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Summary

A method for calculating the interatomic forces between isolated
hydrogens and their host metal atoms is outlined. The method uses a semi-
empirical, molecular-orbital approach for a suitable cluster of atoms, with
the empirical parameters fitted to experimental potential energy curves for
diatomic molecules. Parameters suitable for hydrogen in liquid or solid Li
and Na are given.

The method is applied to the calculation of solvation energies of hydro-
gen in liquid Li and Na, where satisfactory agreement with experiment is
obtained. Detailed potential energy surfaces are also found for H in solid Na
and estimates are made of local mode frequencies, the stability of the tetra-
hedral sites, lattice relaxation, and effective charges, and atomic radii. Nei-
ther the anionic nor the protonic limit is appropriate. It has not proved
possible to describe the potential energy surfaces in terms of a sum of two-
body and volume-dependent terms alone.

1. Introduction

Many properties of hydrogen in metals depend on the interatomic
forces between the hydrogen and the host atoms. Such properties include
local mode frequencies, interstitial site occupancies and diffusion behaviour.
In the present paper we discuss the results of calculations on the interactions
of hydrogen with alkali metals.

There are two main approaches to the theory of hydrogen in metals.
One is the band structure approach, which exploits the periodic structure
of the host metal and its hydrides [1]. This is particularly suitable for
studies of the electronic properties of ordered hydrogen—metal systems, but
does not readily give interatomic forces for, say, an isolated hydrogen
moving in a single interstice. The other approach studies a small cluster of
metal atoms and a hydrogen by molecular methods, calculating the total
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energy for various geometries. This exploits the relatively short range of
most chemical effects. In its simplest form (e.g., ref. 2), only a single metal
atom, M, and a hydrogen are considered, and the interactions in a solid are
then treated as a superposition of two-body forces. We go beyond this sim-
plifying assumption in the present work, treating a variety of clusters My H
appropriate to solid and liquid alkali metals.

Ab initio molecular orbital methods, whilst excellent for small systems
(usually two or three atoms only, except in special cases), become complex
and expensive for many practical systems. We shall cite some results for Li,
for example, but we could not expect to deal with a Tay H cluster by full
Hartree—Fock theory. Thus, we have turned to approximate molecular-or-
bital methods, although we use them in a slightly modified form. The virtue
of the approximate methods is that most of the physical ideas are retained,
while some of the more complex steps are simplified by making suitably-
parameterised approximations. The essence of our approach is to obtain
parameters suitable for estimates of interatomic forces by making sure that
the same parameters describe well the known forces in simple, related mole-
cules. Loosely speaking, we use the approximate method as an extrapolation
procedure from experimental data rather than as an approximation to ab
initio theory. ‘

The molecular approach to metallic systems is, of course, very different
from the conventional view based on electron gas theory. It should be
stressed that, despite the differences in formalism, the physics of the two
approaches is much the same and the qualitative predictions have much in
common. Screening is included in both approaches, but in a different manner;
for example, the biggest difference is in the extent to which geometric fac-
tors are included.

2. The molecular orbital method

2.1 The CNDO method

We have concentrated on the CNDO (Complete Neglect of Differential
Overlap) method in the present work. This is one of a class of semi-empiri-
cal methods [3] which has the advantage of being simple and easily modified,
without sacrificing physical sense. It has also been used for other condensed-
matter systems with some success [4]. Standard parameterisations exist for
first- and second-row atoms which predict the electronic structure, bond
lengths and geometries quite well [3] but, as stressed in Section 1, the para-
meters must be revised for the systems and properties of interest here.

The CNDO method approximates the Hartree—~Fock—Roothaan equa-
tions by neglecting terms of the order of the overlap between orbitals on
different atoms, and by approximating other matrix elements systematically
[3]. A basis set of Slater orbitals is used for the outer electrons on each
atom: 1s orbitals for H, 2s and 2p for Li, and 3s, 3p and 3d for Na. The
same orbital exponent is used for each orbital on a given atom. Basically,
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three types of parameter must be fixed. If A, B label the different atomic
species, and u, » the atomic orbitals, these are:

(a) Orbital Exponents. These determine the overlaps, S 45,,, which are
used in expressions for off-diagonal matrix elements, plus the Coulomb
terms y 44, YaB» YBE, Which determine the electron—electron and nuclear
attraction integrals.

(b) Ionisation Potential (1,,) and Electron Affinity (A 4,). These enter
in the combination (14, + A4,)/2, and determine the relative attraction for
electrons of the different species.

(c) Bonding Parameters, §. The degree of bonding is fixed by resonance-
type integrals, %5, which are assumed to have the form:

K
Bap = ‘Z—(ﬁgA +835) A+ B, (1)

where K is a further parameter to be determined.

Given values for the various parameters, the CNDO program obtains
self-consistent solutions analogous to the Hartree—Fock solutions. These list
one-electron energy levels, the total energy, the wavefunctions, and an “ef-
fective charge” for each atom. If ¢;; is the weight of atomic orbital, i, in
eigenfunction, j, then the effective charge is:

2
Qu=|—2 X2 2 eyl +2Z] el )
occupied atomic

orbitals orbitals i
i on site A

Z. being the charge of the nucleus and core electrons; the factor 2 occurs
because of spin. One should beware of attaching too much significance to @,
for there is still some arbitrariness. For example, @, changes, even at cons-
tant charge density, if the basis orbitals are altered. But the effective charge
is a useful guide.

2.2 Parameterisation

Since we wish to use the CNDO method to calculate energies as a
function of atomic position, it is important to fix the parameters from data
as similar as possible. To this end, we fit the most sensitive parameters from
experimental potential energy data for the molecules M, and MH. The re-
sults are listed in Table 1.

The orbital exponents for the nodeless Slater orbitals were taken as
1.2 for hydrogen [3], and as 0.6396 (Li) and 0.836 (Na) from ref. 5. The
term in the ionisation potential and electron affinity was slightly modified
from the free atom values, following Baetzold [6]. However, the changes
are modest, and should have no notable effect on charge densities. The d
orbitals on Na proved to be largely superfluous, and were omitted from the
more detailed calculations.

The bonding parameters, K and 84 4, prove to be the most critical para-
meters. We obtained the 8%, by making the predicted M, potential energy
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TABLE 1

CNDO parameters

Species Orbitall exponents Orbital electronegativities Bonding parameters
(a.u. %) + (I, +AL)/2 (V) ﬁo(eV) K
s p s p

Na 0.836 0.836 2.67 1.52 —0.99 1.063

H 1.2 — 7.1761 — —9.0 —

Li 0.6396 0.6396 3.1055 1.258 +1.818 1.754

curve agree as closely as possible with a potential fitted to experimental
data [7]. The parameter K of eqn. (1) was then adjusted to make the pre-
dicted MH potential energy curve agree with corresponding experimental
data. The results are shown in Fig. 1. Generally, agreement with the equili-
brium position is excellent, and the harmonic and leading anharmonic parts
of the potential near equilibrium, are also well reproduced. The predictions
generally lie between the two “experimental” curves, showing that we have
achieved agreement to within the accuracy of our knowledge of these inter-
actions. Only at large distances does agreement become poor, partly because
the CNDO method does not give the correct separation limit, and partly be-
cause of convergence problems.

Since the parameters have been fixed from potential energy data,
there is no reason, a priori, why the same parameters should predict other
properties well. It is, however, worth stressing that the parameters do appear
to give good charge densities. The results of Fig. 1 suggest this, for charge
densities are the main factor in determining energy surfaces [8]. More direct
evidence has been obtained, however, by comparing the charge density in
a cluster from CNDO with Hartree~Fock cluster calculations [9] and with
self-consistent KKR and pseudoatom calculations for Li [10]. The general
agreement is good, both qualitatively and quantitatively. It will be discussed
in more detail elsewhere. Finally, we remark that our parameters are appro-
priate to isolated hydrogens in alkali metals. It is known from work on other
systems [4] that parameters for ionic systems (e.g., the crystalline Li~H and
Na-H hydrides) must be derived separately.

3. Hydrogen in liquid metals

When an impurity like hydrogen dissolves in a liquid metal, one would
expect its chemical effects to be confined to a few immediate neighbours.
The interaction of the hydrogen with these neighbours will favour certain
geometric configurations, so that the impurity will usually be surrounded
by atoms in some specific arrangement. So far as the remaining atoms in the
liquid are concerned, however, it is largely immaterial whether such a grouping
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Fig. 1. Potential energy curves for diatomic molecules, LiH, Liy, NaH, Nay. The full lines
give the CNDO fit, and the broken lines give two fits consistent with experimental data:
———— Simple Morse potential fitted to the lowest frequency and leading anharmonic
corrections, with a constant term added to give the correct depth of minimum.

----- Generalised Morse potential, fitted to give the correct binding as well as the lowest
frequency and leading anharmoric corrections.
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TABLE 2

Solvation energies at constant volume

The results here are for tetrahedral clusters, Tg, with M—H spacing xq, supplemented
where stated by a further tetrahedron T,. The metal atoms in T, have a M-H spacing, x,
and lie above the centres of the faces of Ty. For the spacings, x, marked, *, the atomic
radii of Section 3 imply that the atoms in Tg and T, are just in contact.

System xg (A) x (R) Solvation Charge on
energy (eV) H le!
Li (T,) 2.2 - —3.72 —0.44
(To + Ty) 2.2 4.0 —4.70 —0.43
(To + Ty) 2.2 3.65 —3.89 —0.45
(To+T.) 2.2 3.36% —3.34 —0.46
(Expt. [13, 14]) — — —4.43(H), —4.29(D) —
Na(T,) 2.35 — —4.11 —0.25
(T + Ty) 2.35 4.0 —2.99 —0.26
(To + Ty) 2.35 3.65 —2.82 —0.23
(To + Ty) 2.35 3.41% —2.76 —0.24
(Expt. [12]) — — —3.74 —
TABLE 3

Solvation energies at constant pressure and volume

Results are for a single tetrahedron of metal atoms and are in eV.

LigH Na,H
Constant pressure (up to 10 atm) —3.58 —3.96
Constant volume —3.72 —4.11
Experiment —4.43(H), —4.29(D) —3.74

of atoms has a hydrogen in their midst or not. In other words, solvation
energies can be calculated by comparing the energies of isolated clusters of
metal atoms with, and without, associated hydrogens. Thompson has des-
cribed the basic principles of such calculations [11]. We shall follow his
methods in many features, but using our more advanced CNDO method.

Calculations for liquids contain features which do not arise in solids
because of the variety of possible local atomic arrangements. We have made
two different sorts of cluster calculation:

(a) “Constant volume”. Here one chooses a particular arrangement of
metal atoms, e.g., tetrahedral, and alters their spacing to obtain a minimum
energy with a hydrogen at the centre. The total energy is then compared
with that for the metal atoms at the same positions, but without the hydro-
gen present.

(b) “Constant pressure’’. Here one plots the total energy of clusters
with, and without hydrogen as a function of spacing, and compares energies
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at points where the two curves have equal gradients. In addition, energies

have been obtained for several different types of cluster, namely, linear,
triangular, tetrahedral, and octahedral arrangements. In all cases, the tetra-
hedral arrangement was favoured, giving the greatest binding of the hydro-
gen. The results for the tetrahedral clusters were also supplemented by cal-
culations for larger clusters in which a further four metal atoms were included.

The results are listed in Tables 2 and 3. Table 2 shows that the solva-
tion energies at constant volume agree quite well with those observed. The
addition of an outer tetrahedron of atoms produces a significant effect,
without altering the broad orders of magnitude. As the outer tetrahedron is
moved away from the central hydrogen and from contact with the inner
metal atoms, the agreement with experiment improves marginally. Table 3
shows that the differences in solvation energy between the constant volume
and constant pressure cases are modest, the constant pressure ones being
smaller in magnitude. These have only been compared for the tetrahedral
cluster.

Other incidental results to emerge are effective radii for the three
species, determined from the equilibrium geometries of the M, cluster
(giving 1.675 A for Liand 1.715 A for Na) and M, H clusters (giving values
for hydrogen of 0.525 A in Li and 0.535 A in Na). Effective charges are
listed in Table 2, as defined in eqn. (2). These confirm that the hydrogen is
present in neither the protonic nor the anionic extreme, but appears to be
somewhere between the atomic and anionic limits. The charge is relatively
insensitive to the local environment.

4. Hydrogen in solid alkali metals

One of the aims of the present work is to understand the main qualita-
tive features of the potential energy surface in metals. For example, one
wants to know whether there is only one type of stable site, whether there
are metastable subsidiary potential minima, and whether the total energy
can be written as a sum of two-body terms. The question of subsidiary
minima is particularly important in b.c.c. transition metals, notably V, Nb,
and Ta. Neither the present work, nor other current theoretical approaches,
appear capable of giving total energies accurate to the order of 0.01 - 2 eV
needed in detailed applications, even for triatomic molecules and with ex-
tensive configuration admixture [15]. In practice, therefore, one would
expect calculations such as the present ones to be used to give as much qua-
litative and semi-quantitative information as possible, and then to be refined
by use of experimental data (like local mode frequencies) before use in, say,
diffusion calculations. In the case of Na:H there are no useful data with
which to compare our results, but it will appear that the conclusions are
reasonable in nature and magnitude. The calculations should be regarded as
preliminary for work on the more complex, but important, transition-metal
systems.
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TABLE 4

Cluster of Na atoms and interstitial sites

Atom Basis orbitals Position* Number of
included equivalent sites
Na 25, 2p 0, +3, O (sites A, B) 2
Na 2s, 2p 2,0, +3 (sites C,D,E,F) 4
Na 2s i +1, i%, OF 8
0, t%‘, +1
Na 2s i%, +1, 1% 8
Octahedral sites 0,0,0 1
0,0, t—;-
1 4
; +3,0, Os
Tetrahedral sites 0, 0, t% 4
3 t%, 0,0 ‘

*Units area = 4.28 A

We have calculated a potential energy surface for hydrogen in a
cluster of 22 sodium atoms. The hydrogen lies at the centre of the b.c.c.
array listed in Table 4. Because of the high symmetry, almost all the impor-
tant features can be obtained from the contours over the square defined by
the four second neighbours to a given octahedral site (CDEF in the Table).
The important octahedral and tetrahedral sites are also listed.

The calculations show that the tetrahedral sites are favoured, being
stable by about 0.25 eV over the unstable octahedral sites. The energy
barriers between tetrahedral sites (not to be confused with activation ener-
gies for diffusion) are lowest via the octahedral sites, the most direct path
having a 0.30 eV barrier. Relaxation of the four nearest neighbours to the
tetrahedral site to minimise the energy, only leads to a lowering of 0.003 eV.
The distortions are small, involving an inward motion of the sodiums. Thus,
that at (X, Y, Z) = (a/4, 0, a/2) relative to a tetrahedral site, moves to
(0.9817 X, Y, 0.9813 Z), i.e., motions of between one and two percent.
This suggests an “effective radius’’ of about 0.49 A, marginally smaller than
in the liquid state. The effective charges of eqn. (2) are again in between
the protonic and anionic extremes, being —0.3 le| for the tetrahedral site
and —0.24 |e| for the octahedral site. Another effective charge can be de-
fined from the change in dipole moment per unit displacement. This other
charge is a tensor, in general. For displacements along the tetragonal axis
of the tetrahedral site a value of —1. 3 |e| is obtained.

The potential well near the tetrahedral site is highly anharmonie.
Indeed, if one fits only the harmonic part of the energy surface very close
to the minimum local mode, energies of 0.63 eV (motion along tetragonal
axis) and 2.31 eV (motion normal to axis) are predicted, and the zero-point



Fig. 2. Potential energy surface for H in the Nagg cluster. Octahedral sites are at centres
of the edges; the tetrahedral sites are on the axes of the square, midway between the
centre and the edge. Four approximations are shown:

(a) Upper left quadrant: CNDO cluster calculations.

(b} Lower left quadrant: sum of 2-body CNDO interactions.

{c} Lower right quadrant: sum of 2-body Morse potentials.

(d) Upper right quadrant: sum of 2-body Generalised Morse potentials.

Energies have been normalised to be equal at the octahedral site, 0, and areas above cer-
tain contours are distinctively shaded. The lowest energies have the dashed shading (i.e.,
not dots nor cross-hatching).

energy would exceed the barrier between sites. A simple variational calcula-
tion for the anharmonic well gives a zero-point energy of around 0.09 eV,
with excitation energies of 0.08 eV (motion along axis) and 0.22 eV {motion
normal to axis). These values are much closer to observed local mode ener-
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gies of substitutional hydrogen in ionic crystals and to observed energies of
hydrogen in other metals. However, the values are large when one recalls
the barrier of only 0.25 eV between sites: there is probably only one ex-
cited vibrational state lying below the top of the lowest barrier.

Detailed energy contours are shown in Fig. 2. We have been unable to
fit them by any two-body potential. In particular, sums of the Morse, gene-
ralised Morse, or CNDO two-body terms of Fig. 1 do not provide a good fit.
This can be seen from Fig. 2. There are many differences in detail and, of
the sums of two-body terms, only the generalised Morse form predicts a
minimum energy for the tetrahedral site. In this respect, our conclusions
differ from the results of Kunz et al. [16] obtained by a rather different
method on the hydrogen-lithium surface system.

5. Conclusions

We have used semi-empirical molecular orbital methods to deduce the
energies of a range of clusters of alkali metals and hydrogen. These calcula-
tions are intended to give potential energy surfaces for diffusion and other
properties. The important parameters deduced are the CNDO parameters
in Table 1, for the potential energy surface does not resolve easily into the
conventional two-body forces. Instead, the situation is analogous to pseudo-
potential theory, where one can calculate properties straightforwardly given
pseudopotential parameters; here the CNDOQO parameters define the proper-
ties of interest in a similar way.

The work on alkali metals was intended as a preliminary to studies of
the more important transition-metal systems. It is gratifying, therefore, that
reasonable values for solvation energies have been obtained, and that the
results for both solid and liquid host metals appear reasonable.
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