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1. Introduction

Correlators of quark currents are of prime interest for several
phenomenological applications. Their low-energy expansions, in
particular, allow for the precise determination of charm and bot-
tom quark masses via QCD sum rules [1–5]. For this reason, heavy
quark correlators have been frequently investigated in the frame-
work of perturbation theory.

Up to O(α2
s ), analytic expansions to great depth are known for

the low energy region. The three-loop QCD corrections to the cor-
relator of two vector currents were first calculated in [6]. In [7]
up to seven terms in the low energy expansion were obtained.
This calculation also included further currents, namely the scalar,
pseudo-scalar, and axial-vector current. Recently the calculation at
three-loops has been extended to moments up to n = 30 for all
four currents [8,9].

The moments of the vector correlator can then be used to ex-
tract the value of the masses of the charm and bottom quark from
e+e− data in the threshold region using the R-ratio, since they are
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related via a dispersion relation. A brief outline of this method is
given in Section 2, which was first applied at three loops in [3].

At three loops a significant, sometimes dominant part of the
error arises from the theoretical uncertainty due to higher orders,
often estimated by the renormalization scale dependence. There-
fore the calculation had to be taken to the four-loop level [10,11]
to reach a precision comparable to or below the experimental data.
The contributions from double-fermionic loop insertions of heavy
and/or light quarks are known explicitely up to 30 terms in the
low energy expansion [12]. The contributions due to light quark
loop insertions of O(αn

s nn−1
l ) are known to all orders in αs [13].

Recently the lower moments were also calculated for the remain-
ing three currents in [14].

In [4] the first moment of the vector correlator was used to
extract the masses of the charm and bottom quarks. Since all but
constant terms are known from renormalization group arguments,
the analysis was done for up to the fourth moment, employing a
conservative error estimate for the missing constant terms.

In this Letter we present the calculation of the second moment
of the vector correlator and discuss its impact on the determina-
tion of the charm and bottom quark masses.

The outline of this Letter is as follows: In Section 2 we set the
framework and notations used throughout the Letter. In Section 3
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we explain the details of the calculation, present the result for the
second physical moment and discuss its impact on the quark mass
determination. A brief summary and conclusions are given in Sec-
tion 4.

2. Notation

The correlator Πμν(q) of two vector currents is defined as

Πμν(q) = i

∫
dx eiqx〈0|T jμ(x) jν(0)|0〉, (1)

with the current jμ(x) = Ψ̄ (x)γ μΨ (x) being composed of the
heavy quark fields Ψ (x). The function Πμν(q) is conveniently writ-
ten in the form

Πμν(q) = (−q2 gμν + qμqν
)
Π

(
q2). (2)

It can be related to the ratio R(s) = σ(e+e− → hadrons)/
σ (e+e− → μ+μ−) with the help of the dispersion relation

Π
(
q2) = 1

12π2

∞∫
0

ds
R(s)

s (s − q2)
, (3)

where the normalization Π(0) = 0 has been adopted.
To extract the quark masses the experimental data on the right-

hand side of (3) has to be compared with the theoretical evalua-
tion of Π(q2) on the left-hand side. This is best be done by com-
paring the corresponding Taylor series in q2. The nth derivatives
with respect to q2 at q2 = 0 define the experimental moments

Mexp
n =

∫
ds

R(s)

sn+1
, (4)

which can be compared with the theoretical moments

Mth
n = Q 2

q
9

4

(
1

4m̄2
q

)n

C̄n. (5)

The latter are related to the Taylor coefficients C̄n of the vacuum
polarization function

Π̄
(
q2) = 3Q 2

q

16π2

∑
n�0

C̄n z̄n, (6)

with z̄ = q2/(4m̄2). Symbols carrying a bar indicate that the renor-
malization has been performed in the MS scheme. The coefficients
C̄n can be expanded in a power series in αs

π

C̄n = C̄ (0)
n + αs

π
C̄ (1)

n +
(

αs

π

)2

C̄ (2)
n +

(
αs

π

)3

C̄ (3)
n + · · · .

The four-loop contribution C̄ (3)
n can be decomposed according to

the number of quark loops and colour structures as follows:

C̄ (3)
n = C F T 2

F n2
l C̄ (3)

ll,n + C F T 2
F n2

hC̄ (3)

hh,n + C F T 2
F nlnhC̄ (3)

lh,n

+ C F T F nl
(
C A C̄ (3)

lN A,n + C F C̄ (3)

lA,n

) + C̄ (3)

n0
f ,n

+ C F T F nh
(
C A C̄ (3)

hN A,n + C F C̄ (3)

h A,n

) + nh

NC
dabcdabc C̄ (3)

S,n. (7)

C̄ (3)

n0
f ,n

contains the purely bosonic contributions, where we set the

number of colours NC = 3 for simplicity, while C̄ (3)
S,n denotes the

contribution from singlet diagrams. C F = N2
C −1

2NC
and C A = NC are

the Casimir operators of the fundamental and adjoint representa-
tion of the SU(NC ) group, respectively. T F = 1

2 is the index of the
fundamental representation. dabc is the symmetric structure con-
stant. nl and nh = 1 denote the number of light and heavy quarks,
respectively.
3. Calculation and results

The diagrams have been generated using QGRAF [15]. Expand-
ing them in q2 results in four-loop tadpole integrals. Using EXP
[16] they are mapped to six topologies with the maximum of
nine lines. The main difficulty of the calculation lies in the re-
duction of the vast amount of integrals to the small set of 13
master integrals. This is done using Integration-By-Parts identities
[20] together with the Laporta algorithm [21] which is efficiently
implemented in the multi-threaded C++ program CRUSHER [17].
CRUSHER uses GiNAC [18] for simple algebraic manipulations and
Fermat [19] for the simplification of complicated ratios of poly-
nomials. A supplementary technique to perform the reduction to
master integrals is based on the idea that self energy subgraphs of
the integral can be reduced independently in order to effectively
reduce the number of loops of the diagram. This can be useful
because these integrals have up to two more propagator powers
than integrals without an internal self energy and are therefore
more cumbersome for traditional Laporta algorithm. In combina-
tion with Groebner Bases and the Mathematica package FIRE
[22–24] it is also possible to calculate integrals without internal
self energies. A more detailed description of the calculation tech-
niques will be published soon [25]. In total the reduction of 1.8
million integrals was needed in order to perform the calculation,
which is done using FORM [26] in combination with the MATAD
[27] setup. The necessary master integrals have been calculated in
[28–34]. We confirm the results for the zeroth and first moment
given in [8,10,11].

Inserting the master integrals and performing the renormal-
ization of the strong coupling constant and the mass in the MS
scheme leads to the following result for the second moment at
μ2 = m2 as defined in Eq. (7):

C̄ (3)

n0
f ,2

= +64 985 074 258 811 347

353 072 079 360 000
− 2 900 811 008

3 648 645
a5

− 1 662 518 706 713

21 016 195 200

(
24a4 + log4 2 − 6ζ2 log2 2

)

+ 362 601 376

54 729 675
log5 2 − 725 202 752

10 945 935
ζ2 log3 2

− 1 684 950 406

3 648 645
ζ4 log 2 + 112 680 551 036 302 633

47 076 277 248 000
ζ3

− 26 401 638 588 211

28 021 593 600
ζ4 − 164 928 917

270 270
ζ5,

C̄ (3)
S,2 = + 5 881 974 201 847

8 369 115 955 200

+ 97 011 619

696 729 600

(
24a4 + log4 2 − 6ζ2 log2 2

)

+ 796 232 393 699

371 960 709 120
ζ3 − 745 372 259

185 794 560
ζ4,

C̄ (3)

hN A,2 = −20 427 854 209 619

5 649 153 269 760

− 31 595 849

11 612 160

(
24a4 + log4 2 − 6ζ2 log2 2

)

− 29 638 030 087 837

697 426 329 600
ζ3 + 968 787 977

15 482 880
ζ4 + 362

63
ζ5,

C̄ (3)

lN A,2 = − 22 559 166 733

16 796 160 000
− 520 999

4 354 560

(
24a4 + log4 2 − 6ζ2 log2 2

)

− 309 132 631

12 902 400
ζ3 + 167 529 079

5 806 080
ζ4,

C̄ (3)

h A,2 = −37 320 009 196 157

271 593 907 200

− 130 387 543 (
24a4 + log4 2 − 6ζ2 log2 2

)

2 177 280
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− 5 811 074 101 069

6 706 022 400
ζ3 + 2 218 910 663

1 451 520
ζ4,

C̄ (3)

lA,2 = +357 543 003 871

11 757 312 000
+ 520 999

2 177 280

(
24a4 + log4 2 − 6ζ2 log2 2

)

− 36 896 356 307

174 182 400
ζ3 + 598 455 689

2 903 040
ζ4,

C̄ (3)

lh,2 = + 9 040 709

62 705 664
− 2029

41472

(
24a4 + log4 2 − 6ζ2 log2 2

)

− 12 159 109

4 644 864
ζ3 + 99 421

55 296
ζ4,

C̄ (3)

hh,2 = +1 842 464 707

646 652 160
− 2 744 471

1 064 448
ζ3,

C̄ (3)

ll,2 = + 15 441 973

19 136 250
− 32

45
ζ3,

where Riemann’s zeta function ζn and the polylogarithm Lin(1/2)

are defined by

ζn =
∞∑

k=1

1

kn
and an = Lin(1/2) =

∞∑
k=1

1

2kkn
. (8)

For completeness we also give the results for the singlet contribu-
tion to the zeroth and first moment:

C̄ (3)
S,0 = 2411

20160
− 6779

4480
ζ3 + 2189

768
ζ4 − 5

48
ζ5

− 73

576

(
24a4 + log4 2 − 6ζ2 log2 2

)
, (9)

C̄ (3)
S,1 = 664 837

2 566 080
− 2 017 831

855 360
ζ3 + 175

48
ζ4

− 739

4320

(
24a4 + log4 2 − 6ζ2 log2 2

)
. (10)

Numerically at μ2 = m2 one finds C̄ (3)
2 |nl=3 = −3.49373+0.155877

and C̄ (3)
2 |nl=4 = −2.64381 + 0.155877. The second term in each of

these equations corresponds to the singlet contribution.
Extracting the charm and bottom quark mass from the second

moment using the input data given in [4] with the new value of
C (3)

2 leads to a shift of −3 MeV for mc and −2 MeV for mb and
yields

mc(3 GeV) = 0.976(16) GeV and

mb(10 GeV) = 3.607(19) GeV. (11)

This can be converted to the values at mc and mb , mc(mc) =
1.277(16) GeV and mb(mb) = 4.162(19) GeV, respectively.

The final results for the quark masses given in [4] are mb(mb) =
4.164(25) GeV and mc(mc) = 1.286(13) GeV, respectively. In case
of mc the first moment was used at O(α3

s ) accuracy. For mb the
second moment, which was known only up to O(α2

s ) at that time,
was chosen. In the latter case the logarithms at O(α3

s ) calculated
by means of renormalization group methods were included and
the error estimate was based on the missing constant term. Al-
though this estimate was based on plausible arguments only a
real calculation could prove its validity. Removing the 6 MeV er-
ror, which arises from the estimated term in case of the b quark,
the total error of mb is reduced by ∼ 25%. In order α3

s the per-
turbative error is practically negligible and the remaining 19 MeV
error arises from the experimental uncertainty and from the value
of αs . At present this is the most precise determination of the bot-
tom quark mass.

As already discussed in [4], different moments weight the ex-
perimental results from larger and smaller s values differently.
Therefore it is important to compare the obtained quark masses
from several moments to test the self-consistency of the method
and the stability of the results. Because of sparse and poor exper-
imental data in the continuum region above 4.8 GeV (for mc) and
11.2 GeV (for mb), the data for R(s) were replaced by perturbative
QCD in the analysis. This region can be suppressed by using higher
moments, which is especially important in the case of mb where
the first moment, which was already under full theoretical control
at order α3

s in [4], receives a large contribution from the region
above 11.2 GeV. The situation is significantly better for the second
moment, which is now also fully under control from the theory
side. For the determination of mc the first and the second moment
are of equal reliability and the consistency between the two results
for mc(3 GeV), namely 0.986(13) GeV and 0.976(16) GeV, is re-
markable. On the other hand for higher moments non-perturbative
effects increase (especially for mc) leading to larger theoretical un-
certainties. For these reasons we think that for mb the second or
maybe third moment are best suited for the mass determination,
while for mc the first and second moment are preferred.

Apart from the application discussed above, the higher mo-
ments evaluated above have been used recently for quark mass
determinations from lattice simulations [5] and for the recon-
struction of the full q2 dependence of the vacuum polarization at
O(α3

s ) [35].

4. Summary and conclusion

We have presented the second physical moment in the low en-
ergy expansion of the heavy quark vector correlator at four-loop
order, including the singlet contribution. Although this contribu-
tion only causes a rather small shift in the quark masses obtained
from the second moment the error is reduced significantly. The
values remain in good agreement with those extracted using the
first moment.
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