OP-119
Vitamin A Supplementation Effects on Gene Expression of Cytokines Secreted by TCD4+ Lymphocytes in Atherosclerotic Patients
Seved Ali Keshavarz, Azadeh Mottaghi, Ali Akbar Sahoor Yaraghi, Khadijeh Mirzaei
Tehran University of Medical Sciences, Iran

Aim: Atherosclerosis is an inflammatory arterial wall disease and T lymphocytes have important role in the pathogenesis and progression of this disease. The aim of this study is determination of vitamin A supplementation effects on gene expression of cytokines secreted by TCD4+ lymphocytes in atherosclerotic patients.

Methods: Thirty one atherosclerotic patients and 12 healthy controls participated in this study. Patients were randomly divided into vitamin A receiving group (n=16) and placebo receiving group (n=15), also healthy controls were receiving vitamin A. Vitamin A supplement was given as retinyl palmitate and 25000 IU per day. Fasting blood sample of participants were taken before and after 4 months and plasma was separated and stored at -80°C for biochemical laboratory tests. Peripheral blood mononuclear cells (PBMC) were separated and cultured in the appropriate amount along with PHA and ox-LDL for proliferation assay and determination of gene expression pattern. As well as RNA was extracted and cDNA was synthesized from part of the cells at the same time and was stored for Real-Time PCR analysis. After 72 hour incubation cells supernatant were collected and stored at 800C. cells deposited were collected for RNA extraction and cDNA synthesis. After the intervention period the gene expression pattern of relevant cytokines of CD4+ T cells including TNF, Th2, Th17 and Treg were determined by Real-Time PCR.

Results: There was significant difference in fasting blood sugar, total cholesterol and LDL cholesterol between three groups of study, before and after intervention. Vitamin A increased proliferation of cells that stimulated with ox-LDL in all groups. Results of this study show IFN-γ and T- bet gene expression in fresh cells in vitamin A treated patients was decreased. IL-4 gene expression was increased 12.7 fold in vitamin A-treated patients. IL-17 gene expression in fresh cells of vitamin A-treated patients was diminished. Foxp3 gene expression in fresh cells was increased after intervention in all groups.

Conclusion: Vitamin A supplementation had no significant effect on anthropometric factors and effect of this intervention on biochemical factors limited to increase in total cholesterol and HDL cholesterol in both groups of patients and controls but the amounts were in normal value ranges. Vitamin A supplementation could reduce gene expression of IFN-γ T-bet in all patients. Increase in gene expression of Th2 cells was seen in all group except GATA3 gene. According to the results of this study vitamin A gene expression in atherosclerotic patients, perhaps we thought the positive role of vitamin A supplementation in these patients. Results of this study could pave the way for more detailed review on effect of vitamin A in patients with immune related diseases.

OP-120
Beta Fibrinogen -455 G>A Gene Polymorphism in Coronary Artery Ectasia
Atilla Işıklı1, Ahmet Altınbaş2, Habib Yuce3, Yasin Türker4, Salaheddin Akçay5, Recep Sütcü6
1Department of Cardiology, Ahi Evran University Education and Research Hospital, Kirşehir, 2Department of Cardiology, Suleyman Demirel University, Isparta, 3Department of Cardiology, Isparta State Hospital, Isparta, 4Department of Cardiology, Duzce University, Duzce, 5Department of Cardiology, Ala Evran University Training and Research Hospital, Kirşehir, 6Department of Cardiology, Celal Bayar University, Manisa, 7Department of Biochemistry, Suleyman Demirel University, Isparta

Background: Coronary artery ectasia (CAE) is defined as local or generalized aneurysmal dilatation of the coronary arteries. Although the etiology of CAE has not been clearly identified completely, the most frequent cause is coronary atherosclerosis. It is known that an expansive remodelling occurs in atherosclerotic coronary arteries due to plaque rupture and increased plaque burden particularly in early stages. β-fibrinogen -455 GA genotypes have been described to be associated with coronary artery disease and myocardial infarction. Although various gene polymorphisms have been studied in patients with CAE, β-fibrinogen gene polymorphisms have not been studied previously. We investigated relationship between β-fibrinogen -455 G>A gene polymorphism and CAE.

Methods: Sixty five patients with isolated CAE (mean age 53.7±7 years) and 65 controls with normal coronary angiograms (mean age 51±7 years) were included in the study. The types of β-fibrinogen -455 G>A gene polymorphisms were analysed by polymerase chain reaction and restriction fragment length polymorphism. For each polymorphic analysis, there was no statistically significant difference among groups. We investigated relationship between β-fibrinogen -455 G>A gene polymorphism and CAE.

Results: There was no significant difference with respect to age and gender between groups. The frequency of the GA heterozygous genotype was significantly higher in CAE group than controls (39 (60%) vs 25 (35.5%), p=0.014). Between the two groups patients were compared according to the dominant genetic model (GA>AA vs. GG). The number of patients carrying at least one A mutant allele (GA>AA) were significantly higher in CAE than controls (44 (67.7%) vs 26 (40%), p=0.002). With respect to all coronary artery quantitative indices (G vs A, addition of stenosis in epicardial coronary vessels. In both physiological mechanisms are uncertain. Several hypotheses have been suggested for SCF, including a form of early phase of atherosclerosis, microvascular dysfunction, inflammation, imbalance between vasoconstrictor and vasodilatory factors, and platelet function disorder. Endothelial nitric oxide synthase (eNOS) gene T-786 C polymorphism has been reported to be associated with smoking. Objective: The aim of this study was to investigate the association between SCF and eNOS gene T-786 C polymorphism.

Methods-Materials: Forty patients with SCF and otherwise normal coronary arteries (mean age 55.9±7 years), 35 patients with coronary artery disease (CAD) (mean age 55.9±9 years) and 30 patients with normal coronary angiograms (mean age 51i±8 years) were included in the study. TIMI frame count ≥40 frames for the left anterior descending artery was considered as SCF. T-786 C polymorphism of the eNOS gene were analysed by polymerase chain reaction. Demographic characteristics and major risk factors for atherosclerosis were evaluated in the study groups. There was no statistically significant difference among groups. Results: There was no significant difference with respect to age and gender between groups. The percentage of smoking was higher in the CAD group than in the SCF and control groups. There was no statistical difference in genotype distribution among the groups. The genotype distribution in SCF group was as follows: TT genotype frequency was 25 (62.5%), TC genotype frequency was 12 (30%) and CC genotype frequency was 3 (7.5%). The genotype distribution in CAD group was as follows: TT genotype frequency was 16 (45.7%), TC genotype frequency was 16 (45,7%) and CC genotype frequency was 3 (8.5%). The genotype distribution in control group was as follows: TT genotype frequency was 17 (56,6%), TC genotype frequency was 10 (33,3%) and CC genotype frequency was 3 (10%). In the dominant and recessive models of statistical analysis, there was no statistically significant difference among groups.

Conclusion: Our findings show that there is no significant association between T-786 C polymorphism of eNOS gene and SCF in the present study.