Operators J^*J and Nonlinear Hammerstein Equations

R. Kannan

Department of Mathematics, University of Missouri, St. Louis, Missouri 63121

AND

John Locker

Department of Mathematics, Colorado State University, Fort Collins, Colorado 80521

Submitted by C. L. Dolph

1. INTRODUCTION

Cesari and Kannan [2] have recently established, along the lines of Cesari’s alternative method, the existence of solutions to a nonlinear differential equation of the type $Eu = Nu$, where E is a linear differential operator that may have a nontrivial nullspace and N is a monotone operator defined on all of the underlying Hilbert space. They utilize the theory of monotone operators to solve both the auxiliary and bifurcation equations that are associated with $Eu = Nu$ by the alternative method, and they treat the auxiliary equation as a nonlinear Hammerstein equation of the type $u + KNu = f$, where K is a positive operator related to E, usually the generalized inverse of $L = -E$.

In [4] Gustafson and Sather consider a nonlinear differential equation of the same type. They solve the associated auxiliary equation by using the square root decomposition of the linear operator K, an idea that has been used by Vainberg and Lavrent’ev [5]. This technique permits nonlinearities N that are not everywhere defined but instead satisfy the condition that the range $\mathcal{R}(K^{1/2})$ is contained in the domain $\mathcal{D}(N)$.

In this paper we study a general Hammerstein equation that is of the same type as these auxiliary equations. Let S be a real Hilbert space with inner product (u,v) and norm $\|u\|$, let $J: S \to S$ be a bounded linear operator, and let $K = J^*J$. We consider the Hammerstein equation

$$u + KNu = f,$$

where N is a nonlinear operator in S with $\mathcal{R}(J^*) \subseteq \mathcal{D}(N)$. Operators of the form $K = J^*J$ have been studied by many authors in connection with a wide
variety of problems ranging from the numerical solution of differential
equations to problems in elasticity. For functional analytic properties of
operators J^*J, one is referred to Kato [6].

We present in Section 2 two existence theorems for Eq. (1). The conditions
imposed on the nonlinear operator N are more general than monotonicity,
and these results are particularly useful in the study of perturbations of
nonlinear boundary value problems at resonance. Examples are given in
Section 3 to indicate the application of these theorems to existence problems
for nonlinear differential equations. The detailed development of these ideas
can be seen in Kannan and Locker [5] and Dunninger and Locker [3].

2. EXISTENCE THEOREMS

It is well known that the operator $K = J^*J$ is positive, self-adjoint, and

$$
\| K \| = \| J \|^2 = \| J^* \|^2. \tag{2}
$$

Also, for $u \in S$ we have

$$
\| Ku \|^2 = \| J^*Ju \|^2 \leq \| J^* \|^2 \| Ju \|^2 = \| K \| (Ku, u),
$$

and hence,

$$
\| K \|^{-1} \| Ku \|^2 \leq (Ku, u) \quad \text{for all } u \in S. \tag{3}
$$

Assume $\mathcal{D}(N)$ is a subspace of S, and fix an element $f \in \mathcal{D}(N)$. If $u \in \mathcal{D}(N)$
is a solution of Eq. (1), then setting $w = u - f$ we have

$$
w + J^*JN(w + f) = 0.
$$

This implies that $w \in \mathcal{R}(J^*J)$, and hence, there exists $v \in \mathcal{R}(J)$ such that

$$
w = J^*v \quad \text{and} \quad J^*v + J^*JN(J^*v + f) = 0.
$$

But $\mathcal{R}(J) \subseteq \mathcal{R}(J) = \mathcal{N}(J^*J)^{-1}$, and hence, J^* is $1-1$ on $\mathcal{R}(J)$. Thus, the
last equation reduces to

$$
v + JN(J^*v + f) = 0. \tag{4}
$$

Hence, if $u \in \mathcal{D}(N)$ is a solution of (1), then $u = J^*v + f$, where $v \in S$, is a solution of (4). It follows immediately that Eq. (1) is (uniquely) solvable
if and only if Eq. (4) is (uniquely) solvable.

Theorem 1. Let S be a real Hilbert space, let $J : S \to S$ be a bounded
linear operator, and let $K = J^*J$. Assume $\mathcal{D}(N)$ is a subspace of S and $N: \mathcal{D}(N) \to S$ is a nonlinear operator that satisfies the conditions:

(i) $\mathcal{D}(J^*) \subset \mathcal{D}(N)$.

(ii) There exists a real number p with $0 < p < \|K\|^{-1}$ such that

$$(Nu - Nv, u - v) \geq -p \|u - v\|^2$$

for all $u, v \in \mathcal{D}(N)$.

(iii) N is hemicontinuous, i.e., N is continuous from each line segment in $\mathcal{D}(N)$ to the weak topology on S.

Then for each $f \in \mathcal{D}(N)$ Eq. (1) has a unique solution $u \in \mathcal{D}(N)$.

Proof. Let $F: S \to S$ be the operator defined by

$$Fv = v + JN(J^*v + f), \quad v \in S.$$

By the above remarks it is sufficient to show that the equation $Fv = 0$ is uniquely solvable in S.

Clearly F is hemicontinuous by (iii). Also, for $u, v \in S$ we have by (ii) and (2) that

$$(Fu - Fv, u - v) = \|u - v\|^2 + (JN(J^*u + f) - JN(J^*v + f), u - v)$$

$$\geq \|u - v\|^2 - p \|J^*u - J^*v\|^2$$

$$\geq (1 - p \|K\|)\|u - v\|^2.$$

Hence, F is strongly monotone on S. Applying the theorem of Minty [7], it follows that $Fv = 0$ is uniquely solvable in S, which concludes the proof.

Remark 1. We can establish the unicity directly from (3) and (ii). Indeed, if $u_1 \in \mathcal{D}(N), u_2 \in \mathcal{D}(N)$ are solutions of (1), then

$$u_1 - u_2 = -K(Nu_1 - Nu_2)$$

and

$$\|K\|^{-1}\|u_1 - u_2\|^2 = \|K\|^{-1}\|KNu_1 - KNu_2\|^2$$

$$\leq (KNu_1 - KNu_2, Nu_1 - Nu_2)$$

$$= -(u_1 - u_2, Nu_1 - Nu_2)$$

$$\leq p \|u_1 - u_2\|^2.$$

This implies $u_1 = u_2$.

Remark 2. If we start with a positive self-adjoint operator K, then we can always obtain the decomposition $K = J^*J$ by choosing $J = J^* = K^{1/2}$, and the theorem can be used when we know $\mathcal{D}(K^{1/2})$. This situation occurs in the papers of Gustafson and Sather [4] and Vainberg and Lavrent’ev [8]. On the other hand, if K is the generalized inverse of a linear differential operator L of order $2n$, then L may have a natural decomposition of the form
TT*, where T is a differential operator of order n. In this case the decomposition $K = J^*J$ is automatically induced, and we know that $\mathcal{D}(J^*)$ is a subset of the Sobolev space H^n. Thus, we can take $\mathcal{D}(N) = H^n$ and condition (i) is satisfied. This also permits nonlinearities N involving the derivatives of u. Examples of this second situation are given in the next section.

THEOREM 2. Let S be a real Hilbert space, let $J: S \to S$ be a compact linear operator, and let $K = J^*J$. Let p be a real number with $0 \leq p < \| K \|^{-1}$, let $\mathcal{D}(M)$ be a subspace of S, and let $M: \mathcal{D}(M) \to S$ be a nonlinear operator. Let N be the nonlinear operator defined by $\mathcal{D}(N) = \mathcal{D}(M)$, $Nu = -pu + Mu$, and assume that:

(i) $\mathcal{D}(J^*) \subseteq \mathcal{D}(N) = \mathcal{D}(M)$.

(ii) There exists a real number $\gamma > 0$ such that $\| Mu \| \leq \gamma$ for all $u \in \mathcal{D}(M)$.

(iii) M is continuous.

Then for each $f \in \mathcal{D}(N)$, Eq. (1) has at least one solution $u \in \mathcal{D}(N)$.

Proof. As in Theorem 1 it is sufficient to solve

$$Fv = v + JN(J^*v + f) = 0,$$

which can be rewritten as

$$v + J(F_0v + F_1v) = 0,$$

where

$$F_0v = -pj^*v, \quad F_1v = -pf + M(J^*v + f).$$

Clearly F_0 is odd and 1-homogeneous, i.e., $F_0(\xi v) = \xi F_0(v)$ for $\xi > 0$, and $\| F_1v \| \| v \| \to 0$ as $\| v \| \to \infty$. Also, if $v + JF_0v = 0$, then

$$\| v \| = p \| JF_1v \| \leq p \| K \| \| v \|,$$

implying $v = 0$. By Theorem 1.6 in Browder [1] it follows that $Fv = 0$ has at least one solution $v \in S$. This completes the proof.

Remark 3. In Theorem 2 the continuity of M can be replaced by requiring the continuity of F_1 on S. This is important for applications to nonlinear differential equations.

3. EXAMPLES

Consider the nonlinear periodic boundary value problem

$$-u'' - \lambda u + g(u) = \beta(t), \quad 0 \leq t \leq 2\pi, \tag{5}$$

$$u(0) = u(2\pi), \quad u'(0) = u'(2\pi), \tag{6}$$
where λ is a real number with $0 \leq \lambda < 1$, g is a continuous real-valued function defined on all the real line, and β is a function belonging to the real Hilbert space $S = L^2[0, 2\pi]$.

Let L be the linear differential operator in S defined by

$$D(L) = \{ u \in H^2[0, 2\pi] \mid u(0) = u(2\pi), u'(0) = u'(2\pi) \}, \quad Lu = -u'',$$

and let N be the nonlinear operator in S defined by

$$D(N) = H^1[0, 2\pi], \quad Nu = -\lambda u + g(u) - \beta.$$

Then the boundary value problem (5)-(6) reduces to the operator equation

$$Lu + Nu = 0.$$ \hfill (7)

We are going to describe the auxiliary and bifurcation equations that correspond to (7) and show that the auxiliary equation is solvable by Theorems 1 or 2 if g is either monotone increasing or bounded.

Let $S_0 = \mathcal{N}(L)$, which consists of the constant functions, and let $P : S \to S_0$ be the orthogonal projection onto S_0. If we set

$$H = [L \mid D(L) \cap \mathcal{N}(L)]^{-1},$$

then the linear operator $K = H(I - P)$ is the generalized inverse of L. Moreover, $\|K\| = 1$ since 1 is the smallest positive eigenvalue of L. The auxiliary equation for (7) is precisely the Hammerstein equation (1), which is to be solved for $u \in D(N)$ as f varies over the subspace S_0, and the bifurcation equation is the equation

$$PN[I + KN]^{-1}f \equiv 0$$ \hfill (8)

with $f \in S_0$.

To decompose the operators L, H, and K, let T be the linear differential operator in S defined by

$$D(T) = \{ u \in H^1[0, 2\pi] \mid u(0) = u(2\pi) \}, \quad Tu = u',$$

let $J_1 = [T \mid D(T) \cap \mathcal{N}(T)]^{-1}$, and let $J = J_1(I - P)$. It follows that $T^* = -T$, $J_1^* = -J_1$, $J^* = -J$, $L = TT^*$, $H = J_1^*J_1$, and $K = J^*J$. Also, $D(f^*) = D(T) \cap \mathcal{N}(T)^\perp \subset D(N)$.

Case 1. Assume that g is monotone increasing. Then for $u, v \in D(N)$ we have

$$[g(u(t)) - g(v(t))] [u(t) - v(t)] \geq 0 \quad \text{for } 0 \leq t \leq 2\pi,$$

and hence, $(Nu - Nv, u - v) \geq -\lambda \|u - v\|^2$. Applying Theorem 1 with
$\rho = \lambda$, we conclude that the auxiliary equation (1) is uniquely solvable for each $f \in S_0$. In fact, this result is true for all $\lambda < 0$. Indeed, N is strongly monotone for $\lambda < 0$, and we apply Theorem 1 with $\rho = 0$.

Case 2. Assume g is bounded, say $|g(t)| \leq \gamma_0$ for $-\infty < t < \infty$. Clearly $\|g(u) - \beta\| \leq (2\pi)^{1/2} \gamma_0 + \|\beta\| = \gamma$ for all $u \in \mathcal{D}(N)$. It follows from Theorem 2 with $\rho = \lambda$ that the auxiliary equation (1) has at least one solution for each $f \in S_0$.

References