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Abstract

We argue that tachyon-free type I string vacua with supersymmetry breaking in the open sector at the string scale can be interpreted, via S-
and T-duality arguments, as metastable vacua of the supersymmetric type I superstring. The dynamics of the process can be partly captured via
nucleation of brane–anti-brane pairs out of the non-supersymmetric vacuum and subsequent tachyon condensation.
© 2007 Elsevier B.V. Open access under CC BY license.
1. Introduction and conclusions

It is a widespread belief that all perturbative string con-
structions with broken supersymmetry are unstable and that
the dynamics universally drives them towards trivial configu-
rations [1]. Typically, the simplest sign of instability of non-
supersymmetric string vacua is the presence of tachyonic ex-
citations, at least in some regions of moduli space. Although,
in the past tachyon-free ten-dimensional vacua with broken su-
persymmetry have been proposed [2–5] possibly violating the
standard lore, it was soon evident that most of these string vacua
develop tachyonic instabilities once some dimensions are com-
pactified. For instance, the O(16) × O(16) heterotic model [2]
is continuously related to its tachyonic cousins after proper
Wilson lines are introduced in nine dimensions [6], while for
the circle reduction of the 0′B model [3] either the winding
or the momentum excitations of the closed-string tachyon are
still present after the orientifold projection, and actually be-
come tachyonic in the small or large radius region of moduli
space, respectively.

The so-called type I vacua with brane supersymmetry break-
ing [4,5], however, seem to be non-tachyonic, and thus stable, in
any space–time dimension and in any corner of moduli space,
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thus offering a notable counter example to this common be-
lief [1]. These models are characterised by a supersymmetric
closed-string sector, while supersymmetry is explicitly broken
in the open-string sector at the string scale, where bosonic and
fermionic excitations are assigned different representations of
the Chan–Paton gauge group. Although the presence of gauge
singlet fermions hints to the fact that the vacuum is already
in its broken phase, where supersymmetry is non-linearly re-
alised [7], there is no obvious candidate for a supersymmetric
vacuum configuration to which it could decay into.

Whether or not these models are quantum mechanically sta-
ble is an open issue that we shall try to elucidate in the present
Letter. Actually, the construction of metastable vacua in field
theories with rigid supersymmetry [8] has acquired some in-
terest, and it is believed that they are more natural than tradi-
tional models with dynamical supersymmetry breaking [9] (see
[10] for earlier constructions of metastable vacua). Some pro-
posals to extend the field theory constructions in [8] to string
theory using D-branes at orbifold singularities have been sug-
gested [11], while in [12] it was argued that metastable vacua
could play an active role in attempts to stabilise moduli. De-
spite much progress in the field theory and/or string theory
constructions with metastable phases, identifying a full-fledged
string theory vacuum of this type is still an important unsolved
problem. Clearly, around such a metastable vacuum the non-
supersymmetric spectrum should be free of tachyonic excita-
tions, precisely as in the case for orientifolds with brane super-
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symmetry breaking [4,5]. It is then natural to propose that these
vacua actually represent metastable local minima in the mod-
uli space, where the true global minimum would correspond to
the supersymmetric type I superstring. The purpose of this note
is to collect some evidence in favour of this conjecture. In fact,
we shall show that the models in [4,5] are naturally driven to-
wards strong coupling. A Montonen–Olive duality then leads
to a natural perturbative description in terms of type I super-
string with pairs of branes and anti-branes that are expected to
decay to the SO(32) superstring after brane and anti-brane anni-
hilation. We shall also show how this dynamics could be partly
captured by the condensation of tachyons on the pairs of branes
and anti-branes.

2. Non-BPS string vacua and strong coupling

Orientifold models are the subject of an intense activity,
since their perturbative definition offers interesting new pos-
sibilities for low-energy phenomenology. These models have
a very interesting geometrical description in terms of D-branes
and orientifold planes, extended objects that carry a charge with
respect to appropriate R–R potentials and have a tension pro-
portional to the charge itself. Typically, tensions and charges of
D-branes and O-planes saturate a BPS bound, so that individ-
ually they preserve a certain half of the original supersymme-
tries of the closed-string theory, depending on the relative sign
of their tension and charge. For D-branes tension and charge
are both positive, while two types of O-planes can be present
in perturbative string vacua: those with negative tension and
charge, here denoted Op−-planes, and those with positive ten-
sion and positive charge, here denoted Op+-planes.1 In addi-
tion, there are of course anti-D-branes and anti-O-planes, with
identical tension and opposite R–R charges. Moreover, using
non-perturbative string dualities, a rich zoo of similar extended
objects emerges [14] that will be used in the following sections
to support our conjecture.

The consistency of orientifold constructions and a number of
their most amusing features may be traced to the relation to suit-
able parent models of oriented closed strings, from which their
spectra can be derived [13]. In this procedure, a special role is
played by tadpole conditions for R–R and NS–NS states. Al-
though space–time supersymmetry relates the two tadpole con-
ditions, they are completely different in nature. In fact, while
the former are to be regarded as global neutrality conditions for
R–R charges, and are usually linked to gauge and gravitational
anomalies, the latter simply force the configuration of D-branes
and O-planes to be globally massless. As a result, while the
R–R tadpoles have always to be cancelled in a consistent vac-
uum configuration, in principle NS–NS ones can be relaxed,
thus calling for a background redefinition [15,16] whose proper
implementation in string theory, however, is not fully under-
stood.

1 Notice that we have here changed our original conventions [13] to those
widely used in the current literature.
This difference between R–R and NS–NS tadpoles turns out
to play an important role in a class of models with broken
supersymmetry. In these constructions [4,5], the closed-string
sector is classically supersymmetric, whereas supersymmetry
is broken at the string scale on some stack of D-branes. Geo-
metrically, these models always involve Op+-planes together
with an appropriate number of anti-branes, termed Dp-branes
in the following, whose negative R–R charge compensates that
of the Op+-planes. In the simplest known example [4], the
ten-dimensional closed-string sector encoded in the torus and
Klein-bottle partition functions2

(2.1)T = 1

2

∫
F

d2τ

τ 6
2

|V8 − S8|2
|η|16

, K = 1

2

∞∫
0

dτ2

τ 6
2

V8 − S8

η8
,

is as in the supersymmetric type I superstring, while in the
open-string sector encoded in the annulus and Möbius-strip am-
plitudes

(2.2)A = 1

2
N2

∞∫
0

dt

t6

V8 − S8

η8
, M = 1

2
N

∞∫
0

dt

t6

V̂8 + Ŝ8

η̂8
,

a crucial sign difference in front the of NS sector in M yields
a D-brane spectrum with broken supersymmetry. In fact, the
orientifold projection is in this case Ω ′ = −Ω(−1)F , where
(−1)F is the space–time fermion number, so that the mass-
less gauge bosons have symmetric Chan–Paton matrices, λb =
−γΩλT

b γ −1
Ω = λT

b , while the space–time fermions have anti-
symmetric Chan–Paton matrices, λf = +γΩλT

f γ −1
Ω = −λT

f . As
a result, after setting N = 32 as required by the cancellation
of the R–R tadpole, the open-string spectrum has gauge group
USp(32) and fermions in the reducible 496 = 495 + 1 anti-
symmetric representation, consistently with the cancellation of
ten-dimensional gauge and gravitational irreducible anomalies.

As usual, the transverse-channel Möbius-strip amplitude

(2.3)M̃ = N

∞∫
0

d�
V̂8 + Ŝ8

η̂8

clearly spells out the nature of O-planes and D-branes involved
in the construction that, as anticipated, are O9+-planes and D9-
branes. This non-BPS configuration breaks explicitly all super-
symmetries directly at the string scale, and seems not continu-
ously connected to any supersymmetric vacuum. Notice that no
tachyonic excitations are present in the open-string sector, thus
suggesting that this vacuum configuration is locally, classically,
stable. The quantum dynamics of this and related systems is, to
the best of our knowledge, still an open question.

The impossibility of cancelling the NS–NS tadpole in these
non-BPS configurations induces a tree-level potential in the
low-energy effective action

(2.4)V ∼ N + 32

(α′)5
e−φ.

2 We are omitting in all vacuum amplitude an overall normalisation factor
that however does not affect our qualitative description.
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While crucial in order to couple consistently a non-supersym-
metric open-string spectrum to a supersymmetric bulk,3 this po-
tential is incompatible with a maximally symmetric Minkowski
space–time, and in fact leads to a “spontaneous compactifica-
tion” to nine dimensions, with a manifest SO(1,8) Poincaré
symmetry. More specifically, the metric and the dilaton field
read [17]

eφ = eφ0 |u|2/3e3u2/4,

ds2 = |u|4/9eφ0/2eu2/4ημν dxμ dxν

(2.5)+ |u|−2/3e−φ0e−3u2/4 dx2,

in the string frame, where u is the “internal” coordinate. Notice
that in the Einstein frame the dilaton tadpole is proportional
to e3φ/2, and hence one would naively expect the theory to be
driven towards zero string coupling, with gs = eφ . Actually, this
is not the case, and inspection of the solution (2.5) shows that
this vacuum configuration necessarily enters a strong coupling
regime for large u. This clearly suggests that the perturbative
description is at best incomplete. Another hint pointing towards
the inevitable presence of a strongly coupled phase comes from
the analysis of the gauge theory on the D-branes. After a suit-
able reduction to four dimensions, the light excitations com-
prise gauge bosons and six scalars in the adjoint of USp(32)
together with four Weyl fermions in the 496-dimensional anti-
symmetric representation. This gauge theory is clearly asymp-
totically free, and its coupling becomes strong at low energies.
To summarise, these non-BPS orientifolds are naturally driven
towards a phase of strong coupling, and, as we shall see in
the following sections, our conjecture is that non-perturbatively
these vacua are metastable states of the supersymmetric type I
superstring.

3. S-duality, supersymmetry breaking and metastable
states

In the previous section we have introduced two different
types of O-planes that exist in perturbative string theory. We
have called them Op±-planes where the suffix refers to the
sign of their tension and charge. Actually, the difference be-
tween these two types of orientifold planes resides in a dis-
crete Bab background, always allowed by the orientifold pro-
jection [18], that implies the possibility of having a non-trivial
discrete holonomy for the NS–NS B field

(3.1)θNS =
∫

RP
2

B2

2π
= 1

2
.

The holonomy contributes to a term e2iπθNS to the RP
2 ampli-

tude and thus introduces and additional minus sign responsible
for the exchange of Op+- and Op−-planes. Actually, it was
realised that also R–R field could have a non-trivial discrete

3 On the branes supersymmetry is actually realised non-linearly [7] and the
dilaton tadpole is the leading term in the expansion of the Volkov–Akulov ac-
tion for the goldstino, the gauge-singlet spinor present among the open-string
excitations.
Table 1
The four types of O-planes for p � 5

(θNS, θR) R–R charge GCP

Op− (0,0) −2p−5 SO(2n)

Op+ ( 1
2 ,0) +2p−5 USp(2n)

Õp− (0, 1
2 ) 1

2 − 2p−5 SO(2n + 1)

Õp+ ( 1
2 , 1

2 ) +2p−5 USp(2n)

holonomy, that would in turn yield new variants of orientifold
planes. For instance, in the case of O3-planes one could allow
for the holonomy

(3.2)θR =
∫

RP
2

C2

2π
= 1

2
.

As a result, there are four different types of orientifold planes
characterised by the values of the holonomies (θNS, θR) and
yield different types of gauge theories on stacks of D3-branes
coincident with them, as summarised in Table 1 [14].

Unlike the Op± cases, however, O-planes carrying a non-
vanishing θR holonomy cannot be described in perturbation
theory since they involve a non-trivial R–R background. In fact,
the SL(2,Z) duality of the type IIB superstring exchanges θNS

and θR, so that O3−- and Õ3+-planes are fixed, while O3+-
and Õ3−-planes are interchanged. If we include D3-branes, the
S-duality of type IIB becomes the Montonen–Olive duality for
the N = 4 supersymmetric gauge theory living on their world-
volume [14]. Notice, that an Õ3−-plane has the same charge
and tension as an O3−-plane with a stuck D3-brane on it, and
indeed it was argued in [14] that in the strong coupling limit the
O3+-plane with positive tension and positive charge is naturally
described in terms of an O3− together with a stuck D3. These
are all the ingredients we need to describe the strong-coupling
dynamics of the orientifold vacua introduced in the previous
section.

For simplicity, let us consider a local configuration of an
O3+-plane with a number m of D3-branes on it—together with
their images under Ω . Clearly this configuration is not BPS, and
indeed the gauge theory on the anti-branes has gauge bosons
and six scalars in the adjoint representation of a USp(2m) group
while the four Weyl fermions are in the anti-symmetric rep-
resentation. This is a local version of the model described in
the previous section and introduced in [4,5]. Although, strictly
speaking, Montonen–Olive duality does not apply to this con-
figuration, if the D3-branes are moved a distance δ � √

α′ from
the O-plane then supersymmetry is only mildly broken, and one
can assume that S-duality is almost exact. Hence, the configu-
ration of O3+- and D3-branes that is stable at weak coupling is
naturally driven towards a strongly coupled regime where it is
more conveniently described in terms of4 Õ3− and D3 or, bet-
ter, in terms of a negatively charged O3−-plane plus m physical
D3- and a stuck D3-brane.

4 Notice that the D3-branes in the bulk have an N = 4 supersymmetric
massless spectrum with gauge group U(m) that is self-dual.
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The vacuum energy of the initial configuration receives con-
tribution entirely from the Möbius-strip amplitude

Λweak = −Mweak = −m

∞∫
0

dt

t3

V̂8 + Ŝ8

η̂8
e−4πtδ2/α′

= −m

4

∞∫
0

d�

�3

θ̂4
2

η̂12
e−2πδ2/α′�

(3.3)∼ −m(α′)2

π2δ4
,

where the leading contribution originates from the exchange of
massless closed-string states in the tree-level channel, and in
going from the first to the second line we have used the stan-
dard relations between the proper times t for the open-string
propagation and � for the closed-string propagation [13].

In the weakly coupled S-dual configuration, however, the
D3-branes not only interact with the orientifold plane, but also
with the stuck D3-brane, so that now both the annulus and
Möbius-strip diagrams contribute to the vacuum energy

Λstrong = −Astrong − Mstrong

= −2m

∞∫
0

dt

t3

O8 − C8

η8
e−πtδ2/α′

+ m

∞∫
0

dt

t3

V̂8 + Ŝ8

η̂8
e−4πtδ2/α′

= −m

2

∞∫
0

d�

�3

θ4
2

η12
e−2πδ2/α′� + m

4

∞∫
0

d�

�3

θ̂4
2

η̂12
e−2πδ2/α′�

(3.4)∼ −m(α′)2

π2δ4
.

This configuration is clearly unstable since the D3-branes are
attracted by the O3−-plane and the stuck D3-brane. However, in
contrast with the original non-BPS configuration, for δ <

√
α′

a tachyonic mode now appears in the open-string spectrum and
the D3’s and the stuck D3 tend to partially annihilate. In the
next section we shall see how this local construction can be
extended to vacuum configurations with brane supersymmetry
breaking.

In the original non-BPS configuration the vacuum energy in
the Einstein frame has a qualitative dependence on the string
coupling constant of the form V ∼ T − gs/δ

4 that indeed
drives the system towards a non-perturbative regime. However,
as gs becomes strong, the non-BPS configuration has a nat-
ural weakly coupled description in terms of type I with pairs
of branes and anti-branes that is still characterised by a vac-
uum energy of the form V ∼ T − g′

s/δ
4. However, g′

s = g−1
s is

now very small and hence the corresponding vacuum energy is
bigger, thus interposing an energy barrier between the original
non-BPS configuration and the final type I superstring state. We
are therefore led to conclude that the original non-BPS config-
uration, with O3+-plane and D3-branes, is a locally metastable
vacuum of a type IIB orientifold with O3−-planes. Clearly, this
argument is somewhat qualitative, and more detailed studies
are needed in order to prove that this non-BPS configuration
is metastable.

4. Strong coupling limit of vacua with brane
supersymmetry breaking

We can now use the strong coupling properties of the lo-
cal model studied in the previous section to describe the dy-
namics of the non-BPS vacuum configuration of interest [4,5].
In fact, let us consider the four-dimensional orientifold ob-
tained by projecting the T 6 reduction of type IIB superstring
by Ω ′ = ΩI6(−1)FL , where Ω is the standard orientifold pro-
jection, I6 reverts the coordinates of the internal six-torus, and
(−1)FL is the left-handed space–time fermion index. This ori-
entifold introduces 64 O3+-planes at the 64 fixed points of the
Ω ′ orientifold together with 32 D3-branes needed to cancel the
R–R tadpole.

The presence of a non-vanishing dilaton tadpole or, in turn,
an attractive force between the O3+-planes and the anti-branes
makes the configuration unstable and drives the model towards
a strong coupling regime. If the D3 are placed in the bulk at a
suitable distance from the O-planes, it is reasonable to assume
that type IIB S-duality still holds, so that a weakly coupled
description is in terms of 64 Õ3−-planes, or in terms of 64 O3−-
planes with 64 stuck D3-branes. This configuration is indeed
allowed since the six Wilson lines

W1 = (
132,−132), W2 = (

116,−116,−116,116),
(4.1)W3 = (

18,−18,−18,18,−18,18,18,−18), . . .

needed to distribute the D3-branes on the orientifold planes,
have positive determinant and mutually commute when acting
on spinors. One can then decompactify this configuration and
at the same time undo these Wilson lines, so that the D3-branes
can be brought together to yield an SO(64) gauge group.

Finally, the 32 pairs of branes and anti-branes annihilate via
open-string tachyon condensation [19] and one is left with the
type I superstring with negatively charges O-planes and 32 D-
branes with gauge group SO(32).

This strongly coupled dynamics of the USp(32) model and
its connection with the type I superstring can be nicely cap-
tured to a large extent by tachyon condensation already in ten
dimensions. Let us consider, in fact, the type I superstring with
additional pairs of branes and anti-branes. In the presence of the
O9−-plane these have two possible ways to decay. Either they
fully annihilate in pairs, or a pair of stuck D9–D9-branes is left
with an O(1) gauge group on each world-volume. Taking into
account also the N = 32 D9-branes of type I, one is altogether
left with p = 1 stuck anti-branes and 33 = N + q branes whose
one-loop amplitudes read

A =
∞∫

0

dt

t6

1

η8

[
1

2

(
(N + q)2 + p2)(V8 − S8)

(4.2)+ (N + q)p(O8 − C8)

]
,
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and

(4.3)M = 1

2

∞∫
0

dt

t6

1

η̂8

[−(N + q)(V̂8 − Ŝ8) − p(V̂8 + Ŝ8)
]
.

The light spectrum now comprises 1
2 33 ·32 = 528 gauge bosons

on the D9-branes, 32 + 1 tachyons, denoted T32 and T1, 496 +
32 + 1 left-handed Majorana–Weyl fermions, denoted ψL

496,
ψL

32 and ψL
1 , and 32+1 right-handed Majorana–Weyl fermions,

denoted λR
32 and λR

1 . These massless excitations are compati-
ble both with a SO(33) and a USp(32) gauge group. From the
point of view of the former, tachyon condensation breaks it to
its SO(32) subgroup and theory becomes the supersymmetric
type I. However, we can interpret the end-point of tachyon con-
densation also from the viewpoint of USp(32) gauge group.
In this case, condensing the singlet tachyon, 〈T1〉 
= 0, yields
mass terms for the 33 non-chiral fermions and for the 32 (N,p)

tachyons T32 through couplings of the form T1ψ
L
32λ

R
32, T1ψ

L
1 λR

1
and T 2

1 T 2
32.

As a result, the surviving massless modes are the 496 left-
handed fermions ψL

496 and 528 gauge bosons, precisely the
massless content of the non-supersymmetric USp(32) gauge
theory with chiral fermions in the anti-symmetric representa-
tion!

5. S-duality in freely acting orbifolds with brane
supersymmetry breaking

Other non-BPS configurations similar to that discussed in
Section 2 have been proposed in the literature [5], and their fate
is also an open question. Clearly, it would be nice if similar
arguments based on S-duality could be applied also to these
cases. Unfortunately, in most of the other models the non-
supersymmetric branes are embedded in an N = 2 or N = 1
closed-string setting, and S-duality is not fully under control.
For this reason, we shall study here a new vacuum partially re-
lated to that in [5], but where the various ingredients—O-planes
and D-branes—are fairly separated in the transverse directions,
and therefore do not interact strongly. The model is based on a
freely acting (T 4 × S1 × S1)/Z2 orbifold of the type IIB super-
string, where the single Z2 generator g reverts the sign of the
four coordinates of the T 4,

(5.1)g : (X6,X7,X8,X9) → −(X6,X7,X8,X9),

and simultaneously shifts the first S1 coordinate

(5.2)g : X5 → X5 + πR,

by half of the length of the circle, while leaving untouched the
X4 coordinate of the second S1. At the level of the type IIB
superstring

T = 1

2

∫
F

d2τ

τ 3
2

1

|η|8
[
|Qo + Qv|2Γ (4,4)Γm,n

+ |Qo − Qv|2
∣∣∣∣2η

∣∣∣∣4

(−1)mΓm,n

θ2
+ 16|Qs + Qc|2
∣∣∣∣ η

θ4

∣∣∣∣4

Γ
m,n+ 1

2

(5.3)+ 16|Qs − Qc|2
∣∣∣∣ η

θ3

∣∣∣∣4

(−1)mΓ
m,n+ 1

2

]
Γ (1,1),

it interpolates between N = 2 vacua and N = 4 vacua in the
limit R → ∞. Here we have used our standard notation [13] for
the Z2 characters

Qo = V4O4 − C4C4, Qs = O4C4 − S4O4,

(5.4)Qv = O4V4 − S4S4, Qc = V4S4 − C4V4,

written in terms of SO(4) ones, while Γ (d,d) (Γm,n) denotes the
Narain lattice for a T d torus (for the shifted circle). This has a
nice interpretation as a Scherk–Schwarz partial supersymmetry
breaking after one doubles the radius of the deformed S1, so
that the torus amplitude becomes

T =
∫
F

d2τ

τ 3
2

1

|η|8
[
|Qo + Qv|2Γ (4,4)(Γm,2n + Γ

m+ 1
2 ,2n

)

+ |Qo − Qv|2
∣∣∣∣2η

θ2

∣∣∣∣4

(Γm,2n − Γ
m+ 1

2 ,2n
)

+ 16|Qs + Qc|2
∣∣∣∣ η

θ4

∣∣∣∣4

(Γm,2n+1 + Γ
m+ 1

2 ,2n+1)

(5.5)

+ 16|Qs − Qc|2
∣∣∣∣ η

θ3

∣∣∣∣4

(Γm,2n+1 − Γ
m+ 1

2 ,2n+1)

]
Γ (1,1).

Standard supersymmetric orientifold projections of this inter-
polating type IIB configuration have already been studied in
[20], however we are interested now in non-BPS configurations
with Op+-planes and for this reason, as in [5], we combine
the world-sheet parity ΩI45(−1)FL , where I45 denotes a simul-
taneous inversion along the X4 and X5 coordinates, with an
automorphism σ that reverts the contribution of the twisted sec-
tor. The Klein-bottle amplitude is then

K = 1

4

∞∫
0

dτ2

τ 3
2

1

η4

[
(Qo + Qv)

(
P (4) + W(4)

)
W2n

(5.6)− 2 × 16(Qs + Qc)
η2

θ2
4

W2n+1

]
Wn,

where, as usual, P and W denote the truncation of the Narain
lattice to pure momenta and to pure winding zero modes. After
an S modular transformation to the tree-level channel, this am-
plitude clearly spells-out the geometry of O-planes: this inter-
polating orientifold contains two O7−-planes both with X5 = 0,
together with 32 O3+-planes all at X5 = πR, and dislocated at
the 32 fixed points of the T 4 and of the spectator S1.

As expected, the open-string sector needed to cancel R–R
tadpoles involves N = 16 D7- and M = 16 D3-branes, whose
spectra are encoded in the annulus
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A = 1

2

∞∫
0

dt

t3

1

η4

[(
N2P (4) + M2W(4)

)
(Qo + Qv)Wn

(5.7)+ 2NM(Qs + Qc)
η2

θ2
4

W
n+ 1

2

]
Wn,

and Möbius-strip

M = −1

2

∞∫
0

dt

t3

1

η̂4

[
NP (4)(V̂4Ô4 + Ô4V̂4 − Ŝ4Ŝ4 − Ĉ4Ĉ4)W2n

− MW(4)(V̂4Ô4 + Ô4V̂4 + Ŝ4Ŝ4 + Ĉ4Ĉ4)W2n

− N(V̂4Ô4 − Ô4V̂4 + Ŝ4Ŝ4 − Ĉ4Ĉ4)

(
2η̂

θ̂2

)2

W2n+1

(5.8)

+ M(V̂4Ô4 − Ô4V̂4 − Ŝ4Ŝ4 + Ĉ4Ĉ4)

(
2η̂

θ̂2

)2

W2n+1

]
Wn

amplitudes. At the massless level the D7-branes comprise a full
N = 4 vector supermultiplet in the adjoint of SO(16), while the
D3-branes are non-supersymmetric and comprise vectors and
six scalars in the adjoint of a USp(16) gauge group and four
Weyl fermions in the reducible anti-symmetric representation
120 = 119 + 1. The D7–D3 strings are here massive as a result
of our choice of displacing the branes close to their homologous
O-planes that in this model are geometrically separated.

Also in this case the configuration is unstable, although
tachyon free, and is driven towards a strongly coupled regime.
After the D3 are displaced in the bulk sufficiently far from the
O-planes and from the D7-branes, one can use the same argu-
ments based on S-duality and describe this model with gs � 1
in terms of a weakly coupled configuration where the 32 O3+-
planes are traded for 32 Õ3− ones ∼ 32(O3−-planes + stuck
D3-branes). The sixteen bulk D3-branes can annihilate half of
the stuck D3 ones and yield a fully supersymmetric configura-
tion. The resulting massless spectrum has N = 4 supersym-
metry and gauge group SO(16) × SO(16) as in the model in
[20], that was argued to be related to the heterotic M-theory of
Horava and Witten [21].

It would be interesting to gain also some understanding
of the strongly coupled regime of more general models with
brane supersymmetry breaking, where the closed-string sec-
tor and presumably the final weakly coupled D-brane config-
uration have reduced supersymmetry. However, our arguments
are based on the SL(2,Z) duality of type IIB, that is well
established for N = 4 theories but not fully understood for
non-maximally supersymmetric models. Although in principle
it is not applicable to non-supersymmetric environments, in
the models we have analysed in this Letter S-duality is only
marginally broken since, if the anti-branes are placed in the
bulk, the configurations preserve to leading order sixteen su-
percharges, so that the strongly coupled regime is partly under
control.
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