic motions with long periods. To improve the 
capability in this connection, one may employ the so-called generalized cel1 mapping methods 
[12,13], at the expense of algorithmic complexity. It, however, seems more straightforward to 
perform a double check on these well-sorted data by direct numerical integration. 

2.4. Path-Following of Periodic Attractors 

It is very time-consuming to perform Poincaré map with respect to the continuously varied 
parameter 1, even by means of the simplifications introduced above. Domain decomposition 
provides an sdditional means of acceleration in which we partition the (finite) phase plane into 
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several blocks and then perform the associated maps concurrently, for instance, by a parallel 
virtual machine (PVM). However, it does not pay to do this tedious work unless for critical 1’s. 
By critical we mean a bifurcation is detected, through the local stability analysis, by the path- 
following process stated below. 

To trace periodic attractors with varied I but of fixed period 2nT, T = X/y for some natura1 
number X, Fourier method is a natural approach. In this connection the FHN equations (1) 
and (2) can be rewritten as 

ut=T(f(u)-w+I,+IcosXt), (7) 
wt = T/?(eu -w), 0 < t 5 2?r. (8) 

Now, we seek a solution of (7) and (8) with 

u(t) = 5 Pk cos(lct) + Qk sin(lct), 
k=O 

(9) 

where Pk and Qk are scalar quantities with Qs = 0 for convenience. By (8), we then have 

u(t) = 0 5 [(Pkpk - QkQk) coS + (qkpk + PkQk) Sin(kt>] > 

k=O 
(10) 

where po G 1, qo s 0 and 

ww 
pk = 1 + (/?T/k)2’ 

PTIk 
qk = 1 + (pT/k)2’ 

for k 2 1. (11) 

Substituting (9) and (10) into (7), and then equating like Fourier modes on both sides, a 
system of nonlinear equations for Pk and Qk, 0 5 k 2 K, is obtained. Detailed expression can 
be found in our previous works [6,14]. Such a nonlinear system can be solved by a damped 
Newton method [15]. Note that the solution wil1 depend on the parameter 1, and one can employ 
the so-called pseudo-arclength continuation techniques [16] to obtain solutions for 1 over some 
extension. 

When the pursued subharmonic resonance presents a long period, that is X »  1 in (7), the 
upper bound, K, for the employed Fourier modes should be increased substantially in order to 
take account of the periodic forcing term. In these circumstances we suggest using the shooting 
methods stated below. 

For simplicity of discussion, let US put (7),(8) into the following vector form in which al1 
parameters except 1 are suppressed for the time being. 

Xt = F(x,t,I), x = (u,w)T, 0 5 t < 2?r. (12) 

To use a multiple shooting method, the interval [0,27r] is partitioned into M equal subintervals for 
some prescribed M (far less than the K used by Fourier method). Then, a numerical solver such 
as LSODE [9] or RKF45 [lO] is used to integrate (12) over these M subintervals simultaneously. 
Their respective initial vectors are denoted by xj, 0 5 j < M, and their respective target vectors 
are denoted by g(xj, 1). 

The constraints on xj for seeking periodic solutions of (12) are 

fdxj, 1) = xj+1r forOLj<M, 

xj,,, = xc. (13) 

This system is, again, to be solved by a damped Newton method [15]. Note that numerical 
integration for the variational equations of (12) now is coupled with, rather than separated from, 
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the solution process of (13) as compared with Fourier method in which one can compute the 
related Jacobian analytically. 

To be complete, we actually have to integrate, for 0 5 j < M, the following augmented system 
over ja 5 t 5 (j + 1)a where <T = 2n/M. 

xt = 3(x, t, I), X(jC) = Xj, 

Yt = Fx(x, t, I)y, (14 
et = &(x, t, I)e + FI(~, t, I), 0 

e(j0) = o . 0 
The last equation of (14) is relevant to the pseudo-arclength continuation [16]. Let S denote the 
product of the variational solutions among different j’s. That is 

M-1 

s = n Y((j + l)a,O. (15) 
j=O 

If S has an eigenvalue greater than one in modulus, the traced periodic solution is unstable, 
and we cal1 the corresponding 1 critical. Poincaré map is called in this case for searching other 
possible attractors. 

2.5. Lyapunov Exponents, Power Spectra, and F’ractal Dimensions 

According to the above setting, a chaos d is recognized as one or more periodic attractors with 
long periods by various cel1 mapping methods. These attractors, however, fail to be identified 
by Fourier and shooting methods. To handle this situation certain messures pertinent to chaotic 
dynamics [17] are needed, along with the direct numerical integration. 

To this end, let the FHN equations (1) and (2), together with their first variation, be denoted 
again as 

xt = F(x, t), 

Yt = Fx(x, t)y. 
(16) 

The first measure is the Lyapunov exponents concerning the sensitivity to the initial conditions. 
For this sake, input x(0) = xo E d, Y(O) = (;;) into (16), and integrate them for sufficiently 
large time. Let pl(t),pg(t) denote the eigenvalues of y(t) such that I,~i(t)l 2 Ipz(t)J for al1 t. 
The Lyapunov exponents are defined, in principle, as the limits: 

C, = lim l"gIl-Li(t)l 
z t-+cc t ’ 

i = 1,2. (17) 

However, it is hard to find the existente of these limits in practice. A more feasible approach 
is to interpret these &‘s in terms of linear correlation. When (17) is extended to cover periodic 
cases, a useful guess for these L’s is given by Floquet multipliers. Namely, 

ji ~ log IPi(T)I 
T ’ 

i = 1,2. (T = period). (18) 

The second measure consists of power spectra which provide distinct regular patterns for pe- 
riodic attractors even if their periods are quite large. Aperiodicity can be evidenced by irregu1a.r 
peaks and noise. Let {-,x1,. . . ,x,,, . . . } stand for the intermediate output of integrating (16) 
at t = 2?rn/r, n = 0, 1,2,. . . . The power spectrum of this sequence of data is generated by using 
the signal processing toolbox of MATLAB [18]. 

The third measure consists of fractal dimensions. We start with covering the attractor by a 
hierarchy of boxes with sides proportional to 2-“, k = 0, 1,2,. . . . To be efficient, a tree structure 
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is used to book these boxes. Let Bk denote the number of nonempty boxes at leve1 k, and Pk,j 

‘th denote the proportion of the attractor contained in the 3 box of leve1 k. The capacity and 
information dimensions are defined, in principle, as the limits: 

log, ,131, Dc = iirnWT, (Capacity), 
+ 

-cj (Pk,j log, Pk,j) 
(1% 

DI = kirnm 
_) k ’ 

(Information) . 

In practice, the sequence of data appearing in the righthand side of (19) are available only for 
the first few k’s (say, k 5 12). So, these limits are again to be estimated by means of linear 
correlation. However, these sample data sometimes present a piecewise linear profile, and cause 
some ambiguity about the linear correlation. This uncertainty can be measured by performing 
the related box counting with several representations of the given attractor generated by different 
initial conditions. 

3. WORKED EXAMPLES AND DISCUSSIONS 

In this section, we shall show several sample applications of the methods presented in Section 2. 
The aim is to complete a bifurcation diagram which reveals the dynamic behavior of an FHN 
system in the presence of a sinusoidal forcing term. It turns out that such an aim is partially 

subject to the finiteprecision character of computers, when exotic bifurcation phenomena are 
encountered. 

1=0.0001 P-l(0) & Quasi-P(.) coexist A 
t I 

0.18 - 

0.14 - 

0.1 - 

0.06 - 
I 

-0.2 0.2 0.6 1 

(a) Coexistent P-l(o) and quasi-periodic (. . . ) attrac- (b) Coexistent P-l(o) and chaotic (. .) attractors at 
tors at 1 = 0.0001. 1 = 0.0007. 

1=0.0007 P-1 (0) 8 Chaos(.) coexist f 
I 

0.18. 

0.14. 

0.1 . 

0.06. 

: 

-0.2 0.2 0.6 1 

(c) Domains of attraction corresponding to (a). White (d) Domains of attraction corresponding to (b). White 
area is related to the P-1 attractor. area is related to the P-1 attractor. 

Figure 1. Onset of the forced FHN system with control parameters listed in (20). 
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In what follows, the control parameters in FHN equations (l),(2) are set as 

(o,&&‘y,Io) = (0.25,0.02,0.25,0.1,0.082). (20) 

For I = 0, the autonomous FHN system characterized by (20) is bistable in that a stable steady 
state is coexistent with a stable relaxation oscillation, as demonstrated in detail in our previous 
work [6]. The relaxation oscillation in question bas period 27rT, = 200, so the perturbation 
frequency y specified in (20) is such that 7. T, z 3. 

If 1 # 0, the period of a possible periodic solution to (1) and (2) is restricted to the form 
2nX/y, X is a natura1 number. We shall cal1 it a P-X solution, if any. 

Now we start to increase 1 from zero. The steady state of the original system is seen to 
evolve into a P-1 solution. The coexistent relaxation oscillation is seen to become quasi-periodic, 
and then chaotic. The differente between quasiperiodicity and chaos is judged here by the first 
Lyapunov exponent, er. Namely, ei N 0 for the former, while Cl > 0 for the latter. See Figure 1 
for the geometry of these attractors ae projected onto a Poincaré section, and of their respective 
domains of attraction. 

As I is increased further, the chaotic motion is seen to be merged into a P-3 solution, but stil1 
coexistent with the original P-1 solution. When a P-X solution bas been identified by Poincaré 
map for some íixed 1, we can extend the solution path, in the direction with I either increaeing or 
decreasing, by the continuation techniques described in Section 2.4 until the stability concern (15) 
is met. In that case the Poincaré map as implemented in Sections 2.1 to 2.3 is called again to 
search other attractors. 

Typical Biiurcation Diagram for Ford FHN Equations 

uI 

0.6 - 

-0.2’ I 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 
I 

Figure 2. Overall bifurcation diagram for the forced FHN system with control para- 
meters listed in (20). The upper box presents u versus 2 under Poincaré map. Also 
indicated are three portions to be blown up in next figures. The lower box presents 
the first Lyapunov exponent versus I. 

According to this procedure, we find a sequence of X + X + 2, period-adding bifurcation 
started with X = 1. By this we mean when a P-X solution becomes unstable as detected by 
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Zoom~l A 
I I 

1 st Lyapunov exp. 
0.0235 I 0.03 

(a) Blowup of Portion 1 of Figure 1. 

Zoom_1 _a B 

1 

I 

0.0294 
t 

I 0.0292 

(b) Blowup of Portion l_a of (a) 

Figure 3. 

the numerical continuation, there exists instead a stable P-(A + 2) solution. The above observed 
coexistence phenomenon stil1 takes place around the bifurcation points. In other words, we are 
encountered with hysteretic bifurcation. The scenario and several of its successive blowups are 
shown in Figures 2 and 3. The typical domains of attraction of competitive P-3 and P-5, due to 
hysteresis, as wel1 as P-5 and P-7 are shown in Figures 4 and 5, respectively. Note that these 
different attractors may become of little differente in part. Computations should be performed 
with care. 

Let 1~ denote the starting 1 of the P-(2X + 1) branch of the above bifurcation. We find by 
extrapolation that 

lim 
1 x+1 - IA 

x-+03 IA - IA-1 
= 0.680. (21) 

Therefore, this period-adding phenomenon ends up at some finite 1, say I,. According to the 
convergente rate (21) and the limitation of computer precision, it is hard in practice to find tiny 
P-(2X + 1) branches for sufficiently large X. For instance, we have found a P-131 branch with 1 
almost al1 equal to 1,. 

Immediately after 1, , we find another type of period-adding bifurcation. The event can be 
sorted into several levels. The top leve1 is a sequence of X + X + 1, period-adding started with 
X = 2. Using IA again to denote the starting I of the P-X branch of this sequence, we have this 
time the extrapolated limit 

lim h+1-1x 

x-*00 IA - IA-1 
= 0.676. (22) 

In contrast to the previous one, the successive branches of the present sequence are disjoint. The 
gap between P-A and P-(A + 1) branches is partially filled by a P-(2A + 1) branch for any X. 
These partial fillings form the second level. 
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bO.0242, P-3(W) & P-5(B) domains of attraction A 

(a) Domains of attraction of competitive P-3 (white) and P-5 (black) attractors with 
I = 0.0242. 

-- : P-3 , 0 : P-5 C 
I 

t 30 60 x Pi 
(b) Locations of the P-3(o) and P-5(x) attrac- 
tors and the related boundary of domains of 
attraction. 

(c) The u-history of P-3(-) and P-5(00) at- 
tractors starting with negligible differente. 

Figure 4. 

More detailed computations reveal that the associated bifurcation diagram is refined from 
X--+X+1toX-+2X+1~X+1toX + 3X + 1 --+ 3X + 2 -+ X + 1. Namely, we are encountered 
with multilevel m + m + n + n, period-adding in between. 

Of course, this pattern is coupled with certain irregularities brought about by chaos and hys- 
teresis. The scenario and several of its successive blowups are shown in Figures 2, 6 and 7. An 



118 M.-H. CHOUAND Y.-T. LIN 

kO.0273, P-5(W) & P-7(B) domains of attraction A 

(a) Domains of attraction of competitive P-5 (white) and P-7 (black) attractors with 
I = 0.0273. 

0 : P-5 , x : P-7 
P’ ,*’ 

-- : P-5 > 0 : P-7 C 

1 

U 

0 

-. 
100 x PI 

(b) Locations of the P-5(o) and P-?(X) attrsc- 
tors and the related boundary of domains of 
attraction. 

(c) The zc-history of P-5(-) and P-7(00) at- 
tractors starting wìth negligible differente. 

Figure 5. 

example of hysteresis is seen during the period-adding between P-2 and P-3 branches. Figure 8 
shows the typical domains of attraction of competitive P-2 and P-5 attractors. Note again the 
partial coincidence between these different attractors. 

So far, the issue of bifurcation is discussed in terms of Poincaré map and numerical continuation. 
We shall show next that power spectrum is also a powerful tool in this regard. Figure 9 presents 
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A 

ll 

t 

c 

-2a 

I 0.053 

(a) Blowup of Portion 2 of Figure 1. 
Zoom_2_a 

i’ i :i 

I_ . . . . . . . . . . . 
/- 

1 st Lyaplmov exp. 

0.05203 
(b) Blowup of i,:>rtion 2_a of (a). 

Figure 6. 

Zoom-3 A 

l- 

u3_a 
- ___ 
om4 I 0.058 

(a) Blowup of Portion 3 of Figure 1. 

0.0 -. . . . . . . . . . 

0.05823 I 
(b) Blowup of Portion 3_a of (a). 

Figure 7. 

0.05828 
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1=0.0512, P-2(W) & P-5(B) domains of attraction A 

Se7 
inc 
x- 
or 
2x 

0 .” 

-.2 u 1.2 
(a) Domains of attraction of competitive P-2 (white) and P-5 (black) attractors with 
1 = 0.0512. 

0.21 
0 : P-2 , x : P-5 B -- : P-2 , 0 : P-5 C 

I I 

x g:.:: /..: ‘.. 

-....___ 
-*LQ . . . . . ..__ 

0.0, -‘.-- 
-. 

0 

1.2 t 30 60 x Pi 

(b) Locations of the P-P(0) and P-5(x) attrac- 
tors and the related boundary of domains of 
attraction. 

(c) The u-history of P-P(-) and P-á(o0) at- 
tractors starting with negligible differente. 

Figure 8. 

reral sample power spectra related to the first, or X -+ X + 2, type of period-adding bifurcation, 
:luding the aperiodic motion at the outset. It is easy to see that a P-X attractor presents 
_ 1 regular peaks even if X is sufficiently large. Aperiodicity is evidenced by irregular peaks 
interpeak noise. Similar results are shown in Figure 10 for the second, or for brevity X + 
+ 1 4 X + 1, type of bifurcation. 
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a 

ISO.025 P-5 c 

A 

(bl 

(4 (4 

(9) (h) 
Figure 9. Sample power spectra of X 

(f) 
lro.0291 P-2 

-_ 

W 

CaI (b) 

(4 (4 (f) 
20 

1=0.0555 P-4 g 

äì 0 

0 

ïî 
z -20 

(l3) (h) ti) 
Figure 10. Sample power spectra of X + 2X + 1 + X + 1, period-adding bifurcation. 
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Typical calculation related to the first Lyapunov exponent 

i=O.OOOl Quasi-p 1=0.015 P-3 B 

(4 @) (c) 

Time 
(d) 

kO.051947 Chaos El tl-O.056247 Chaos Fl 

(4 (f) 
Figure ll. Sample plots of log Ipl(t)j versus t in connection with (17). The slope of 
linear correlation in each plot is used to approximate the fìrst Lyapunov exponent, el. 
(a) quasi-periodic; (b) and (c) periodic; (d)-(f) chaos. 

(4 (bl (cl 

kO.05625 B 
Dc=0.640 
Dk0.745 

(4 (4 
Figure 12. (a)-(c) Sample plots of chaotic attractors; (d)-(f) their respective power 
spectra. 

We now come to discuss the estimation of Lyapunov exponents, especially the first exponent 
since we are dealing with twedimensional systems. Figure 11 presents several sample plots of 
log 1~1 (t) 1 versus t as suggested by (17). The oscillatory feature of these plots indicates the limit LI 
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does not exist in mathematica1 sense. Nevertheless, the stil1 well-behaved pattern allows US to 
interpret el in terms of linear correlation. The sign of Cl as determined in this way is consistent 
with the attractor’s behavior. Namely, el > 0 for chaos; < 0 for periodic cases. In particular, 
(18) holds almost exactly. The overall plot of Cl versus 1 is shown in Figure 2. Some blowups 
are shown in Figures 3, 6 and 7. 

As for the geometry of chaotic attractors, we show several sample plots in Figure 12, together 
with their respective power spectra. Within each chaotic attractor, the phase points are not 
uniformly spaced. This fact is also shown in Figure 7b. To be more quantitative, Figure 13 
presents the capacity and information dimensions with respect to the most readable, yet chaotic, 
part of Figure 7b. The shaded area in this figure indicates the uncertainty of performing such 
computations as explained in Section 2. 

- : D_info 

7 10 
I = 0.056246 + k’2.5E-7 

17 k 

Figure 13. Frs&al dimensions (- capacity, -o- information) varied with I cor- 
responding to the most readable, yet chaotic, part of Figure 7b. Possible error is 
indicated by the shaded area. 

For 1 greater than the limit I* determined by (22), the applied sinusoidal forcing term becomes 
dominant, and harmonie resonance (i.e., P-1 solution) sets in afterwards. 

In conclusion, we have presented a rather complete bifurcation diagram in connection with 
the sinusoidally forced FHN systym. If the forcing frequency is comparable with the natura1 
frequency of the underlying autonomous system, complex period-adding phenomena can take 
place as the forcing magnitude is increased from zero. 
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