Antithrombotic therapy in valvular heart disease and artificial valves

Hana Línková*, Róbert Petr

3rd Internal-Cardiology Clinic, University Hospital Královo Vinohrady, Prague, Czech Republic

ARTICLE INFO

Article history:
Received 23 November 2012
Received in revised form 18 January 2013
Accepted 20 January 2013
Available online 25 January 2013

Keywords:
Native valves
Mechanical prosthesis
Bioprosthesis
Anticoagulation
Antiaggregation
Unfractionated heparin
Low molecular weight heparin
Aspirin
Thrombosis
Embolism

ABSTRACT

The article summarizes the current recommendations and knowledge for the treatment of patients with artificial valves. The attention is focused on antithrombotic therapy after valve replacement, including possible complications of the treatment, particularly thromboembolic and bleeding complications. We review the procedures when the anticoagulation must be interrupted. The possibilities of improving therapy in patients that require permanent anticoagulation and the outlook for the future are discussed.

© 2013 The Czech Society of Cardiology. Published by Elsevier Urban & Partner Sp.z.o.o. All rights reserved.

Contents

1. Introduction ... 159
2. Antithrombotic therapy in patients with valvular disease and with artificial valves .. 159
 2.1. Oral anticoagulation therapy with warfarin ... 159
 2.2. Antiaggregation therapy in patients with artificial valves 160
3. Dual antithrombotic therapy in patients with valvular disease and artificial valves ... 160
4. Complications of antithrombotic therapy ... 160
 4.1. Excessive anticoagulation and bleeding .. 160

*Correspondence to: 3rd Internal-Cardiology Clinic, University Hospital Královské Vinohrady, Šrobárova 50, Prague, Czech Republic.
Tel.: +420 26716 2724.
E-mail address: hana.linkova@fnkv.cz (H. Línková).
1. Introduction

More than 100 million patients around the world suffer from valvular heart disease, as the incidence of degenerative valvular heart disease increases with age. At the present time, each year approximately 300,000 valves are implanted, and a further increase is expected. In addition, new less invasive procedures, percutaneous aortic valve implantation—TAVI and edge to edge mitral repair—Mitra Clip are also being used.

Czech guidelines were published in 2007 and they are mainly based on the 2007 European Society of Cardiology (ESC) guidelines and the AHA/ACC guidelines published in 2006. Recently, new guidelines were published by the European Society of Cardiology as well by the American College of Chest Physicians (ACCP), which include new knowledge regarding antithrombotic therapy [1–5].

The current guidelines are in agreement in essential areas, but there are some points in which the European and American guidelines differ. This is because the recommendations are primarily based on retrospective and observational trials, as prospective randomized trials are missing. At the present time, there is much progress in cardiology in terms of new antithrombotic agents. Many questions therefore emerge:

1. How to manage antithrombotic therapy in patients with valvular disease and in patients with artificial valves?
2. What situations require dual antithrombotic therapy?
3. How to manage complications during antithrombotic therapy and in case of requirement for discontinuation of anticoagulation therapy?
4. How to manage patients with artificial valves during pregnancy?
5. Is there any place for new antithrombotics in the treatment of valvular heart disease?
6. Is it possible to improve therapy in patients who require permanent anticoagulation therapy?

2. Antithrombotic therapy in patients with valvular disease and with artificial valves

2.1. Oral anticoagulation therapy with warfarin

1. In patients with native diseased valves
 (a) always when atrial fibrillation is present
 (b) specific situations arise in patients with mitral stenosis, where anticoagulation therapy is indicated in the presence of atrial fibrillation (paroxysmal, persistent or permanent), further in patients with thromboembolic complications during sinus rhythm, and if a thrombus is present in the left atrium. It should be considered in patients with a severe mitral stenosis, who have sinus rhythm but significantly dilated left atrium.

2. In patients with artificial valves or valve repair:

 The individual risk of thromboembolism should be determined individually before antithrombotic therapy is initiated. This is based on what type or surgery was performed—valve replacement or repair, what type of prosthesis was used (mechanical, biological, homograft, autograft), another important factor is the location of the prosthesis (mitral, aortic, tricuspid, pulmonal) [6].

 There are no data from randomized trials for initial anticoagulation treatment, therefore the regimes vary. Based on observational trials, most of the embolization events occurred early after the surgery. It is therefore recommended to initiate anticoagulation as soon as possible after the surgery, as soon as the risk of bleeding decreases. Warfarin therapy is initiated 6–24 h after the operation. Unfractionated heparin or low molecular weight heparin with monitoring of aPTT and antiXa is administered simultaneously. Low molecular weight heparin is not recommended in obese patients and in patients with renal failure [7,8].

 (A) Permanent anticoagulation therapy is indicated in patients with mechanical prosthesis regardless the type of prosthesis or the time of implantation. The target INR range must take into account the individual patient risk factors and the thrombogenicity of the valve (Table 1). Conventional categorization of individual types of prosthesis differ between the European and American guidelines, on top of it the American guidelines recommend the use of warfarin with a low dose of ASA in all patients with mechanical prosthesis, as the risk of thromboembolic complications and overall mortality decreases, however there is an increase in bleeding complications. Therefore this combination is recommended in the European as well as in our guidelines in only targeted patients with an increased risk of thromboembolism [1–5].

 (B) Permanent anticoagulation therapy in patients with biological valves, after valve repair, or homografts is indicated if the patient has another indication for chronic anticoagulation, i.e. atrial fibrillation, left ventricular dysfunction with ejection fraction of less than 30%.

 (C) The first 2–3 months after the implantation of a biological prosthesis in mitral position and after mitral valve repair with the annuloplastic ring. According to the 2007 Czech guidelines, a 3-month antiaggregation as well as a 3-month anticoagulation therapy can be used in the case of aortic bioprosthesis. (The ACTION and ANSWER trials are currently investigating whether antiaggregation therapy is sufficient) [9].

 (D) 6 months after MAZE procedures, the therapy is prolonged if atrial fibrillation persists.
Table 1 – Determination of INR levels in mechanical prosthesis.

<table>
<thead>
<tr>
<th>Recommended INR</th>
<th>AVR, MVR, TVR, PVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without risk factors</td>
<td>With risk factors</td>
</tr>
<tr>
<td>SR LA < 50 mm</td>
<td>LA ≥ 50 mm</td>
</tr>
<tr>
<td>MValve-Gr 0</td>
<td>MValve Gr +</td>
</tr>
<tr>
<td>EF normal</td>
<td>EF ≤ 30</td>
</tr>
<tr>
<td>SEC-</td>
<td>SEC +</td>
</tr>
</tbody>
</table>

Thrombogenicity of the valve

- Low: 2.5 (2.0–3.0), 3.0 (2.5–3.5)
- Intermediate: 3.0 (2.5–3.5), 3.5 (3.0–4.0)
- High: 3.5 (3.0–4.0), 4.0

Risk of thromboembolism in different types of prosthesis:

- Low risk: Medtronic Hall, St. Jude Medical (without Silzone), Carbomedics AVR.
- Intermediate risk: bi-leaflet valves with insufficient data on thrombogenicity, Bjork-Shiley.
- High risk: Lillehei Kaster, Omnisience, Starr Edwards.

2.2. Antiaggregation therapy in patients with artificial valves

Permanent antiaggregation therapy (ASA) is recommended after the discontinuation of anticoagulation therapy in patients with biological prosthesis in the mitral and tricuspid position as well as in patients after mitral repair and MAZE procedures. According to the current European guidelines, ASA should also be used in the first 3 months in patients with aortic bioprosthesis, however these guidelines do not clearly specify treatment after the initial 3 month period. In the other guidelines, antiaggregation therapy is recommended permanently [10,11].

Patients undergoing homograft implantation or aortic valve preserving surgery should be on ASA treatment for three months.

Regardless of lack of data in patients undergoing TAVI or percutaneous edge to edge repair, dual antithrombotic therapy with ASA and a thienopyridine is given for 3 months, followed by monotherapy with either ASA or a thienopyridine [1–4].

In patients with atrial fibrillation undergoing TAVI, a combination of warfarin and aspirin or thienopyridine is generally used. It is important to consider increased risk of bleeding in older and high risk patients. There is a lack of data from randomized trials, but in our clinical practice the patients usually use dual therapy (warfarin and thienopyridine) for 1 month and then they use warfarin alone.

3. Dual antithrombotic therapy in patients with valvular disease and artificial valves

The combination of warfarin and low-dose ASA (75–100 mg) should be considered in patients with high risk of thromboembolism, namely in patients with thromboembolic complications during effective anticoagulation therapy, patients with hyper-coagulation conditions or patients with artificial valves if significant coronary artery disease or significant atherosclerosis is present.

Triple therapy (warfarin plus antiplatelet therapy) is associated with high bleeding risk. Therefore dose of ASA should be 100 mg daily or less. In addition, dual antithrombotic therapy with warfarin and clopidogrel (without ASA) is as effective as triple therapy, but far more safe as shown in the recently presented WOEST trial [12].

In patients with mechanical prosthesis, the use of drug eluting stents should be avoided.

If valve surgery is recommended while the patient is on dual antithrombotic therapy, the surgery should be postponed for one year if possible, or a biological valve should be used [13–15].

4. Complications of antithrombotic therapy

The complications include excessive anticoagulation and bleeding and on the other side thromboembolic events or valve thrombosis.

4.1. Excessive anticoagulation and bleeding

In warfarin overdose, the risk of bleeding is increased with an INR level of >4.5, and exponentially increases in INR >6. Excessive anticoagulation with INR >5 considerably increases the risk of bleeding, however a quick decrease of INR increases the risk of thromboembolic complications. Patients with an INR >6 and clinically suspected bleeding should be hospitalized and warfarin should be discontinued temporarily. The INR levels should be monitored daily, as the INR should decrease gradually. In urgent situations and if bleeding occurs, fresh frozen plasma ev. Protromplex instead of vitamin K should be given. Prothrombin factors as well as higher doses of vitamin K increase the risk of thrombosis of the valve due to the possibility of hypercoagulation. A small dose of vitamin K (up to 1 mg) should be safe [10,11].

4.2. Thromboembolic complications and valve thrombosis

Thromboembolic complications including systemic embolisms occur in between 0.7–6% per year and they can occur even during the recommended anticoagulation scheme. In case of such complication it is mandatory to locate the source of the embolism. The most frequent source is the prosthesis alone, but other sources (thrombus in left ventricle or atrium, carotid stenosis etc.) must also be excluded. Apart from risk factors of thromboembolism (Table 2), triggers of thromboembolism can also be identified. For example dehydration associated with increased blood viscosity, pulmonary infection (with the presence of prothrombic mechanisms), sudden occurrence of atrial fibrillation, a decrease of INR level below the therapeutic value. If the risk and trigger factors are treated, an increase of anticoagulation therapy associated with high bleeding risk can be avoided.

When the risk of thromboembolism cannot be eliminated, it is recommended to intensify antithrombotic treatment if possible.
1. if the INR is 2.0–3.0, target INR level should be increased to 2.5–3.5
2. if the INR is 2.0–3.5, target INR level should be increased to 3.5–4.5
3. if the patient is not on ASA treatment, a dose of 75–100 mg per day should be added
4. if the patient is on warfarin and ASA, the dose of ASA should be increased to 300 mg/day, if higher target INR does not have sufficient clinical effect
5. if the patient is on ASA monotherapy, higher dose (up to 300 mg/day), or 75 mg dose of clopidogrel or warfarin with target INR between 2.0 and 3.0 should be added.

The addition of ASA to anticoagulation therapy is relatively contraindicated in patients with a history of gastrointestinal bleeding, in patients with difficulty managed hypertension on combination therapy and in patients with poorly controlled INR levels (fluctuations in INR, frequent episodes of high INR levels).

Valve thrombosis is a rare but severe complication. The obstruction on mechanical valves oscillates approximately between 0.3–1.3% per year. Non-obstructive valve thrombosis occurs more frequently in the early postoperative time period (10% of patients). The morbidity and mortality usually depends on how fast the diagnosis is made. The death rate is approximately 10% regardless of the type of treatment. Making the diagnosis can be challenging due to heterogeneous clinical manifestation. Thrombosis on bioprosthesis valves is less frequent and it also usually occurs in the early postoperative period, when the endothelization of sutures is not yet finished. The diagnosis is based on transthoracic echocardiography and fluoroscopy (in patients with mechanical valves). Transesophageal echocardiography is valuable for further assessment. Invasive hemodynamic examination is not frequently needed. The treatment depends on the clinical condition, location of the prosthesis and extent of the thrombosis rather than the type of valve (artificial or biological) [11,16,17].

The therapy includes the following options: optimization of anticoagulation and antiaggregation therapy, heparin therapy, fibrinolysis or surgical treatment.

Table 2 – Risk factors of thromboembolism.

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected with slow blood velocity</td>
<td>Atrial fibrillation, dilatation of left atrium (>50 mm), Mitral stenosis Decreased LV ejection fraction EF <35%, Functional class NYHA IV</td>
</tr>
<tr>
<td>Connected with vessel disease or endothelial dysfunction</td>
<td>Systemic hypertension Diabetes mellitus Aortic and/or carotid atheromatosis</td>
</tr>
<tr>
<td>Connected with increased coagulation and/or aggregation of platelets</td>
<td>Diabetes mellitus Smoking Hyperlipidemia Chronic inflammation/infection, chronic hemolysis Hypercoagulation conditions Malignancy</td>
</tr>
</tbody>
</table>

In patients with a high risk of thrombosis, and in all mechanical prosthesis, warfarin is discontinued approximately 5 days before the procedure, and unfractionated heparin is given when the INR level is below 2. Heparin is given up to 5–6 h before the procedure and it is restarted as soon as possible after the procedure. The treatment is continued until INR is in the therapeutic range. LMWH can also be used, but in patients in a critical condition, where an urgent procedure is possible, unfractionated heparin is preferred. aPTT or ACT should be monitored every 4 h. When LMWH is used, the last dose is given 12 h before the procedure and the next dose is given 12 h after the procedure, after correction of hemostasis. In patients on anticoagulation

4.3. Antithrombotic therapy before dental and surgical procedures

In patients with a high risk of thrombosis, and in all mechanical prosthesis, warfarin is discontinued approximately 5 days before the procedure, and unfractionated heparin is given when the INR level is below 2. Heparin is given up to 5–6 h before the procedure and it is restarted as soon as possible after the procedure. The treatment is continued until INR is in the therapeutic range. LMWH can also be used, but in patients in a critical condition, where an urgent procedure is possible, unfractionated heparin is preferred. aPTT or ACT should be monitored every 4 h. When LMWH is used, the last dose is given 12 h before the procedure and the next dose is given 12 h after the procedure, after correction of hemostasis. In patients on anticoagulation
therapy, frozen plasma is given prior to emergent procedures and is preferred over vitamin K [11].

In low bleeding risk procedures or in surgery where bleeding can be controlled easily such as dental procedures, discontinuation of antithrombotic therapy is not required (Table 3).

5. Anticoagulation therapy during pregnancy

Pregnancy in patients with mechanical valves is associated with high risk. There is no ideal anticoagulation treatment. Warfarin passes through the uteroplacental unit and administration of higher doses (>5 mg) in the 1st trimester causes spontaneous abortions and embryopathies (mostly between 6th and 12th week of pregnancy). Warfarin is relatively safe to use during the 2nd and 3rd trimester (according to some authors in the 1st trimester with the dose up to 5 mg). The administration of warfarin must be discontinued 2–3 weeks before delivery (risk of intracerebral bleeding of the fetus during delivery). Unfractionated heparin does not pass through the placenta and is therefore safe for the fetus. aPTT monitoring is needed (2 × daily), and the level should be prolonged 2–3 times. The value of aPTT can be low due to a higher concentration of fibrinogen and factor VIII during pregnancy. Low molecular weight heparin can also be used in the therapeutic dose (2 × daily), but the levels of antiXa must be measured 4–6 h after the morning dose, with the target levels of 0.7–1.2 u/ml. Unfractionated heparin should be given intravenously 4–6 h after delivery, aPTT must be monitored. Warfarin treatment should be restarted after the bleeding risk ceases. Warfarin is not contraindicated during breastfeeding [18–20].

6. The use of new antithrombotics in patients with valvular disease

Currently, anticoagulation therapy in patients with valvular heart disease is limited to oral vitamin K antagonists. The well-known disadvantages of coumarins limit their clinical use: a narrow therapeutic window, an unpredictable biological response, and numerous interactions with medications and food impose strict monitoring of the INR. Insufficient anticoagulant effect may result in thrombosis, whereas overdosing is associated with an increased risk of bleeding complications. At best, the incidence of major bleeds with coumarins is between 2% and 4% and should be balanced against the risk of thrombosis. New antithrombotics are not recommended in the use of valvular heart disease at this time [1,5,21].

7. Possibilities of improving therapy in patients that require permanent anticoagulation, an outlook into the future

After valve surgery, 75% of complications are due to bleeding or thromboembolism. An ideal (absolutely non-thrombogenic) mechanical prosthesis is not yet available and the new promising anticoagulation drugs were not yet tested in patients with valvular heart disease.

The recent understanding of the importance of cytochrome P450 2C9 (CYP2C9) and vitamin K oxidoreductase complex 1 (VKORC1) polymorphisms in the individual response to coumarins opens a perspective for a dosing algorithm incorporating CYP2C9 and VKORC1 genotyping that could improve initial warfarin dose selection and reduce related complications. One possibility of optimization of therapy is self-monitoring of INR levels, as it unambiguously aids in improving the quality of anticoagulation and therefore lowers the risks of anticoagulation therapy. It is unfortunately not very common in our patients. Careful education of patients is also important [22–24].

REFERENCES

Table 3 – Risk of bleeding in individual procedures.

<table>
<thead>
<tr>
<th>Low risk:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic endoscopy, cataract surgery, dermatology surgery, teeth extraction, operation of hernia and scrotum, arthrocentesis, coronary angiography</td>
</tr>
<tr>
<td>High risk:</td>
</tr>
<tr>
<td>Large orthopedic operations, abdominal operations, vascular surgery, urological procedures (PE, operation of urinary bladder), thoracic operations, neurosurgical operations, cardiac operations, operation of tumors, puncture of arteries without the possibility of compression, biopsies without the possibility of compression.</td>
</tr>
</tbody>
</table>

