disease incidence and serotype coverage and healthcare utilization to compare costs and clinical impact of PCV-13 versus PCV-10 on infection-related and outpatient pneumonia, and AOM, among vaccinated children (direct effect) and the entire population with indirect(burden effects). Patients were entered in the model by age: groups 0–2 years, 2–4 years, 5–17 years, 18–34 years, 35–49 years, 50–64 years, and 65+ years. Only one cohort was vaccinated in the current epidemiology and cost data were used to achieve national specificity. Direct/indirect effectiveness of PCV-13 and PCV-10 were calculated based on PCV-7 efficacy data, using assumptions regarding the indirect effect of PCV-10 on infection-related and outpatient pneumonia. RESULTS: In the analysis, PCV-13 vaccination has caused significant decline in all PD cases. It was estimated to prevent 19,198 cases of IPD, 3,796,657 cases of pneumonia, and 53,310,807 cases of AOM in 10-year cohort. Also the increment of life expectancy (p<0.05) was estimated at 10,06,048 years compared to the health care system perspective in the 10-year horizon, as compared to PCV-10 vaccination. CONCLUSIONS: PCV-13 vaccination program provided economic and clinical benefit across all PD control and prevention challenges in Thailand. Data on pertussis morbidity and costs were gathered for infants and their mothers. Health benefits [in quality-adjusted life-years (QALYs)] and costs were estimated. Incremental cost-effectiveness ratio was calculated from a payer’s perspective. Analysis was conducted based on bootstrap method. An incremental cost-effectiveness ratio was calculated and probabilistic sensitivity analyses were conducted on data from clinical trials. The surviving patients in the decision tree were extracted from the Markov model which mortality risk was specific to underlying disease. The rates of ICI, ICI-related mortality, overall mortality and treatment duration were obtained from published literature. The probabilistic sensitivity analyses of ICI-related mortality were estimated to be equal to that of a 70-year time horizon with 1-month cycles for children less than 2 years old and 1-year cycles for children aged 2 years and above. OBJECTIVES: To demonstrate the public health and economic value of interventions providing a high level of disease control, the implementation of a vaccination program in combination with vector-control strategies appears to be cost-effective and often cost-saving. PREV22 COST-EFFECTIVENESS OF POSACONAZOLE VERSUS FLUCONAZOLE OR ITRACONAZOLE IN THE PROPHYLAXIS OF INVASIVE FUNGAL INFECTIONS AMONG NEUTROPENIC PATIENTS WITH UNCONTROLLED INFECTION-Junjarunee S., Muansungrun K., Lerdtittiruang K., Itzler R.*2

1University of Groningen, Groningen, The Netherlands, 2University of Antwerp, Antwerp, Belgium OBJECTIVES: This study aims to assess the cost-effectiveness of posaconazole A vaccine in Indonesia, including an explicit comparison between one-dose and two-dose vaccines. METHODS: An age-structured cohort model based on a decision tree was developed for the 2012 Indonesia birth cohort. Using the model, we made a comparison on the use of two-dose and one-dose vaccines. The model involves a 70-year time horizon with 1-month cycles for children less than 2 years and annually thereafter. Monte Carlo simulations were used to examine the economic acceptability and affordability of the hepatitis A vaccination. RESULTS: With the vaccine price of US$ 4.49 per dose, the implementation of the hepatitis A vaccine from the societal perspective would yield incremental cost-effectiveness ratios (£/QALY) of £219.14 and US$ 26.08 for the two-dose and one-dose schedules, respectively. Considering the 2012 gross-domestic-product (GDP) per capita in Indonesia of US$ 3,557, the results indicate that hepatitis A vaccination would be a cost-effective single intervention, both with imperfect efficacy (30.2%) as well as under more optimistic and perfect scenarios. Cost-effectiveness ratios for vector-control strategies ranged from being cost-effective and even cost saving to cost ineffective with incremental cost-effectiveness ratios in excess of WHO guidelines. In combination, control interventions and vaccination exhibited a linked impact on dengue fever transmission and proved to be a cost-effective strategy as well as delivering the potential for cost savings. CONCLUSIONS: By providing a high level of disease control, the implementation of a vaccination program in combination with vector-control strategies appears to be cost-effective and often cost-saving.