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For an algebraic curve C�K defined by y2=x p+a (a � K p) with relative genus
( p&1)�2 and absolute genus 0, we prove that the Picard group of divisors of degree
0, denoted Pic0

K (C), of a curve C�K fixed by the action of the Galois group G=
gal(K sep�K) has a finite number of K-rational points as a variety, where K is a
function field in one variable with a finite constant field of characteristic p�5 and
K sep is the separable closure of K. � 2001 Academic Press

1. INTRODUCTION

It is well known that the Jacobian variety, denoted Jac(C), of a non-
singular projective curve C of genus g�2 over an algebraically closed field
is an abelian variety of dimension g. In fact, it is naturally isomorphic to
the Picard group of divisors of degree 0 modulo linearly equivalence of the
given curve. As a variety, little is known about the defining equations for
Jacobians of curves. But we are interested in points on the Jacobian of a
curve via the Albanese map defined by sending P # C to the class of P&P�

in Jac(C), where P� is the point at infinity. Here we will consider an
algebraic curve C defined by y2=x p+a (a � K p) over a function field K in
one variable with a finite constant field of characteristic p�5. It turns out
that the given curve C is a typical example of algebraic curves that change
genus under base field extensions. Indeed it is a singular curve of relative
genus g=( p&1)�2 and absolute genus 0. It is shown in [V, J1, J2] that
a class of such curves over K has a finite number of rational points.

For this curve C we will construct the Picard group of divisors of degree
0, denoted Pic0

K (C), of C�K fixed by the action of the Galois group
G= gal(K sep�K ), where K sep is the separable closure of K. As we will see,
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it turns out that Pic0
K (C) is an algebraic variety over K of dimension

g=( p&1)�2, which corresponds to the relative genus of C. Without
knowing the defining equations of this Picard group, it will be interesting
to study the set of rational points on Pic0

K (C) defined over K.
The purpose of the paper is to prove that for the algebraic curve C�K

given above, the Picard group Pic0
K (C) has finitely many K-rational points

(Theorem 2) as a variety. As an easy corollary one sees then that the curve
C has finitely many rational points by pointing out the above Albanese
map is injective. On the other hand it is shown in [J1] that the explicit
upper bound for the number of rational points of C is given in terms of the
height of a and the genus g of the base field K: >C(K )�2p6h(a)+3g&2.

Toward the proof of Theorem 2, the paper is organized as follows. To
better understand the definition of Pic0

K (C), in Section 2 we will summarize
the definitions of divisors groups and the Galois group action both on
divisors groups and on the function field of a curve. Section 3 is devoted
to proving that the variety over K defined by x&x p r

=a1 y1
p r

+a2 y2
p r

+ } } } +an yn
p r

has finitely many K-rational points under certain assump-
tions. By using computations of derivations on function fields, Section 4 is
concerned with finding an equation of a variety associated to the Picard
group and then with the proof of Theorem 2. Finally, in Section 5, we give
an example of a surface whose rational points consists only of p points by
explicitly bounding valuations of rational points on the surface and then
prove that Pic0

K (C) has only 5 rational points when C is defined by y2=
x5+a for infinitely many squares a � K5, where K is a rational function
field of characteristic 5.

2. PICARD GROUPS

Throughout this paper, we restrict K to a function field of one variable
over a finite field of characteristic p�5 and denote the separable closure of
K by K sep. And we will consider the algebraic curve C�K defined by y2=
x p+a (a � K p). We see that it is of absolute genus 0 as it is parameterizable
over any extension fields of K containing a p th root of a. Under the
assumption a � K p, we can apply the Riemann�Roch Theorem to show that
the genus of C relative to K is ( p&1)�2. For example, we refer to [Sil,
Exercise 2.14] for explicit computations of genus of hyper-elliptic curves.
By extending a base field K we assume that the a is a square in K so that
the point at infinity P�=[0 : a1�2 : 0] is a rational point of C.

We shall construct the Picard group of divisors of degree 0, denoted
Pic0

K (C), of C�K fixed by the Galois group G= gal(K sep�K ), which is
analogous to the construction of the Jacobian of a smooth curve of higher
genus. We refer to [M] for a more extensive exposition of Jacobians of
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smooth curves of genus at least 2. We now summarize the definitions of the
Picard group of divisors of degree 0, Pic0

K (C), of C�K fixed by the Galois
group G= gal(K sep�K ) that we shall use here.

The divisor group of a curve C, denoted Div(C), is the free abelian
group generated by the points of C. By points we here mean that they have
coordinates over K sep. Then a divisor D # Div(C) is expressed as a finite
formal sum of the form D=�P # C nP(P), where the nP # Z and the P are
points of C. The degree of D is defined by deg(D)=�P # C nP . Since C is
defined over K, we let the Galois group G act on Div(C) in such a way that
D_=�P # C nP(P_). We say that D is fixed by the group G if D=D_ for all
_ # G. We denote by DivK (C) the group of divisors fixed by the Galois
group G and by Div0

K (C) the subgroup of divisors of degree 0 in DivK (C).
The Galois group G also acts on f # K sep(C), which is the function field of
C�K sep, by acting on its coefficients. Then we can associate to f the divisor
div( f ) given by div( f )=�P # C vP( f )(P). Now if _ # G, then one easily sees
that div( f _)=div( f )_. In particular, if f # K(C), then div( f ) # DivK (C). A
divisor D # Div(C) is principal if it is of the form D=div( f ) for some non-
zero function f # K sep(C). By Prin(C) we now denote the group of principal
divisors, which in fact a subgroup of Div0(C), because div( f ) has degree 0
for any non-zero function f # K sep(C). Two divisors D1 , D2 are linearly
equivalent, denoted D1 tD2 , if D1&D2 belongs to Prin(C). The Picard
group of degree 0 of C, denoted Pic0(C), is defined as the quotient of Div0(C)
by the subgroup of principal divisors, i.e., Pic0(C)=Div0(C)�Prin(C). Finally
Pic0

K (C) is well-defined as the subgroup of Pic0(C) fixed by the Galois group
G as justified in Proposition 1 below.

Proposition 1. Let C, K, G be the same before. Then

Pic0
K (C)=Div0

K (C)�PrinK (C).

Proof. We consider the following exact sequence:

1 � K sep(C)*�K sep * � Div0(C) � Pic0(C) � 0.

Since Prin(C)=K sep(C)*�K sep*, from the long exact sequence it is enough
to show that H1(G, K sep(C)*�K sep *)=0. Consider another exact sequence:

1 � K sep* � K sep(C)* � K sep(C)*�K sep* � 0. (V)

From the long exact sequence of (V) we see easily that H1(G, K sep(C)*�K sep*)
=0 if and only if H2(G, K sep) injects into H2(G, K sep(C)*). Here H2(G, K sep)
is nothing but the Brauer group of K, denoted Br(K ). Now the result follows
from the well-known fact that Br(K) injects into Br(K(C)) if the curve C�K has
a K-rational point. K
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Let A denote the category of separable extensions of K in K sep. Let F be
an object of A, then GF= gal(K sep�F ) is a subgroup of G= gal(K sep�K ).
Denoting by DivF (C) the F-rational members of Div(C), i.e., the group of
divisors fixed by GF , we also set Div0

F (C)=Div0(C) & DivF (C), PrinF (C)
=Prin(C) & Div0

F (C), Pic0
F (C)=Dic0

F (C)+Prin(C)�Prin(C). Then we
show that Pic0

F (C) is isomorphic to Div0
F (C)�PrinF (C) and in particular, if

F=K, then Pic0
K (C)=Div0

K (C)�PrinK (C), which also shows Proposition 1.
We will close this section by showing a useful lemma on Div0

K (C), which
we will use in Section 4.

Lemma 1. Let f # K sep(C) be a non-zero rational function on C and
div( f ) # Div0

K (C). Then there is a non-zero * # K sep such that *f # K(C).

Proof. If div( f ) # Div0
K (C), then div( f )=div( f _) for all _ # G, hence

div( f _�f )=0. This implies that f _�f=c_ , a constant depending on _. From
the relation we see that c defines a 1-cocycle from G to K sep*. That is,
c_{=c_

{c{ . By Hilbert Theorem 90, there is * # K sep* such that c_=*�*_.
Therefore we have f _� f=*�*_ for all _ # G, completing the proof. K

3. FINITENESS OF RATIONAL POINTS ON A VARIETY

Let K be a function field of one variable over a finite field of charac-
teristic p>0. We denote by MK the set of normalized discrete valuations
v of K, and by Kv the completion of K at the place v # MK . Indeed Kv is
isomorphic to the field of formal power series with coefficients in Fq , that
is, Kv=Fq((tv)) where tv is a local parameter at v. Note that the constant
field Fq of Kv depends only on v. If x # Kv has a pole at v of order n>0
then x is uniquely written as the Laurent series with coefficients in Fq in
terms of a local parameter: x=��

i=&n x i tv
i. We can define the Hasse

derivations D ( j )
tv

, j�0 on Kv by

D ( j )
tv \ :

�

i=&n

xi tv
i+= :

�

i=&n \
i
j+ x itv

i& j.

Then we see that Hasse derivations depends only on the local parameter
but we will drop the subscript for the local parameter from the notation of
Hasse deviations if it causes no confusion. It is well known in [Sch] that
[D( j ), j�0] is a sequence of additive operators on Kv such that

(1) D(0) is the identity operator.

(2) D( j )(xy)=� j
i=0 D (i )(x) D( j&i )( y),

(3) D( j )(D (i )(x))=( j+i
i ) D( j+i )(x) for all x, y # Kv .
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We call such a sequence [D( j ), j�0] iterative derivation on Kv . Since
K/Fq((tv)) it is known in [HS] that [D( j ), j�0] is also an iterative
derivation on K with the property that [x # K | D( j )(x)=0 for 1� j�
pr&1]=K pr

for each r�1. Note that K is a purely inseparable extension
of K pr

of degree pr (see [Sti, III9.2]).
We will now consider a variety V�K defined by x&x pr

=a1 y1
pr

+a2 y2
p r

+ } } } +an yn
pr

, where 1, a1 , a2 , ..., an # K are linearly independent over K pr
.

In what follows, whenever we refer to the variety V�K, we always assume that
the coefficients 1, a1 , a2 , ..., an are linearly independent over K pr

. Equivalently,
by the generalized Wronskian property (see [GV, Theorem 1]) the matrix
A=(D(=j )ai)i, j=1, ..., n is non-singular for some sequence of exponents (=i)

n
i=1

such that 0<=1<=2< } } } <=n<pr. In this section, by computing valuations
of iterative derivations D( j ) we aim to show that the variety V�K has finitely
many rational points under the assumption =n<pr&1 (Theorem 1).

Lemma 2. For each place v # MK , there exists a constant cv depending on
v such that cv=0 for almost all places v # MK , so that for every x # K*, we
have v(D( j )x)�v(x)& j+cv for each j�1.

Proof. Fix an element t � K p. We first consider the places v # MK with
v(t)�0. If t&t(v) is a local parameter at the chosen place v, then we claim
D( j )

t =D ( j )
t&t(v) . Since t is a separable element, for given x # K* there is an

algebraic relation f (x, t)=0 depending on x. From the implicit function
theorem this relation gives D ( j )

t (x)=� j
i=0 fijD (i )

t&t(v)(x) for some fij . Now
by substituting (t&t(v)) j for x in the equation above we can use induction
on j�1 to show that fjj=1, f ij=0 if i< j. Hence we calculate v(D ( j )

t x)=
v(D ( j )

t&t(v) x)�v(x)& j for every x # K* and j�1. So cv=0 for such a place v.
Let v be a place with a local parameter u for which v(t)<0. Then we use

the chain rule of Hasse derivations [Ha] to calculate v(D ( j )
t x) for every

x # K* and j�1 as follows:

v(D ( j )
t x)=v \ :

i1+2i2+ } } } +jij=j
i1 , i2 , ..., ij�0

(D (i1+i2+ } } } +ij )
u x) \i1+i2+ } } } +ij

i1 , ..., i j +

_(D (1)
t u) i1 } } } (D ( j )

t u) ij+
� min

i1+2i2+ } } } +jij=j
i1 , i2 , ..., ij�0

[v(D (i1+i2+ } } } +ij )
u x)+v(V)]

� min
i1+2i2+ } } } +jij=j

i1 , i2 , ..., ij�0
[v(x)&(i1+i2+ } } } +ij)+v(V)]
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� min
i1+2i2+ } } } +jij=j

i1 , i2 , ..., ij�0
[v(x)& j+v(V)]

=v(x)& j+cv ,

where cv=min[v(V)] and (V) means the remaining part of the term in the
first equality, which is independent of x. Note also that cv=0 for all but
only finitely many places. The result now follows. K

Lemma 3. Let V�K be a variety defined by x&x pr
=a1 y1

pr
+a2 y2

p r

+ } } } +an yn
p r

. If =n<pr&1, then there exists a finite set S of places of K
such that every x-component of rational points of V has no poles at every
place v not in S.

Proof. Since 1, a1 , a2 , ..., an are linearly independent over K pr
, from the

generalized Wronskian property [GV] the matrix A=(D(=j )ai)i, j=1, ..., n is
non-singular for some sequence of exponents such that 0<=1<=2< } } } <
=n<pr. Let B=(bij) be the inverse matrix of A, then by characteristic p, we
obtain that for each j=1, ..., n,

D(=j )(x)=D(=j )(x&x pr
)= :

n

i=1

D(=j )(ai) } yi
p r

.

Hence we get y p r

i =�n
j=1 bijD(=j )(x) for each 1�i�n. Taking a valuation

v of the equation gives

prv( y i)� min
1� j�n

[v(bij)+v(D(=j )(x)]

�v(x)&=n+cv $, (1)

where the second inequality comes from Lemma 2 and cv $=cv+min1� j�n

[v(bij)]. Here we note that cv $=0 for almost all places v. On the other
hand, if v(x)<0, then

prv(x)=v(x&x p r
)

� min
1�i�n

[v(ai)+ prv( y i)]

�v(x)&=n+cv", (2)

where cv"=cv $+min1�i�n[v(ai)] and the first equality follows from the
strict triangle inequality and the third inequality comes from (1).

So from the inequality (2) we have v(x)�(&=n+cv")�( pr&1). Suppose
now that cv"=0. Then we easily see that v(x)>&1 from the hypothesis
=n<pr&1. Hence v(x)�0 since v is an integer-valued function on K. But
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this contradicts the hypothesis v(x)<0. So the above discussion shows that
[v # MK | v(x)<0]�[v # MK | cv"{0] for every x-coordinate of rational
points of V. It then suffices to take S=[v # MK | cv"{0], as cv"=0 for all
but a finite number of places v. K

Theorem 1. Let V�K be defined by x&x pr
=a1 y1

p r
+a2 y2

pr
+ } } } +

an yn
pr

. If =n<pr&1, then the set V(K ) of K-rational points of V is finite.

Proof. Let V(K) be the set of K-rational points on the variety V. Then
characteristic p clearly guarantees that V(K ) has a group structure under
addition, which is defined component-wise. From Lemma 3 we see that
there is a finite set S of places of K such that every x-coordinate of rational
points of V has no poles at every place v � S. In the case where S is non-
empty, viewing every x-coordinate as an element in the completion Kv of
K at each place v # S we can define a map

,: V(K ) � �
v # S

Fq
( |v(x)|+1),

(x, y1 , y2 , ..., yn) [ (coeff (x, tv(x) ; t0))v # S ,

where coeff(x, tv(x); t0) is a ( |v(x)|+1)-tuple of the coefficients of terms
whose degrees run over from v(x) to 0 in the Laurent series expansion of
x. We can then check that the map is well-defined from the observation on
S made above. Moreover it is obvious that , is a group homomorphism.
To prove the finiteness of V(K ), since the codomain is only a finite group,
it is enough to show that the kernel of ,, denoted Ker(,), is finite, in fact,
only trivial. If (x, y1 , y2 , ..., yn) # Ker(,), then it follows from the definition
of , that v(x)>0 for every place v # S. On the other hand, we know that
v(x)�0 for every place � S. Hence we observe that x has no poles at all,
but x has zeros at finitely many places in S. This fact forces x to be 0. Thus,
y1= y2= } } } =yn=0 follow from hypothesis that 1, a1 , a2 , ..., an are
linearly independent over K pr

. In the case where S is empty, we shall show
that V(K ) is a group of order at most pr. For any element (x, y1 , y2 , ..., yn)
# V(K), we note that x has no poles at all places, that is, v(x)�0 for all
v # MK . By a result of [Sil] II Proposition 1.2, x must be in the constant
field Fq of K, in particular, x=u pr

for some u # Fq . Hence x&x pr
=

(u&u pr
) p r

is a pr th power. Again the linearly independence of 1, a1 , a2 , ...,
an over K p r

implies that x=u=u pr
and y1 , y2 , ..., yn are all 0. K

Remark. As in the proof, can we give an explicit example of a variety
V whose rational points consist only of p points, in the case where the set
S is just empty and r=1? In Section 5 we will give a variety given by
x&x p=2b3y p+bz p that has only p rational points for infinitely many
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b � K p. Using the result, we show that Pic0
K (C)(K) is a cyclic group of

order 5 for infinitely many b when C is given by y2=x5+b2 over a rational
function field K of one variable with a finite field of characteristic p=5.

4. FINDING AN EQUATION OF A VARIETY

Consider the equation of a curve C�K : y2=x p+a (a � K p) with relative
genus g=( p&1)�2 and absolute genus 0. In this section, via computations
of derivations on function fields of C we will derive an equation of a variety
associated with the Picard group Pic0

K (K ). As we will see, the assumption
that a is a square in K leads us to show that the equation we will obtain
is K-isomorphic to the equation which we have already dealt with in the
previous section.

Let a=! p and let K$=K(!), then we see that K$ is a purely inseparable
extension of degree p over K. We choose a derivation $: K$ � K$ such that
Ker($)=[u # K$ : $u=0]=K. Since K$ is a purely inseparable extension
over K, for simplicity of computations we can select $ so that $(!)=2 (see
[La, p. 360]). Let K(C), K$(C) be the function field of C over K and K$,
respectively. By assigning $x=0, $y=0, $ can be extended to K$(C). We
note that Ker($)=K(C) and it turns out that the curve C is rational over
K$ and K$(C)=K$(t) for a variable t:

x=t2&! (3)

y=t p. (4)

One can easily express t in terms of x, y as

t=
y

(x+!) g . (5)

Taking the $ of Eq. (3), we obtain $t= 1
t and then $( 1

t )=&1�t3.
Let us fix P� the point at infinity on the curve C, for example

P�=[0 : a1�2 : 0]. For D1 , D2 , D3 # Div0
K (C) it follows from the Riemann�

Roch Theorem that D1 t(P1)+(P2)+ } } } +(Pg)& g(P�), D2 t(Pg+1)
+(Pg+2)+ } } } +(P2g)& g(P�), D3 t(P2g+1)+(P2g+2)+ } } } +(P3g)&
g(P�), where Pi=(xi , yi) i=1, ..., 3g are points on C. Let f1 :=(t&tP1

)
(t&tP2

) } } } (t&tPg
), f2 :=(t&tPg+1

)(t&tPg+2
) } } } (t&tP2g

), f3 :=(t&tP2g+1
)

(t&tP2g+2
) } } } (t&tP3 g) be the function of degree g in (K$)sep (C) associated

with D1 , D2 , D3 respectively, where tPi
=ti is given by (5) for each i=1, ..., 3g.

Note that for each i=1, ..., 3g and k=1, ..., g, the functions ti , 1�yi , and xi
k�yi

are well-defined at P� . Now we have the following.
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Lemma 4. Let D1 , D2 , D3 , f1 , f2 , f3 be as above. Then the following are
equivalent:

(a) D1+D2 tD3 .

(b) f1 f2 �f3 # K(C).

(c) $( f1 f2 �f3)=0.

Proof. (a) O (b). If D1+D2 tD3 , then D1+D2=D3+div(g) for
some non-zero function g # K sep(C). Since D1 , D2 and D3 are in Div0

K (C),
by Lemma 1 we may assume that g is in K(C)*. We also have Di=div( f i)
+div(gi) for gi # K(C)*, i=1, 2, 3. Hence we get div( f1)+div(g1)+
div( f2)+div(g2)=div( f3)+div(g3)+div(g). Now we have div( f1 f2 �f3)=
div( g3 g�g1 g2). Lemma 1 again leads to f1 f2 �f3 # * } K(C) for some * # K sep*.
It is easy to see from Eqs. (3) and (4) that * } K(C) & K$(C){< implies * # K*.

(b) O (a). It follows from the relations of Di and fi .

The equivalence of (b) and (c) follows from the observation that
Ker($)=K(C). K

We retain notations for D1 , D2 , D3 , f1 , f2 , f3 as before. If D1+D2 and
D3 are linearly equivalent, then we need to explicitly compute $( f1 f2 �f3)=
0 in terms of polynomials in t, from Lemma 4(c). The quotient formula of
$ yields

f3$( f1 f2)& f1 f2 $( f3)
f3

2 =0. (6)

Clearing the denominator of (6) and applying the derivation $ we get

`
g

i=1

(t&t2g+i) :
2g

i=1

(t&t1) } } } (t&ti@) } } } (t&t2g) \1
t
&

1
t i+

= `
2g

i=1

(t&t i) :
g

i=1

(t&t2g+1) } } } (t&t2g+i@ ) } } } (t&t3g) \1
t
&

1
t2g+i+ ,

(7)

where ti@ means the term with ti@ is omitted in the summation. The equation
obtained is an identity in t, so equating the coefficients of the term 1

t on
both sides of (7) we get

(&1) g t2g+1 } } } t3g :
2g

i=1

(&1)2g&1 t1 t2 } } } ti@ } } } t2g

=(&1)2g t1 } } } t2g :
g

i=1

(&1) g&1 t2g+1 t2g+2 } } } t2g+i@ } } } t2g . (8)
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Hence from (8) we obtain a crucial identity in terms of the t i 's;

:
g

i=1

1
t2g+i

= :
2g

i=1

1
t i

. (9)

Applying iterated derivations $ j to (9) and canceling the coefficient yields,
for each 1� j�g&1,

:
g

i=1

1
t2g+i

2 j+1= :
2g

i=1

1
t i

2 j+1 . (10)

We summarize the above discussion to get the following lemma.

Lemma 5. Let D1 , D2 , D3 , f1 , f2 , f3 be as before. Assume that D1+D2

tD3 , then we have, for each 0� j�g&1,

:
g

i=1

1
y2g+i

2 j+1= :
2g

i=1

1
y i

2 j+1 . (11)

Proof. It follows from taking pth power of (9) and (10), respectively,
and then using (4). K

These g identities in Lemma 5 allow us to define homomorphisms,
denoted Xj : Pic0

K (C) � K sep+, [D] [ Xj (D) :=� g
i=1(1�yi

2 j+1) for each
0� j�g&1, where Dt(x1 , y1)+(x2 , y2)+ } } } +(xg , yg)& g(P�). We
note that Xj (D) lies in K. Indeed, if [D] is in Pic0

K (C), then the divisor
(P1)+(P2)+ } } } +(Pg)& g(P�) is in Div0

K (C). Since P� is fixed by the
Galois group G, (P1)+(P2)+ } } } +(Pg)=(P1

_)+(P2
_)+ } } } +(Pg

_) for
all _ # G. In other words, G permutes the P's in an appropriate fashion.
Hence (� g

i=1(1�yi
2 j+1))_=� g

i=1(1�( yi
_)2 j+1)=� g

i=1(1�y i
2 j+1) for all _ # G.

So Xj (D) lies in K.
We now return to the equation of C�K : y2=x p+a. With a slight change

of the equation of C, one can obtain, for each 1�k�g,

\xk

y +
p

=
( y2&a)k

y p =
:
k

l=0 \
k
l + (&a) l y2(k&l )

y p , (12)

where ( k
l ) means the binomial coefficient. Using these identities in (12) one

can also construct maps, denoted Yk : Pic0
K (C) � K sep+, [D] [ Yk (D) :=

� g
i=1(xi

k�y i ) for each 1�k�g&1, where D is as before. It turns out that
they are group homomorphisms because of the relations between the Xi

and Yj listed in Eqs. (13) below. From Eqs. (12) we now look for the
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relations between them and list the relations below keeping in mind that
2g= p&1:

Y1
p=Xg&1&aX0

p

Y2
p=Xg&2&2aXg&1+a2X0

p

} } }

Yk
p=Xg&k&kaXg&k&1+ } } } +\k

l + (&a) l Xg&k&l+ } } } +(&a)k X0
p

} } }

Yg
p=X0& gaX1+ } } } +\g

l+ (&a) l Xg&l+ } } } +(&a) g X0
p. (13)

Getting rid of terms running X1 through Xg&1 from g Eqs. (13) we
finally obtain

X0=a gX0
p+ ga g&1Y1

p+ } } } +\g
l+ a g&lYg&l

p+ } } } +Yg
p. (14)

Note that the variety given by (14) is defined over K and has a group
structure under addition, due to characteristic p. Here let us recall the
assumption that a is a square in K. For a=b2 # K, since 2g= p&1 we see
by substituting X=bX0 that the variety given by Eq. (14) is K-isomorphic
to

X=X p+ gb2(g&1)+1 Y1
p+ } } } +\g

l+ b2(g&l )+1Yg&l
p+ } } } +bYg

p.

(15)

Now we use the Wronskian criterian to easily check that all the coefficients
of Eq. (15) are linearly independent over K p. Hence we see from Theorem
1 that the variety (15) has only finitely many K-rational points, so the
variety (14) also has only a finite number of K-rational points.

Theorem 2. Let K be a function field of one variable over a finite field
of characteristic p�5 and let C�K : y2=x p+a (a � K p), then Pic0

K (C) has
only finitely many K-rational points.

Proof. We define a map from Pic0
K (C) to the variety given by Eq. (14)

defined by [D] [ (X0(D), Y1(D), Y2(D), ..., Yg(D)). It is obvious that the
map is a well-defined group homomorphism. Since the variety in question
has only finitely many rational points it is enough to show that the map
has only trivial kernel. Suppose [D] is in the kernel of the homomorphism.
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Then any divisor of the form (x1 , y1)+(x2 , y2)+ } } } +(xg , yg)& g(P�)
which is linearly equivalent to D satisfies the equations

1
y1

+
1

y2

+ } } } +
1

yg
=0

x1

y1

+
x2

y2

+ } } } +
xg

yg
=0

x2
1

y1

+
x2

2

y2

+ } } } +
xg

2

yg
=0 (16)

} } }

x1
g

y1

+
x2

g

y2

+ } } } +
xg

g

yg
=0.

We may assume that not all Pi=(xi , yi) i=1, ..., g are the point at infinity.
From Eqs. (16) we can view 1�yi as a variable and consider the first
equation as a constraint and then form a matrix equation:

x1 x2 } } } xg

x1
2 x2

2 } } } xg
2

_x1
3 x2

3 } } } xg
3&b b . . . b

x1
g x2

g } } } xg
g _

1
y1

&1
y2

1
y3

b
1

yg

0

0

=_0& .

b
0

(17)

From the assumption that not all Pi are the point at infinity, the matrix
associated with Eq. (17) is singular, so we deduce that xi=xj for some i=% j,
because the determinant of the matrix is x1x2 } } } xg >i< j (x i&xj). After
renumbering, we may assume that i=1, j=2. From the equation of C we
know that either y1= y2 or y1=&y2 , that is, P1=P2 or P2=P1 =(x1 , &y1).
Hence Dt(P3)+(P4)+ } } } +(Pg)&(g&2)(P�) or 2(P1)+(P3)+(P4)
+ } } } +(Pg)& g(P�) since (P1)+(P1 )&2(P�) is principal. This implies
that we can get rid of one or two terms from each equation (16) and keep on
applying the process to the remaining divisor (P3)+(P4)+ } } } +(Pg)&
(g&2)(P�) or 2(P1)+(P3)+(P4)+ } } } +(Pg)& g(P�) to reduce that the
divisor [D] in the kernel is principal. This completes the proof. K
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Corollary 1. Let K be the same as before and C�K : y2=x p+a (a � K p).
Then C(K ) is at most finite.

Proof. Define a map C(K ) � Pic0
K (C)(K ), P [ [(P)&(P�)]. Since C

is not rational over K it is easy to see that the map is injective. It follows
then from Theorem 2 that C(K ) is at most finite. K

5. AN EXPLICIT EXAMPLE

Let K be a function field of one variable over a finite field of characteristic
p�5. Let S�K be a surface defined by x&x p=2b3y p+bz p (b � K p), which is
obtained from Eq. (15) in the case of genus g=2. Since b � K p it is easy to see
that 1, b, 2b3 are linearly independent over K p. By Theorem 1 we already
know the surface S has finitely many rational points. We here show that
S(K ) consists of p elements for infinitely many choices of b. We retain all
notations from Section 4.

First of all, we will consider any place v # MK such that v(b)=0. Then
b=b0+b1 tv+b2tv

2+b3 tv
3+ } } } # Kv is written as a power series in terms

of tv , where tv is a local parameter at such a place v. We notice that b0{0,
as v(b)=0. From the assumption on b � K p, we can put j :=min[i�1 |
bi{0, ( p, i )=1]. It follows then from the definition of j that v(db)= j&1�0,
where db is a differential form of b. Set jv :=W &2 j

p&1X�0, where WdX is the least
integer �d. In what follows, we always denote by (l, m, n) # Z3 a triple of
values that every element (x, y, z) # S(K) takes at the place v.

Lemma 6. Let v # MK be any place such that v(b)=0, then for every
element (x, y, z) # S(K ), we have v(x)� jv , v( y)� jv , v(z)� jv .

Proof. For such a place v, suppose that there exists an element (x, y, z)
# S(Kv) for which at least one of v(x), v( y), v(z) is less than jv . Then we
can observe that either y or z has valuation < jv at v. Otherwise, taking the
valuation v of the equation of S gives

v(x&x p)=v(2b3y p+bz p)�min[ pv( y), pv(z)]�pjv .

From the hypothesis we have that v(x)< jv�0, hence v(x&x p)= pv(x)
�pjv , which is a contradiction.

The proof will be then broken up into three cases for the possible choices
of v( y)=m, v(z)=n as follows:

(I) If m< jv and m<n, then l=m.

(II) If n< jv and n<m, then l=n.

(III) If m=n< jv , then l�m=n.
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For each case, from the property of a place it is not hard to determine
what l is, as it is written above. Taking the derivation $ of the equation of
S yields

$x=(6b2y p+z p) $b. (V)

Now we claim that v(6b2y p+z p)�pm+ j in case (III).
To prove the claim, it suffices to show that coeff(6b2y p+zp, t pm+ j) is

not equal to 0, where coeff(E, ti) means the coefficient of the term of which
t-exponent is i, in the Laurent series expansion of E. Squaring the power
series expansion of b, we note from the definition of j that all non-vanishing
terms in b2 whose t-exponents are less than j have exponent of p-multiple.
Hence we can easily find out

coeff(6b2y p+z p, t pm+ j)=12b0 bj ym
p{0.

By taking the valuation of Eq. (V) we obtain

pm+j&1 for (I)

v(dx)=v(6b2y p+z p)+v(db)={pn+ j&1 for (II)

�pm+2 j&1 for (III)

On the other hand, we get

m&1 for (I)

v(dx)�v(x)&1={n&1 for (II)

l&1�m&1 for (III)

Simple computations of the above two arrays give that in each case all
l, m, n� jv , which contradicts the hypothesis. K

Next let us consider any place v # MK such that v(b)= j{0.

Lemma 7. For each v # MK such that v(b)= j{0, there is an integer jv ,
depending on v such that every solution (x, y, z) # S(K ) has valuations � jv .

Proof. We shall consider two cases depending on whether ( p, j )=1 or
not. Suppose ( p, j )=1. Then it is obvious that v(db)= j&1. The assump-
tion on j follows that v(2b3y p){v(bz p). Hence we have either 3 j+ pm<
j+ pn or 3j+ pm> j+ pn.
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If 3 j+ pm< j+ pn, then taking the valuation v of the equation of S, we
have

v(x&x p)=3 j+ pm.

We claim that v(x)=l�0. Otherwise v(x&x p)= pl=3j+ pm from the
preceding equation, contradicting the fact that ( p, j )=1. Hence we obtain
that l�0, m�&3j�p, n>&2j�p+m�&5j�p. Put jv& :=min[0, W&3j�pX,
W&5j�pX].

If 3j+ pm> j+ pn, then the same argument yields that l�0, n�&j�p,
m>&2j�p+n�&3j�p. Set jv+ :=min[0, W&j�pX, W&3 j�pX]. In either
case it is enough to take jv=min[ jv& , jv+].

Suppose p | j. Then we can rewrite b=u pb$, where u=t j�p, v(b$)=0,
b$ � K p. Here we can employ a change of variables in the equation of S:
(x, y, z) � (x$, y$, z$)=(x, u3y, uz) to get x$&x$ p=2b$3y$ p+b$z$ p. Hence
this case can be reduced to that of Lemma 6. Thus we complete the
proof. K

Fix the set S$ :=[v # MK | v(b){0 or v(db){0]. Then it is obvious that
S$ is a finite set of places of K. For every place v outside of S$, we get
v(b)=0 and v(db)=0. Hence we know from Lemma 6 that every element
(x, y, z) # S(K ) has no poles at every place v � S$, because j=1, hence
jv=0. In addition, we see that for even a place v # S$ every element
(x, y, z) # S(K ) may not have a pole there, so we here eliminate such
places. So we assume that the set S consists of finite places at which every
(x, y, z) # S(K ) has no poles. In other words, S=[v # S$ | jv<0] where jv

is as Lemmata 6 and 7.

Proposition 2. Let S be a surface defined by x&x p=2b3y p+bz p over
a rational function field K=Fq(T) of characteristic p�5. Then S(K )=
[(0, 0, 0), (1, 0, 0), ..., ( p&1, 0, 0)] for infinitely many b � K p.

Proof. Take b=T, then we can easily check that T has only a zero
place v0 and an infinite place v� on K. In other words, v0(T )=1, v�(T )
=&1. So, the set S$ given above consists only of two places v0 and v� .
From the proof of Lemma 7 we know that jv�0 in each case. Hence it
follows from the proof of Theorem 1 that the emptiness of S completes the
proof of the case where b=T. For b=T pk+1, where k is any non-negative
integer, we can use a change of variables to reduce this case to the previous
one. K

As an application of Proposition 2 we consider a curve C: y2=x5+
T 2(5k+1) defined over a rational function field K=Fq(T ) of characteristic 5,
where k is any non-negative integer and q is a power of 5. Then we know
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that the (relative) genus of C is 2 and that (0, T 5k+1), (0, &T 5k+1) are
rational points of C. We denote (0, T 5k+1), (0, &T 5k+1) and the point at
infinity by P+ , P& , P� , respectively.

Corollary 2. Let C: y2=x5+T 2(5k+1) be a curve defined over a
rational function field K=Fq(T ) of characteristic 5. Then Pic0

K (C) consists
only of 5 rational points.

Proof. Let S a surface defined by x&T 4(5k+1)x5=2T 2(5k+1)y5+z5,
which is isomorphic to x&x5=2T 3(5k+1)y5+T (5k+1)z5. Then we know
from Proposition 2 that S(K ) contains 5 points. We consider a map
Pic0

K (C)(K ) � S(K ), [D] [ (X0(D), Y1(D), Y2(D)) as defined in the proof
of Theorem 2, where D is linearly equivalent to (x1 , y1)+(x2 , y2)&2(P�).
It is shown there that the map is injective. Moreover it is a group
homomorphism, so Pic0

K (C)(K ) is a group of order 5 since it contains at
least two rational points. K

Corollary 3. Let C : y2=x5+T 2(5k+1) be a curve defined over a rational
function field K=Fq(T) of characteristic 5. Then C(K)=[(0, T 5k+1),
(0, &T 5k+1)].

Proof. Define C(K ) � Pic0
K (C)(K), Q [ [(Q)&(P�)]. Then we already

know that the map is a well-defined injective map since C is not rational over
K. From Corollary 2 we see that Pic0

K (C)(K) is a cyclic group of order 5.
Suppose that there exists another rational point P=(x, y) different from P+ ,
P& , P� on C. Then P� =(x, &y) is also a rational point on C and notice
that the map above is bijective. Let now [(P+)&(P�)] be a generator of
Pic0

K(C)(K). We then get [(P)&(P�)]=[2(P+)&2(P�)] and [(P� )&(P�)]
=[3(P+)&3(P�)]. From two identities we deduce two rational functions f,
g # K(C)* such that

(P)+(P�)=2(P+)+div( f )

(P)+2(P�)=3(P+)+div(g).

We note that f has zeros at P and P� but a pole of order 2 at P+ and that
f # L(2P+). Hence L(2P+) is a vector space of dimension at least 2 over
K. On the other hand, from the Riemann�Roch Theorem it follows that
l(3P+)=2. Since L(2P+)/L(3P+), L(2P+) is exactly a two-dimensional
vector space over K. So we take [1, f ] as a basis for L(2P+), so g=*++f
is written for some *, + # K as g # L(3P+). Since both f and g have a zero
at P we get *=0, so g=+f, which is impossible because f and g have a
pole of order 2 and 3 at P+ , respectively. K
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